Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 172
Filtrar
1.
Skin Res Technol ; 30(6): e13804, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38895789

RESUMO

OBJECTIVE: Research has previously established connections between the intestinal microbiome and the progression of some cancers. However, there is a noticeable gap in the literature in regard to using Mendelian randomisation (MR) to delve into potential causal relationships between the gut microbiota (GM) and basal cell carcinoma (BCC). Therefore, the purpose of our study was to use MR to explore the causal relationship between four kinds of GM (Bacteroides, Streptococcus, Proteobacteria and Lachnospiraceae) and BCC. METHODS: We used genome-wide association study (GWAS) data and MR to explore the causal relationship between four kinds of GM and BCC. This study primarily employed the random effect inverse variance weighted (IVW) model for analysis, as complemented by additional methods including the simple mode, weighted median, weighted mode and MR‒Egger methods. We used heterogeneity and horizontal multiplicity to judge the reliability of each analysis. MR-PRESSO was mainly used to detect and correct outliers. RESULTS: The random-effects IVW results showed that Bacteroides (OR = 0.936, 95% CI = 0.787-1.113, p = 0.455), Streptococcus (OR = 0.974, 95% CI = 0.875-1.083, p = 0.629), Proteobacteria (OR = 1.113, 95% CI = 0.977-1.267, p = 0.106) and Lachnospiraceae (OR = 1.027, 95% CI = 0.899-1.173, p = 0.688) had no genetic causal relationship with BCC. All analyses revealed no horizontal pleiotropy, heterogeneity or outliers. CONCLUSION: We found that Bacteroides, Streptococcus, Proteobacteria and Lachnospiraceae do not increase the incidence of BCC at the genetic level, which provides new insight for the study of GM and BCC.


Assuntos
Carcinoma Basocelular , Microbioma Gastrointestinal , Estudo de Associação Genômica Ampla , Análise da Randomização Mendeliana , Neoplasias Cutâneas , Humanos , Carcinoma Basocelular/genética , Carcinoma Basocelular/microbiologia , Microbioma Gastrointestinal/genética , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/microbiologia , Streptococcus/genética , Proteobactérias/genética , Bacteroides/genética , Predisposição Genética para Doença/genética , Polimorfismo de Nucleotídeo Único
2.
PeerJ ; 12: e17450, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38860210

RESUMO

Background: Spodoptera frugiperda, the fall armyworm is a destructive invasive pest, and S. litura the tobacco cutworm, is a native species closely related to S. frugiperda. The gut microbiota plays a vital role in insect growth, development, metabolism and immune system. Research on the competition between invasive species and closely related native species has focused on differences in the adaptability of insects to the environment. Little is known about gut symbiotic microbe composition and its role in influencing competitive differences between these two insects. Methods: We used a culture-independent approach targeting the 16S rRNA gene of gut bacteria of 5th instar larvae of S. frugiperda and S. litura. Larvae were reared continuously on maize leaves for five generations. We analyzed the composition, abundance, diversity, and metabolic function of gut microbiomes of S. frugiperda and S. litura larvae. Results: Firmicutes, Proteobacteria, and Bacteroidetes were the dominant bacterial phyla in both species. Enterococcus, ZOR0006, Escherichia, Bacteroides, and Lactobacillus were the genera with the highest abundance in S. frugiperda. Enterococcus, Erysipelatoclostridium, ZOR0006, Enterobacter, and Bacteroides had the highest abundance in S. litura. According to α-diversity analysis, the gut bacterial diversity of S. frugiperda was significantly higher than that of S. litura. KEGG analysis showed 15 significant differences in metabolic pathways between S. frugiperda and S. litura gut bacteria, including transcription, cell growth and death, excretory system and circulatory system pathways. Conclusion: In the same habitat, the larvae of S. frugiperda and S. litura showed significant differences in gut bacterial diversity and community composition. Regarding the composition and function of gut bacteria, the invasive species S. frugiperda may have a competitive advantage over S. litura. This study provides a foundation for developing control strategies for S. frugiperda and S. litura.


Assuntos
Microbioma Gastrointestinal , Larva , RNA Ribossômico 16S , Spodoptera , Animais , Microbioma Gastrointestinal/genética , Spodoptera/microbiologia , Spodoptera/genética , Larva/microbiologia , RNA Ribossômico 16S/genética , Proteobactérias/genética , Proteobactérias/isolamento & purificação , Bacteroidetes/genética , Bacteroidetes/isolamento & purificação , Firmicutes/genética , Firmicutes/isolamento & purificação , Bactérias/genética , Bactérias/classificação , Lactobacillus/genética , Lactobacillus/isolamento & purificação , Enterococcus/genética , Bacteroides/genética , Simbiose
3.
mSystems ; 8(6): e0054323, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-37921472

RESUMO

IMPORTANCE: Knowledge on microbial iron oxidation is important for understanding the cycling of iron, carbon, nitrogen, nutrients, and metals. The current study yields important insights into the niche sharing, diversification, and Fe(III) oxyhydroxide morphology of Ghiorsea, an iron- and hydrogen-oxidizing Zetaproteobacteria representative belonging to Zetaproteobacteria operational taxonomic unit 9. The study proposes that Ghiorsea exhibits a more extensive morphology of Fe(III) oxyhydroxide than previously observed. Overall, the results increase our knowledge on potential drivers of Zetaproteobacteria diversity in iron microbial mats and can eventually be used to develop strategies for the cultivation of sheath-forming Zetaproteobacteria.


Assuntos
Fontes Hidrotermais , Ferro , Água do Mar/microbiologia , Hidrogênio , Fontes Hidrotermais/microbiologia , Proteobactérias/genética , Oxirredução , Compostos Férricos
4.
Arch Microbiol ; 205(11): 359, 2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37884755

RESUMO

Plastic pollution is one of the most resilient types of pollution and is considered a global environmental threat, particularly in the marine environment. This study aimed to identify plastic-degrading bacteria from the plastisphere and their pharmaceutical and therapeutic potential. We collected samples from soil and aquatic plastisphere to identify the bacterial communities using shotgun metagenomic sequencing and bioinformatic tools. Results showed that the microbiome comprised 93% bacteria, 0.29% archaea, and 3.87% unidentified microbes. Of these 93% of bacteria, 54% were Proteobacteria, 23.9% were Firmicutes, 13% were Actinobacteria, and 2.1% were other phyla. We found that the plastisphere microbiome was involved in degrading synthetic and polyhydroxy alkanoate (PHA) plastic, biosurfactant production, and can thrive under high temperatures. However, no association existed between thermophiles, synthetic plastic or PHA degraders, and biosurfactant-producing bacterial species except for Pseudomonas. Other plastisphere inhabiting plastic degrading microbes include Streptomyces, Bacillus, Achromobacter, Azospirillum, Bacillus, Brevundimonas, Clostridium, Paenibacillus, Rhodococcus, Serratia, Staphylococcus, Thermobifida, and Thermomonospora. However, the plastisphere microbiome showed potential for producing secondary metabolites that were found to act as anticancer, antitumor, anti-inflammatory, antimicrobial, and enzyme stabilizers. These results revealed that the plastisphere microbiome upholds clinical and environmental significance as it can open future portals in a multi-directional way.


Assuntos
Bactérias , Microbiota , Bactérias/genética , Microbiota/genética , Proteobactérias/genética , Archaea/genética , Metagenoma , Metagenômica
5.
Antonie Van Leeuwenhoek ; 116(12): 1305-1316, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37773470

RESUMO

Human infections by environmental bacteria is becoming an increasing problem and has become a matter of great concern due to the adverse effects worldwide. In this study, we reported a new environmental pathogen. Isolate GX5518T was a novel Gram-negative, aerobic, non-motile, pleomorphic and red-pigmented bacterium, was isolated from human wound secretions (GuangXi, People's Republic of China). Growth occurred at pH 6.0-8.0 (optimum, pH 7.0) and 10-37 °C (optimum, 28-32 °C) with 0-1.5% (w/v) NaCl in R2A agar. Comparative analysis of the 16S rRNA gene sequences revealed that isolate GX5518T was closely related to Fluviispira sanaruensis JCM 31447T (99.73%) and Fluviispira multicolorata 33A1-SZDPT (98.49%). However, the estimated ANI values of the isolate GX5518T compared to the F. sanaruensis JCM 31447T and F. multicolorata 33A1-SZDPT were 88.67% and 77.35%, respectively. The estimated dDDH, ANI and AAI values between isolate GX5518T and its closely related strains were below the threshold values generally considered for recognizing a new species. The genome size was 3.6 Mbp and the DNA G + C content was 33.1%. The predominant fatty acids (> 5%) in GX5518T cells were iso-C15:0, C16:0, C17:0, C17:1 ω8c and C16:1 ω7c/C16:1 ω6c. The major menaquinone was MK-8 (86.9%). The polar lipids were phosphatidylethanolamine (PE), phosphatidylglycerol (PG) and three unknown lipids (L1-3). The chemical composition was different from that of the F. sanaruensis JCM 31447T. Comparative genomics analysis between isolate GX5518T and its related strains revealed that there were a number of genes involved in resistance to antibiotics and toxic compounds in isolate GX5518T, which were responsible for the copper homeostasis, cobalt-zinc-cadmium resistance, resistance to fluoroquinolones, and zinc resistance. Based on the phenotypic, chemotaxonomic, and genomic analyses, isolate GX5518T (= CGMCC 1.18685T = KCTC 82149T) represents a novel species of the genus Fluviispira, for which the name Fluviispira vulneris sp. nov. is proposed.


Assuntos
Ácidos Graxos , Fosfolipídeos , Humanos , Fosfolipídeos/química , RNA Ribossômico 16S/genética , Hibridização de Ácido Nucleico , DNA Bacteriano/genética , Análise de Sequência de DNA , China , Ácidos Graxos/química , Proteobactérias/genética , Zinco , Filogenia , Técnicas de Tipagem Bacteriana
6.
Sci Rep ; 13(1): 13333, 2023 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-37587237

RESUMO

During the processing of tobacco leaves, flue-curing and redrying can affect the structure of bacterial community, having an effect on the aging quality of tobacco leaves. In order to characterize the effects of flue-curing and redrying on the bacterial community of tobacco leaves, the bacterial community of samples at different processing stages (before flue-curing, after flue-curing, before redrying and after redrying) was analyzed using Illumina sequencing. A total of 33 phyla, 79 classes, 195 orders, 344 families, 826 genera and 7922 ASVs were obtained from 36 samples. There was no significant difference in the core bacterial groups of tobacco leaf at four processing stages. Proteobacteria dominated at the phylum level. Sphingomonas, Pseudomonas and Methylobacterium were the main genera shared by all samples. The functional prediction by PICRUSt showed an increase in the relative abundance of pathway related to metabolism after flue-curing and pathway related to environmental information processing after redrying. This study, we analyzed the changes of bacterial community and structural composition of tobacco leaves from flue-curing to redrying, and found that flue-curing had a greater effect on the microbial community than redrying. This is conducive for the exploration of microbial resources and improvement of tobacco leaf quality.


Assuntos
Vacinas Anticâncer , Nicotiana , Humanos , Folhas de Planta , Proteobactérias/genética , Envelhecimento
7.
Curr Microbiol ; 80(8): 239, 2023 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-37294364

RESUMO

Metabolic diseases like obesity, diabetes, and hypertension are considered major risk factors associated with endometrial cancer. Considering that an imbalance in the gut microbiome may lead to metabolic alterations, we hypothesized that alteration in the gut microbioma might be an indirect factor in the development of endometrial cancer. Our aim was to profile the gut microbiota of patients with endometrial cancer compared with healthy controls in this study. Thus, we used 16S rRNA high-throughput gene sequencing on the Illumina NovaSeq platform to profile microbial communities. Fecal samples were collected from 33 endometrial cancer patients (EC group) and 32 healthy controls (N group) between February 2021 and July 2021. The total numbers of operational taxonomic units (OTUs) in the N and EC groups were 28,537 and 18,465, respectively, while the number of OTUs shared by the two groups was 4771. This study was the first to report that the alpha diversity of the gut microbiota was significantly reduced in endometrial cancer patients vs. healthy controls. Also, there was a significant difference in the distribution of microbiome between the two groups: the abundance of Firmicutes, Clostridia, Clostridiales, Ruminococcaceae, Faecalibacterium, and Gemmiger_formicis decreased, while that of Proteobacteria, Gammaproteobacteria, Enterobacteriales, Enterobacteriaceae and Shigella increased significantly in the EC group vs. healthy controls (all p < 0.05). The predominant intestinal microbiota of the endometrial cancer patients was Proteobacteria, Gammaproteobacteria, Enterobacteriales, Enterobacteriaceae, and Shigella. These results imply that adjusting the composition of the gut microbiota and maintaining microbiota homeostasis may be an effective strategy for preventing and treating endometrial cancer.


Assuntos
Neoplasias do Endométrio , Microbioma Gastrointestinal , Humanos , Feminino , Microbioma Gastrointestinal/genética , RNA Ribossômico 16S/genética , Disbiose/microbiologia , Genes de RNAr , Firmicutes/genética , Enterobacteriaceae/genética , Fezes/microbiologia , Proteobactérias/genética , Clostridiales/genética , Neoplasias do Endométrio/genética
8.
Sci Total Environ ; 896: 165152, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37391160

RESUMO

Steroidal estrogens are ubiquitous contaminants that have garnered attention worldwide due to their endocrine-disrupting and carcinogenic activities at sub-nanomolar concentrations. Microbial degradation is one of the main mechanisms through which estrogens can be removed from the environment. Numerous bacteria have been isolated and identified as estrogen degraders; however, little is known about their contribution to environmental estrogen removal. Here, our global metagenomic analysis indicated that estrogen degradation genes are widely distributed among bacteria, especially among aquatic actinobacterial and proteobacterial species. Thus, by using the Rhodococcus sp. strain B50 as the model organism, we identified three actinobacteria-specific estrogen degradation genes, namely aedGHJ, by performing gene disruption experiments and metabolite profile analysis. Among these genes, the product of aedJ was discovered to mediate the conjugation of coenzyme A with a unique actinobacterial C17 estrogenic metabolite, 5-oxo-4-norestrogenic acid. However, proteobacteria were found to exclusively adopt an α-oxoacid ferredoxin oxidoreductase (i.e., the product of edcC) to degrade a proteobacterial C18 estrogenic metabolite, namely 3-oxo-4,5-seco-estrogenic acid. We employed actinobacterial aedJ and proteobacterial edcC as specific biomarkers for quantitative polymerase chain reaction (qPCR) to elucidate the potential of microbes for estrogen biodegradation in contaminated ecosystems. The results indicated that aedJ was more abundant than edcC in most environmental samples. Our results greatly expand the understanding of environmental estrogen degradation. Moreover, our study suggests that qPCR-based functional assays are a simple, cost-effective, and rapid approach for holistically evaluating estrogen biodegradation in the environment.


Assuntos
Ecossistema , Estrogênios , Estrogênios/metabolismo , Estrona/metabolismo , Biodegradação Ambiental , Bactérias/metabolismo , Proteobactérias/genética
9.
PLoS One ; 17(12): e0278377, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36525425

RESUMO

BACKGROUND/OBJECTIVES: This study examined the correlation between pancreatic microbiome and patients characteristics. Furthermore, we compared different duodenal materials to examine their reflection of the pancreatic microbiome. METHODS: Patients undergoing pancreatic surgery were included in the study. Characteristics of those patients were prospectively registered and sterile pancreatic biopsies were collected during surgery. After completion of the resection, duodenal fluid, -tissue and -swab were collected. Bacterial DNA was extracted and analyzed with IS-pro assay. RESULTS: Paired samples of 51 patients were available for evaluation, including pancreatic biopsies from all patients, 22 duodenal fluids, 21 duodenal swabs and 11 duodenal tissues. The pancreatic microbiome consisted mostly of Proteobacteria followed by Firmicutes, Actinobacteria, Fusobacteria and Verrucomicrobia (FAFV) and Bacteroidetes. On species level, Enterococcus faecalis, Escherichia coli, and Enterobacter-Klebsiella were most abundant. In pancreatic biopsies, the total bacterial load and Proteobacteria load were significantly higher in patients with biliary drainage (54618.0 vs 5623.5; 9119.0 vs 2067.1). Patients who used proton pump inhibitors had a significantly higher total bacterial load (115964.7 vs 8495.8), more FAFV (66862.9 vs 1890.1), more Proteobacteria (24245.9 vs 2951.4) and more Bacteroidetes (542.5 vs 25.8). The head of the pancreas contained significantly more bacteria (21193.4 vs 2096.8) and more FAFV (5225.7 vs 19.0) compared to the tail, regardless of biliary drainage. Furthermore, the microbiome of all duodenal materials showed a weak correlation with the pancreatic microbiome. CONCLUSION: Biliary drainage, use of proton pump inhibitors, and anatomic location of the pancreatic biopsy influence the pancreatic microbiome. Furthermore, the duodenal microbiome does not suffice as a surrogate for the pancreatic microbiome.


Assuntos
Microbiota , Inibidores da Bomba de Prótons , Humanos , Duodeno/cirurgia , Duodeno/microbiologia , Pâncreas , Bactérias/genética , Bacteroidetes/genética , Proteobactérias/genética , Fusobactérias/genética , RNA Ribossômico 16S/genética
10.
Artigo em Inglês | MEDLINE | ID: mdl-36497987

RESUMO

(1) Background: A clinical laboratory index to assess gut dysbiosis is the F/B ratio < 0.8. In fact, an elevated proportion of Firmicutes and a reduced population of Bacteroides in diabetes type 2 (T2D) subjects has been observed. This study aimed to detail the dysbiosis status in the Italian population, focusing on some pathogenic spectra (T2D) or metabolic disorders. (2) Material and methods: A quantity of 334 fecal samples was analyzed in order to perform genetic testing and sequencing. (3) Results: A trend in over imbalance was observed in the percentage of Proteobacteria (median value: 6.75%; interquartile range (IQR): 3.57−17.29%). A statistically significant association (χ2p = 0.033) was observed between type of dysbiosis and T2D, corresponding to an Odds Ratio (OR) of 1.86. It was noted that females with cystitis/candidiasis are significantly prevalent in T2D patients (p < 0.01; OR: 3.59; 95% CI: 1.43−8.99). Although, in non-diabetic males, a sugar craving is significantly associated with the rate of dysbiosis in non-diabetic males (p < 0.05; OR 1.07; 95% CI 1.00−1.16). (4) Conclusion: In T2D patients, the Bacteroidetes/Firmicutes ratio was biased in favor of Proteobacteria, to be expected due to the nutritional habits of the patients. Thus, T2D females had altered gut permeability favoring the development of infections in the vaginal tract.


Assuntos
Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Masculino , Feminino , Humanos , Diabetes Mellitus Tipo 2/complicações , Disbiose/epidemiologia , Disbiose/microbiologia , Fezes/microbiologia , Bacteroides , Proteobactérias/genética , Firmicutes
11.
Commun Biol ; 5(1): 1197, 2022 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-36344631

RESUMO

Rhodopila globiformis is the most acidophilic of anaerobic purple phototrophs, growing optimally in culture at pH 5. Here we present a cryo-EM structure of the light-harvesting 1-reaction center (LH1-RC) complex from Rhodopila globiformis at 2.24 Å resolution. All purple bacterial cytochrome (Cyt, encoded by the gene pufC) subunit-associated RCs with known structures have their N-termini truncated. By contrast, the Rhodopila globiformis RC contains a full-length tetra-heme Cyt with its N-terminus embedded in the membrane forming an α-helix as the membrane anchor. Comparison of the N-terminal regions of the Cyt with PufX polypeptides widely distributed in Rhodobacter species reveals significant structural similarities, supporting a longstanding hypothesis that PufX is phylogenetically related to the N-terminus of the RC-bound Cyt subunit and that a common ancestor of phototrophic Proteobacteria contained a full-length tetra-heme Cyt subunit that evolved independently through partial deletions of its pufC gene. Eleven copies of a novel γ-like polypeptide were also identified in the bacteriochlorophyll a-containing Rhodopila globiformis LH1 complex; γ-polypeptides have previously been found only in the LH1 of bacteriochlorophyll b-containing species. These features are discussed in relation to their predicted functions of stabilizing the LH1 structure and regulating quinone transport under the warm acidic conditions.


Assuntos
Extremófilos , Rhodobacter sphaeroides , Rhodobacter sphaeroides/genética , Rhodobacter sphaeroides/metabolismo , Complexos de Proteínas Captadores de Luz/metabolismo , Modelos Moleculares , Proteínas de Bactérias/metabolismo , Fotossíntese , Proteobactérias/genética , Peptídeos/metabolismo , Heme/metabolismo
12.
Curr Microbiol ; 79(11): 320, 2022 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-36121540

RESUMO

In this study, to evaluate the effect of different biocontrol agents (BCAs) on the soil bacterial community, we investigated the effects of Bacillus amyloliquefaciens, synthetic bacterial community (Aspergillus niger:Bacillus subtilis:Bacillus licheniformis:Streptomyces microflavus = 3:3:3:1, SynCom), and BCAs combined with lime-nitrogen on soil bacterial community by utilizing 16S rRNA sequencing technology. The sequencing shows that BCAs application can improve the value of Shannon and Sobs index of bacterial community during tobacco rosette and vigorous growing period. With the growth of tobacco, the effect of BCAs on the composition and difference of soil bacterial community structure becomes more and more obvious. In terms of average relative richness, the top six phyla of soil bacterial community are Proteobacteria, Actinobacteria, Chloroflexi, Acidobacteria, Gemmatimonadetes, and Bacteroidetes. Bacillus amyloliquefaciens application can increase the relative richness of Proteobacteria and Bacteroidetes. And the combination between BCAs and lime-nitrogen can increase the relative richness of Gemmatimonadetes and Bacteroidetes. The SynCom also can increase the relative richness of Bacteroidetes, whereas it decreases the relative richness of Acidobacteria. Proteobacteria, Acidobacteria, Gemmatimonadetes, and Bacteroidetes showing an extremely significant correlation with pH and exchangeable magnesium (EMg). BCAs application can improve the tobacco yield, effective leaves, and reducing sugar content that also has extremely significant positive correlation with pH and EMg. In conclusion, the results of our field experiments clearly show that BCAs application can significantly affect the soil pH and EMg by changing most of the dominant soil bacterial species. The richness of Bacteroidetes can serve as an indicator of the changes in soil pH and EMg caused by BCAs application.


Assuntos
Nicotiana , Solo , Acidobacteria , Bactérias/genética , Bacteroidetes/genética , Compostos de Cálcio , Magnésio , Nitrogênio/análise , Óxidos , Proteobactérias/genética , RNA Ribossômico 16S/genética , Solo/química , Microbiologia do Solo , Açúcares , Nicotiana/microbiologia
13.
Artigo em Inglês | MEDLINE | ID: mdl-35903918

RESUMO

To promote the exploitation of unconventional oil resources by indigenous microorganisms, the bacterial community profiles of oil shale and sandstone in Ordos Basin were investigated using Illumina Miseq sequencing combined with the culture-based method, which was performed and reported in this literature for the first time. A total of 601 operational taxonomic units (OTUs) were obtained from collected samples, the predominant phylum present in all samples was Proteobacteria (76.96%-93.07%). Discriminatory bacterial community profiles existed in those samples by culture-dependent and culture-independent methods, with variations not only in diversity indices but also in the abundance of bacteria at different genus levels. The dominant genera in cultured sandstone sample (SCB), uncultured sandstone sample (SUB), cultured shale sample (YCB), uncultured shale sample (YUB) were Enhydrobacter (71.62%), Acidovorax (42.44%), Pseudomonas (40.13%), Variovorax (70.02%), respectively. Both sample sources and culturing methods were the principal factors affecting the variation, while the communities' structures were favored primarily by culture-dependent or culture-independent approaches. The high abundance of hydrocarbon degradation-related genes was exhibited in YCB, which reveals a great potential for utilization of the culture-dependent method in shale oil exploitation. This study provided guidance for the exploitation of shale oil and sandstone oil by artificial utilization of indigenous bacteria.


Assuntos
Bactérias , Proteobactérias , Bactérias/genética , Proteobactérias/genética , RNA Ribossômico 16S/genética
14.
Microbiome ; 10(1): 94, 2022 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-35710492

RESUMO

BACKGROUND: The gut microbiota is reportedly involved in the progression and chemoresistance of various human malignancies. However, the underlying mechanisms behind how it exerts some effect on prostate cancer, as an extra-intestinal tumor, in a contact-independent way remain elusive and deserve exploration. Antibiotic exposure, one of the various factors affecting the gut microbiota community and capable of causing gut dysbiosis, is associated with multiple disorders. This study aims to preliminarily clarify the link between gut dysbiosis and prostate cancer. RESULTS: First, we discovered that perturbing the gut microbiota by consuming broad-spectrum antibiotics in water promoted the growth of subcutaneous and orthotopic tumors in mice. Fecal microbiota transplantation could transmit the effect of antibiotic exposure on tumor growth. Then, 16S rRNA sequencing for mouse feces indicated that the relative abundance of Proteobacteria was significantly higher after antibiotic exposure. Meanwhile, intratumoral lipopolysaccharide (LPS) profoundly increased under the elevation of gut permeability. Both in vivo and in vitro experiments revealed that the NF-κB-IL6-STAT3 axis activated by intratumoral LPS facilitated prostate cancer proliferation and docetaxel chemoresistance. Finally, 16S rRNA sequencing of patients' fecal samples revealed that Proteobacteria was enriched in patients with metastatic prostate cancer and was positively correlated with plasma IL6 level, regional lymph node metastasis status, and distant metastasis status. The receiver operating characteristic (ROC) curves showed that the relative abundance of Proteobacteria had better performance than the prostate-specific antigen (PSA) level in predicting the probability of distant metastasis in prostate cancer (area under the ROC curve, 0.860; p < 0.001). CONCLUSION: Collectively, this research demonstrated that gut dysbiosis, characterized by the enrichment of Proteobacteria due to antibiotic exposure, resulted in the elevation of gut permeability and intratumoral LPS, promoting the development of prostate cancer via the NF-κB-IL6-STAT3 axis in mice. Considering findings from human patients, Proteobacteria might act as an intestinal biomarker for progressive prostate cancer. Video Abstract.


Assuntos
Disbiose , Neoplasias da Próstata , Animais , Antibacterianos/farmacologia , Docetaxel/farmacologia , Disbiose/microbiologia , Fezes/microbiologia , Humanos , Interleucina-6 , Lipopolissacarídeos , Masculino , Camundongos , NF-kappa B , Proteobactérias/genética , RNA Ribossômico 16S/genética , Fator de Transcrição STAT3/genética
15.
Curr Microbiol ; 79(8): 224, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35704242

RESUMO

Proteobacteria is one of the largest and phenotypically most diverse divisions within the domain bacteria. Due to the economic importance, this phylum demands an urgent need for a clear and scientifically sound classification system to streamline their characterization. The goal of our study was to carefully reevaluate the current system of classification and suggest changes wherein necessary. Phylogenetic trees of 84 Proteobacteria were constructed using single gene-based phylogeny involving 16S rRNA genes and protein sequences of 85 conserved genes, whole genome-based phylogenetic tree using CVtree3.0, amino acid Identity matrix tree, and concatenated tree with aforementioned conserved genes. The results of our study confirm the polyphyletic relationship between Desulfurella acetivorans, a Deltaproteobacteria with Epsilonproteobacteria. The group Syntrophobacterales was found to be polyphyletic with respect to Desulfarculus baarsii and the group Thiotrichales was found to be splitting in different phylogenetic trees. Placement of phylogenetic groups belonging to Rhodocyclales, Oceonospirilalles, and Chromatiales is controversial and requires further study and revisions. Based on our analysis, we strongly support reclassification of Magnetococcales as a separate class Etaproteobacteria. From our results, we conclude that concatenated trees of conserved proteins are a more accurate method for phylogenetic analysis, as compared to other methods used.


Assuntos
Alphaproteobacteria , Gammaproteobacteria , Alphaproteobacteria/genética , Proteínas de Bactérias/genética , Gammaproteobacteria/genética , Filogenia , Proteobactérias/genética , RNA Ribossômico 16S/genética
16.
Nutrients ; 14(9)2022 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-35565947

RESUMO

While evidence suggests that culinary herbs have the potential to modulate gut microbiota, much of the current research investigating the interactions between diet and the human gut microbiome either largely excludes culinary herbs or does not assess use in standard culinary settings. As such, the primary objective of this study was to evaluate how the frequency of culinary herb use is related to microbiome diversity and the abundance of certain taxa, measured at the phylum level. In this secondary data analysis of the INCLD Health cohort, we examined survey responses assessing frequency of culinary herb use and microbiome analysis of collected stool samples. We did not observe any associations between frequency of culinary herb use and Shannon Index, a measure of alpha diversity. Regarding the abundance of certain taxa, the frequency of use of polyphenol-rich herbs and herbs with certain quantities of antibacterial compounds was positively associated with Firmicutes abundance, and negatively associated with Proteobacteria abundance. Additionally, the total number of herbs used with high frequency, defined as over three times per week, was also positively associated with Firmicutes abundance, independent of adjustments, and negatively associated with Proteobacteria abundance, after adjusting for dietary factors. Frequency of culinary herb use was not associated with Bacteroidota or Actinobacteria abundance.


Assuntos
Microbioma Gastrointestinal , Bacteroidetes , Dieta , Firmicutes , Microbioma Gastrointestinal/fisiologia , Humanos , Proteobactérias/genética , RNA Ribossômico 16S/genética
17.
BMC Microbiol ; 22(1): 27, 2022 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-35033024

RESUMO

BACKGROUND: The bioactivities of commensal duodenal microbiota greatly influence the biofunction of hosts. We investigated the role of Helicobacter pylori infection in extra-gastroduodenal diseases by determining the impact of H. pylori infection on the duodenal microbiota. We sequenced 16 S rRNA genes in samples aspirated from the descending duodenum of 47 (male, 20; female, 27) individuals who were screened for gastric cancer. Samples were analysed using 16 S rRNA gene amplicon sequencing, and the LEFSe and Kyoto Encyclopaedia of Genes and Genomes methods were used to determine whether the duodenal microflora and microbial biofunctions were affected using H. pylori infection. RESULTS: Thirteen and 34 participants tested positive and negative for H. pylori, respectively. We identified 1,404 bacterial operational taxonomic units from 23 phyla and 253 genera. H. pylori infection changed the relative mean abundance of three phyla (Proteobacteria, Actinobacteria, and TM7) and ten genera (Neisseria, Rothia, TM7-3, Leptotrichia, Lachnospiraceae, Megasphaera, F16, Moryella, Filifactor, and Paludibacter). Microbiota features were significantly influenced in H. pylori-positive participants by 12 taxa mostly classified as Gammaproteobacteria. Microbial functional annotation revealed that H. pylori significantly affected 12 microbial metabolic pathways. CONCLUSIONS: H. pylori disrupted normal bacterial communities in the duodenum and changed the biofunctions of commensal microbiota primarily by upregulating specific metabolic pathways. Such upregulation may be involved in the onset of diseases associated with H. pylori infection.


Assuntos
Duodeno/microbiologia , Microbioma Gastrointestinal/genética , Infecções por Helicobacter/complicações , Helicobacter pylori/patogenicidade , Redes e Vias Metabólicas/genética , Microbiota/genética , Idoso , Bacteroidetes/genética , Duodeno/patologia , Disbiose/microbiologia , Feminino , Mucosa Gástrica/microbiologia , Helicobacter pylori/genética , Humanos , Masculino , Pessoa de Meia-Idade , Proteobactérias/genética , RNA Ribossômico 16S/genética
18.
Sci Rep ; 12(1): 1415, 2022 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-35082330

RESUMO

Intestinal gluconeogenesis (IGN), gastric bypass (GBP) and gut microbiota positively regulate glucose homeostasis and diet-induced dysmetabolism. GBP modulates gut microbiota, whether IGN could shape it has not been investigated. We studied gut microbiota and microbiome in wild type and IGN-deficient mice, undergoing GBP or not, and fed on either a normal chow (NC) or a high-fat/high-sucrose (HFHS) diet. We also studied fecal and urine metabolome in NC-fed mice. IGN and GBP had a different effect on the gut microbiota of mice fed with NC and HFHS diet. IGN inactivation increased abundance of Deltaproteobacteria on NC and of Proteobacteria such as Helicobacter on HFHS diet. GBP increased abundance of Firmicutes and Proteobacteria on NC-fed WT mice and of Firmicutes, Bacteroidetes and Proteobacteria on HFHS-fed WT mice. The combined effect of IGN inactivation and GBP increased abundance of Actinobacteria on NC and the abundance of Enterococcaceae and Enterobacteriaceae on HFHS diet. A reduction was observed in the amounf of short-chain fatty acids in fecal (by GBP) and in both fecal and urine (by IGN inactivation) metabolome. IGN and GBP, separately or combined, shape gut microbiota and microbiome on NC- and HFHS-fed mice, and modify fecal and urine metabolome.


Assuntos
Derivação Gástrica/métodos , Microbioma Gastrointestinal/fisiologia , Gluconeogênese/fisiologia , Intestinos/metabolismo , Metaboloma , Estômago/metabolismo , Actinobacteria/classificação , Actinobacteria/genética , Actinobacteria/isolamento & purificação , Animais , DNA Bacteriano/genética , Enterobacteriaceae/classificação , Enterobacteriaceae/genética , Enterobacteriaceae/isolamento & purificação , Enterococcaceae/classificação , Enterococcaceae/genética , Enterococcaceae/isolamento & purificação , Ácidos Graxos Voláteis/metabolismo , Firmicutes/classificação , Firmicutes/genética , Firmicutes/isolamento & purificação , Intestinos/microbiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Filogenia , Proteobactérias/classificação , Proteobactérias/genética , Proteobactérias/isolamento & purificação , Estômago/microbiologia , Estômago/cirurgia
19.
Medicine (Baltimore) ; 101(49): e32194, 2022 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-36626451

RESUMO

The gut microbiome has been increasingly suggested as an underlying cause of various human diseases. In this study, we hypothesized that the gut microbiomes of patients with familial adenomatous polyposis (FAP) are different from those of healthy people and attempted to identify the associations between gut microbiome characteristics and FAP. We collected fecal samples from patients with FAP and healthy volunteers and evaluated the diversity, composition, and distribution of the gut microbiome between the 2 groups via 16S rRNA-based taxonomic profiling of the fecal samples. Fecal samples were collected from 10 patients with FAP (4 men and 6 women, mean age 39.2 ±â€…13.8 years) and 10 healthy volunteers (4 men and 6 women, mean age 40.9 ±â€…9.8 years). The microbial richness in patients with FAP was significantly lower than that in healthy people. Regarding microbial composition, the Firmicutes/Bacteroidetes ratio in patients with FAP was higher than that in healthy people, especially in those with a lower proportion of Bacteroidetes and a higher proportion of Proteobacteria. We also found 7 specific abundant strains in fecal samples of patients with FAP. Patients with FAP had different Firmicutes/Bacteroidetes ratios and Proteobacteria abundance compared to healthy people and showed the presence of specific bacteria. These findings suggest a promising role of the gut microbiome in patients with FAP, although further studies are needed.


Assuntos
Polipose Adenomatosa do Colo , Microbioma Gastrointestinal , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Polipose Adenomatosa do Colo/microbiologia , Bactérias/genética , Bactérias/isolamento & purificação , Bacteroidetes/genética , Bacteroidetes/isolamento & purificação , Fezes/microbiologia , Firmicutes/genética , Firmicutes/isolamento & purificação , Proteobactérias/genética , Proteobactérias/isolamento & purificação , RNA Ribossômico 16S/genética , Voluntários Saudáveis
20.
Sci Rep ; 11(1): 20575, 2021 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-34663860

RESUMO

Indoor formaldehyde (CH2O) exceeding the recommended level is a severe threat to human health. Few studies have investigated its effect on indoor surface bacterial communities, affecting habitants' health. This study used 20-L glass containers to mimic the indoor environment with bacterial inputs from human oral respiration. The behavior of bacterial communities responding to CH2O varied among the different CH2O levels. The bacterial community structure significantly changed over time in the 0.054 mg·m-3 CH2O group, which varied from the 0.1 mg·m-3 and 0.25 mg·m-3 CH2O groups. The Chao1 and Shannon index significantly increased in the 0.054 mg·m-3 CH2O group at 6 week, while they remained unchanged in the 0.25 mg·m-3 CH2O group. At 12 week, the Chao1 significantly increased in the 0.25 mg·m-3 CH2O group, while it remained unchanged in the 0.054 mg·m-3 CH2O group. Only a few Operational Taxonomic Units (OTUs) significantly correlated with the CH2O concentration. CH2O-induced OTUs mainly belong to the Proteobacteria and Firmicutes. Furthermore, bacterial communities formed at 6 or 12 weeks differed significantly among different CH2O levels. Functional analysis of bacterial communities showed that inferred genes related to chemical degradation and diseases were the highest in the 0.25 mg·m-3 CH2O group at 12 weeks. The development of nematodes fed with bacteria collected at 12 weeks was applied to evaluate the bacterial community's hazards. This showed significantly impaired growth in the 0.1 mg·m-3 and 0.25 mg·m-3 CH2O groups. These findings confirmed that CH2O concentration and exposure time could affect the indoor bacterial community and formed bacterial communities with a possibly more significant hazard to human health after long-term exposure to high CH2O levels.


Assuntos
Poluição do Ar em Ambientes Fechados/análise , Formaldeído/farmacologia , Interações Microbianas/efeitos dos fármacos , Antibacterianos/metabolismo , Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Bactérias/genética , Biota/efeitos dos fármacos , Formaldeído/análise , Formaldeído/metabolismo , Humanos , Consórcios Microbianos/efeitos dos fármacos , Proteobactérias/genética , RNA Ribossômico 16S/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA