Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 134
Filtrar
1.
PLoS One ; 19(7): e0305626, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39008445

RESUMO

Autotrophic microaerophilic iron-oxidizing Zetaproteobacteria seem to play an important role in mineral weathering and metal corrosion in different environments. Here, we compare the bacterial and zetaproteobacterial communities of a mature iron-rich mat together with in situ incubations of different Fe-bearing materials at the EMSO-Ligure West seafloor observatory, which is located on the abyssal plain in the NW Mediterranean Sea. Our results on bacterial communities enable us to make a clear distinction between those growing on mild steel anthropic substrata and those developing on basaltic substrata. Moreover, on anthropic substrata we highlight an influence of mat age on the bacterial communities. Regarding zetaproteobacterial communities, our results point to an increase in ZetaOTUs abundance and diversification with the age of the mat. We corroborate the key role of the ZetaOTU 2 in mat construction, whatever the environment, the substrata on which they develop or the age of the mat. We also show that ZetaOTU 28 is specific to anthropogenic substrata. Finally, we demonstrate the advantage of using dPCR to precisely quantify very low abundant targets, as Zetaproteobacteria on our colonizers. Our study, also, allows to enrich our knowledge on the biogeography of Zetaproteobacteria, by adding new information on this class and their role in the Mediterranean Sea.


Assuntos
Ferro , Mar Mediterrâneo , Ferro/metabolismo , Biodiversidade , Proteobactérias/genética , Proteobactérias/metabolismo , Proteobactérias/isolamento & purificação , Água do Mar/microbiologia , Bactérias/classificação , Bactérias/metabolismo , Bactérias/genética , Sedimentos Geológicos/microbiologia , RNA Ribossômico 16S/genética
2.
Chemosphere ; 358: 142119, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38697567

RESUMO

The CO2 bioelectromethanosynthesis via two-chamber microbial electrolysis cell (MEC) holds tremendous potential to solve the energy crisis and mitigate the greenhouse gas emissions. However, the membrane fouling is still a big challenge for CO2 bioelectromethanosynthesis owing to the poor proton diffusion across membrane and high inter-resistance. In this study, a new MEC bioreactor with biogas recirculation unit was designed in the cathode chamber to enhance secondary-dissolution of CO2 while mitigating the contaminant adhesion on membrane surface. Biogas recirculation improved CO2 re-dissolution, reduced concentration polarization, and facilitated the proton transmembrane diffusion. This resulted in a remarkable increase in the cathodic methane production rate from 0.4 mL/L·d to 8.5 mL/L·d. A robust syntrophic relationship between anodic organic-degrading bacteria (Firmicutes 5.29%, Bacteroidetes 25.90%, and Proteobacteria 6.08%) and cathodic methane-producing archaea (Methanobacterium 65.58%) enabled simultaneous organic degradation, high CO2 bioelectromethanosynthesis, and renewable energy storage.


Assuntos
Biocombustíveis , Reatores Biológicos , Dióxido de Carbono , Metano , Dióxido de Carbono/análise , Eletrólise , Eletrodos , Fontes de Energia Bioelétrica , Methanobacterium/metabolismo , Membranas Artificiais , Proteobactérias/metabolismo
3.
Sci Total Environ ; 921: 170899, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38350559

RESUMO

As the wide use of pesticides, they could form combined pollution with heavy metals, which would affect their environmental behaviors and toxic effects. Particularly, the effects would be more intricate for chiral pesticides. In this study, the accumulation and dissipation trends of tetraconazole enantiomers in zebrafish were investigated by individual and combined exposure of cadmium (Cd) and tetraconazole (including racemate and enantiomers) after confirming the absolute configuration of tetraconazole enantiomer. For the enantiomer treatments, Cd enhanced the accumulation of S-(+)-tetraconazole, but declined the concentrations of R-(-)-tetraconazole in zebrafish. The dissipation half-lives of tetraconazole enantiomers were extended by 1.65-1.44 times after the combined exposure of Cd and enantiomers. The community richness and diversity of intestinal microbiota were reduced in all treatments, and there were significant differences in R + Cd treatment. There was synergistic effect between Cd and S-(+)-tetraconazole for the effects on the relative abundances of Fusobacteria, Firmicutes, Proteobacteria, Actinobacteria, and Bacteroidetes. For R-(-)-tetraconazole, Cd mainly exhibited antagonistic effects. In the combined exposure of Cd and S-(+)-tetraconazole, the relative abundance changes of Cetobacterium (Fusobacteria, increase) and Edwardsiella (Proteobacteria, decrease) might affect the carbohydrate metabolism and energy metabolism, and led to the increase of S-(+)-tetraconazole bioaccumulation concentration. In the combined exposure of Cd and R-(-)-tetraconazole, Cd could increase the relative abundance of Edwardsiella (Proteobacteria), and affect the amino acid metabolism, which might reduce the bioaccumulation concentration of R-(-)-tetraconazole. This study reported for the first time that the abundance of intestinal microbiota in zebrafish might affect the bioaccumulation and dissipation of tetraconazole enantiomers, and would provide new insight for the study of combined pollutions.


Assuntos
Clorobenzenos , Fluorocarbonos , Microbioma Gastrointestinal , Praguicidas , Triazóis , Animais , Cádmio/metabolismo , Peixe-Zebra/metabolismo , Proteobactérias/metabolismo
4.
Photosynth Res ; 157(1): 13-20, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36930432

RESUMO

Structural information on the circular arrangements of repeating pigment-polypeptide subunits in antenna proteins of purple photosynthetic bacteria is a clue to a better understanding of molecular mechanisms for the ring-structure formation and efficient light harvesting of such antennas. Here, we have analyzed the ring structure of light-harvesting complex 2 (LH2) from the thermophilic purple bacterium Thermochromatium tepidum (tepidum-LH2) by atomic force microscopy. The circular arrangement of the tepidum-LH2 subunits was successfully visualized in a lipid bilayer. The average top-to-top distance of the ring structure, which is correlated with the ring size, was 4.8 ± 0.3 nm. This value was close to the top-to-top distance of the octameric LH2 from Phaeospirillum molischianum (molischianum-LH2) by the previous analysis. Gaussian distribution of the angles of the segments consisting of neighboring subunits in the ring structures of tepidum-LH2 yielded a median of 44°, which corresponds to the angle for the octameric circular arrangement (45°). These results indicate that tepidum-LH2 has a ring structure consisting of eight repeating subunits. The coincidence of an octameric ring structure of tepidum-LH2 with that of molischianum-LH2 is consistent with the homology of amino acid sequences of the polypeptides between tepidum-LH2 and molischianum-LH2.


Assuntos
Chromatiaceae , Complexos de Proteínas Captadores de Luz , Microscopia de Força Atômica , Complexos de Proteínas Captadores de Luz/metabolismo , Chromatiaceae/metabolismo , Proteobactérias/metabolismo , Peptídeos/metabolismo , Proteínas de Bactérias/metabolismo
5.
Nat Commun ; 13(1): 1294, 2022 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-35277499

RESUMO

Activation of plant pattern-triggered immunity (PTI) relies on the recognition of microbe-derived structures, termed patterns, through plant-encoded surface-resident pattern recognition receptors (PRRs). We show that proteobacterial translation initiation factor 1 (IF1) triggers PTI in Arabidopsis thaliana and related Brassicaceae species. Unlike for most other immunogenic patterns, IF1 elicitor activity cannot be assigned to a small peptide epitope, suggesting that tertiary fold features are required for IF1 receptor activation. We have deployed natural variation in IF1 sensitivity to identify Arabidopsis leucine-rich repeat (LRR) receptor-like protein 32 (RLP32) as IF1 receptor using a restriction site-associated DNA sequencing approach. RLP32 confers IF1 sensitivity to rlp32 mutants, IF1-insensitive Arabidopsis accessions and IF1-insensitive Nicotiana benthamiana, binds IF1 specifically and forms complexes with LRR receptor kinases SOBIR1 and BAK1 to mediate signaling. Similar to other PRRs, RLP32 confers resistance to Pseudomonas syringae, highlighting an unexpectedly complex array of bacterial pattern sensors within a single plant species.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Fatores de Iniciação em Procariotos , Receptores de Reconhecimento de Padrão , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Genótipo , Doenças das Plantas/microbiologia , Imunidade Vegetal/genética , Proteobactérias/metabolismo , Pseudomonas syringae/metabolismo , Receptores de Reconhecimento de Padrão/genética , Receptores de Reconhecimento de Padrão/metabolismo
6.
Biochemistry ; 61(7): 595-607, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-35298141

RESUMO

Lasso peptides are unique natural products that comprise a class of ribosomally synthesized and post-translationally modified peptides. Their defining three-dimensional structure is a lariat knot, in which the C-terminal tail is threaded through a macrolactam ring formed between the N-terminal amino group and an Asp or Glu side chain (i.e., an isopeptide bond). Recent genome mining strategies have revealed various types of lasso peptide biosynthetic gene clusters and have thus redefined the known chemical space of lasso peptides. To date, over 20 different types of these gene clusters have been discovered, including several different clades from Proteobacteria. Despite the diverse architectures of these gene clusters, which may or may not encode various tailoring enzymes, most currently known lasso peptides are synthesized by two discrete clades defined by the presence of an ATP-binding cassette transporter or its absence and (sometimes) concurrent appearance of an isopeptidase, raising questions about their evolutionary history. Herein, we discovered and characterized the lasso peptide rubrinodin, which is assembled by a gene cluster encoding both an ATP-binding cassette transporter and an isopeptidase. Our bioinformatics analyses of this and other representative cluster types provided new clues into the evolutionary history of lasso peptides. Furthermore, our structural and biochemical investigations of rubrinodin permitted the conversion of this thermolabile lasso peptide into a more thermostable scaffold.


Assuntos
Produtos Biológicos , Peptídeos , Transportadores de Cassetes de Ligação de ATP/genética , Produtos Biológicos/química , Família Multigênica , Peptídeos/química , Proteobactérias/metabolismo
7.
mBio ; 12(4): e0107421, 2021 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-34311573

RESUMO

Iron (Fe) oxidation is one of Earth's major biogeochemical processes, key to weathering, soil formation, water quality, and corrosion. However, our understanding of microbial contribution is limited by incomplete knowledge of microbial iron oxidation mechanisms, particularly in neutrophilic iron oxidizers. The genomes of many diverse iron oxidizers encode a homolog to an outer membrane cytochrome (Cyc2) shown to oxidize iron in two acidophiles. Phylogenetic analyses show Cyc2 sequences from neutrophiles cluster together, suggesting a common function, though this function has not been verified in these organisms. Therefore, we investigated the iron oxidase function of heterologously expressed Cyc2 from a neutrophilic iron oxidizer Mariprofundus ferrooxydans PV-1. Cyc2PV-1 is capable of oxidizing iron, and its redox potential is 208 ± 20 mV, consistent with the ability to accept electrons from Fe2+ at neutral pH. These results support the hypothesis that Cyc2 functions as an iron oxidase in neutrophilic iron-oxidizing organisms. The results of sequence analysis and modeling reveal that the entire Cyc2 family shares a unique fused cytochrome-porin structure, with a defining consensus motif in the cytochrome region. On the basis of results from structural analyses, we predict that the monoheme cytochrome Cyc2 specifically oxidizes dissolved Fe2+, in contrast to multiheme iron oxidases, which may oxidize solid Fe(II). With our results, there is now functional validation for diverse representatives of Cyc2 sequences. We present a comprehensive Cyc2 phylogenetic tree and offer a roadmap for identifying cyc2/Cyc2 homologs and interpreting their function. The occurrence of cyc2 in many genomes beyond known iron oxidizers presents the possibility that microbial iron oxidation may be a widespread metabolism. IMPORTANCE Iron is practically ubiquitous across Earth's environments, central to both life and geochemical processes, which depend heavily on the redox state of iron. Although iron oxidation, or "rusting," can occur abiotically at near-neutral pH, we find neutrophilic iron-oxidizing bacteria (FeOB) are widespread, including in aquifers, sediments, hydrothermal vents, pipes, and water treatment systems. FeOB produce highly reactive Fe(III) oxyhydroxides that bind a variety of nutrients and toxins; thus, these microbes are likely a controlling force in iron and other biogeochemical cycles. There has been mounting evidence that Cyc2 functions as an iron oxidase in neutrophiles, but definitive proof of its function has long eluded us. This work provides conclusive biochemical evidence of iron oxidation by Cyc2 from neutrophiles. Cyc2 is common to a wide variety of iron oxidizers, including acidophilic and phototrophic iron oxidizers, suggesting that this fused cytochrome-porin structure is especially well adapted for iron oxidation.


Assuntos
Citocromos/metabolismo , Ferro/metabolismo , Porinas/metabolismo , Proteobactérias/metabolismo , Fenômenos Bioquímicos , Citocromos/genética , Compostos Férricos/metabolismo , Compostos Ferrosos/metabolismo , Oxirredução , Filogenia , Proteobactérias/enzimologia , Proteobactérias/genética
9.
Appl Environ Microbiol ; 87(5): e0230120, 2021 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-33355098

RESUMO

Unique means of copper scavenging have been identified in proteobacterial methanotrophs, particularly the use of methanobactin, a novel ribosomally synthesized, post-translationally modified polypeptide that binds copper with very high affinity. The possibility that copper sequestration strategies of methanotrophs may interfere with copper uptake of denitrifiers in situ and thereby enhance N2O emissions was examined using a suite of laboratory experiments performed with rice paddy microbial consortia. Addition of purified methanobactin from Methylosinus trichosporium OB3b to denitrifying rice paddy soil microbial consortia resulted in substantially increased N2O production, with more pronounced responses observed for soils with lower copper content. The N2O emission-enhancing effect of the soil's native mbnA-expressing Methylocystaceae methanotrophs on the native denitrifiers was then experimentally verified with a Methylocystaceae-dominant chemostat culture prepared from a rice paddy microbial consortium as the inoculum. Finally, with microcosms amended with various cell numbers of methanobactin-producing Methylosinus trichosporium OB3b before CH4 enrichment, microbiomes with different ratios of methanobactin-producing Methylocystaceae to gammaproteobacterial methanotrophs incapable of methanobactin production were simulated. Significant enhancement of N2O production from denitrification was evident in both Methylocystaceae-dominant and Methylococcaceae-dominant enrichments, albeit to a greater extent in the former, signifying the comparative potency of methanobactin-mediated copper sequestration, while implying the presence of alternative copper abstraction mechanisms for Methylococcaceae. These observations support that copper-mediated methanotrophic enhancement of N2O production from denitrification is plausible where methanotrophs and denitrifiers cohabit. IMPORTANCE Proteobacterial methanotrophs-groups of microorganisms that utilize methane as a source of energy and carbon-have been known to employ unique mechanisms to scavenge copper, namely, utilization of methanobactin, a polypeptide that binds copper with high affinity and specificity. Previously the possibility that copper sequestration by methanotrophs may lead to alteration of cuproenzyme-mediated reactions in denitrifiers and consequently increase emission of potent greenhouse gas N2O has been suggested in axenic and coculture experiments. Here, a suite of experiments with rice paddy soil slurry cultures with complex microbial compositions were performed to corroborate that such copper-mediated interplay may actually take place in environments cohabited by diverse methanotrophs and denitrifiers. As spatial and temporal heterogeneity allows for spatial coexistence of methanotrophy (aerobic) and denitrification (anaerobic) in soils, the results from this study suggest that this previously unidentified mechanism of N2O production may account for a significant proportion of N2O efflux from agricultural soils.


Assuntos
Cobre/metabolismo , Imidazóis/metabolismo , Consórcios Microbianos , Óxido Nitroso , Oligopeptídeos/metabolismo , Proteobactérias/metabolismo , Óxido Nitroso/metabolismo , Solo/química , Microbiologia do Solo
10.
J Biomol Struct Dyn ; 39(8): 2771-2787, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-32276557

RESUMO

The gamma-proteobacteria Allochromatium vinosum DSM 180T (A. vinosum) encodes the sulfur oxidizing dsr operon comprising of 15 genes. Dsr proteins are involved in oxidation of sulfur globules produced as an obligatory intermediate during the sulfur oxidation process. The dsrA and dsrB gene products are known to function as a α2ß2 hetero-tetramer and the protein complex plays the catalytic role in sulfur oxidation process. DsrC has a highly conserved C-terminal domain that forms a flexible arm, where two strictly conserved cysteines were found to act as a substrate donating residue for DsrAB instead of being a subunit of this redox enzyme. Therefore, to elucidate the molecular mechanism of the sulfur oxidation process here an attempt was made to study the dynamics, stability and binding mechanisms of DsrAB and DsrC proteins through computational docking and molecular dynamics (MD) simulations. This structure function relationship investigation revealed that the C-terminal domain of DsrC interacts with DsrA of DsrAB protein complex for catalytic functions. Some basic amino acid residues of DsrC are found to form the catalytic pockets along with DsrAB protein complex where the sulfur anions bind to get oxidized. Structural dynamics and fluctuations as well as the secondary structural alterations study revealed the possible regions responsible for protein-protein interactions. Principal Component Analysis (PCA) of protein motions displayed that the collective motions of DsrAB-DsrC complex was higher and more anti-correlated than the unbound DsrAB form. The present molecular insight study would therefore help researchers to predict the plausible biochemical mechanism of sulfur oxidation process in sulfur metabolic pathways in near future. Communicated by Ramaswamy H. Sarma.


Assuntos
Proteínas de Bactérias , Proteobactérias , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Chromatiaceae , Oxirredução , Proteobactérias/metabolismo , Enxofre
11.
J Crohns Colitis ; 15(1): 88-98, 2021 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-32687146

RESUMO

BACKGROUND AND AIMS: The microbial ecosystem seems to be an important player for therapeutic intervenption in inflammatory bowel disease [IBD]. We assessed longitudinal microbiome changes in IBD patients undergoing therapy with either azathioprine [AZA] or anti-tumour necrosis factor [anti-TNF] antibodies. We predicted the metabolic microbial community exchange and linked it to clinical outcome. METHODS: Faecal and blood samples were collected from 65 IBD patients at baseline and after 12 and 30 weeks on therapy. Clinical remission was defined as Crohn's Disease Activity Index [CDAI] < 150 in Crohn´s disease [CD], partial Mayo score <2 in ulcerative colitis [UC], and faecal calprotectin values <150 µg/g and C-reactive protein <5 mg/dl. 16S rRNA amplicon sequencing was performed. To predict microbial community metabolic processes, we constructed multispecies genome-scale metabolic network models. RESULTS: Paired Bray-Curtis distance between baseline and follow-up time points was significantly different for UC patients treated with anti-TNF antibodies. Longitudinal changes in taxa composition at phylum level showed a significant decrease of Proteobacteria and an increase of Bacteroidetes in CD patients responding to both therapies. At family level, Lactobacilli were associated with persistent disease and Bacteroides abundance with remission in CD. In-silico simulations of microbial metabolite exchange predicted a 1.7-fold higher butyrate production capacity of patients in remission compared with patients without remission [p = 0.041]. In this model, the difference in butyrate production between patients in remission and patients without remission was most pronounced in the CD group treated with AZA [p = 0.008]. CONCLUSIONS: In-silico simulation identifies microbial butyrate synthesis predictive of therapeutic efficacy in IBD.


Assuntos
Azatioprina , Vias Biossintéticas , Butiratos/metabolismo , Colite Ulcerativa , Doença de Crohn , Microbioma Gastrointestinal , Inibidores do Fator de Necrose Tumoral , Adulto , Antimetabólitos/administração & dosagem , Antimetabólitos/efeitos adversos , Azatioprina/administração & dosagem , Azatioprina/efeitos adversos , Bacteroidetes/isolamento & purificação , Bacteroidetes/metabolismo , Vias Biossintéticas/efeitos dos fármacos , Vias Biossintéticas/genética , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/metabolismo , Colite Ulcerativa/microbiologia , Simulação por Computador , Correlação de Dados , Doença de Crohn/tratamento farmacológico , Doença de Crohn/metabolismo , Doença de Crohn/microbiologia , Feminino , Microbioma Gastrointestinal/efeitos dos fármacos , Microbioma Gastrointestinal/fisiologia , Humanos , Masculino , Pessoa de Meia-Idade , Proteobactérias/isolamento & purificação , Proteobactérias/metabolismo , Indução de Remissão , Resultado do Tratamento , Inibidores do Fator de Necrose Tumoral/administração & dosagem , Inibidores do Fator de Necrose Tumoral/efeitos adversos
12.
Food Res Int ; 136: 109610, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32846630

RESUMO

The elevated intestinal oxygen in certain unhealthy conditions (e.g., mucosa injury) enhances the expansion of aerobic/facultative anaerobic bacteria (mainly Proteobacteria) in gut microbiota (GM) and is strongly linked to various diseases. The alteration of GM, influenced by oxygen, may affect the bioavailability of dietary polyphenols. In vitro digestion, dialysis and fermentation of phenolic blueberry extract (BE) were performed here using the GM of mice under different oxygen conditions. Oxygen delayed the degradation of the main phenolic components, including quercetin, kaempferol and their rutinose-conjugates, in BE during in vitro fermentation. In addition, the metabolites of BE were also influenced by oxygen. Oxygen skewed the production of 3-hydroxyphenylacetatic acid to 4-hydroxyphenylacetatic acid. Moreover, oxygen also blunted hippuric, 3-phenylpropionic, and 3-hydroxycinnamic acids production. Furthermore, oxygen enhanced the expansion of Salmonella and Escherichia belonging to phylum Proteobacteria and suppressed the proliferation of the anaerobic bacteria Clostridium and Bacteroides belonging to phyla Firmicutes and Bacteroidetes, respectively, which was reversed by BE supplementation.


Assuntos
Mirtilos Azuis (Planta)/química , Fermentação , Oxigênio/metabolismo , Fenóis/farmacologia , Extratos Vegetais/farmacologia , Animais , Carga Bacteriana , DNA Bacteriano/isolamento & purificação , DNA Bacteriano/metabolismo , Microbioma Gastrointestinal/efeitos dos fármacos , Intestinos/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fenóis/análise , Extratos Vegetais/análise , Polifenóis/análise , Polifenóis/farmacologia , Proteobactérias/metabolismo , RNA Ribossômico 16S/metabolismo , Análise de Sequência de DNA
13.
J Microbiol Biotechnol ; 30(9): 1367-1378, 2020 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-32522967

RESUMO

The polyphagous eri silk moth, Samia ricini, is associated with various symbiotic gut bacteria believed to provide several benefits to the host. The larvae of S. ricini were subjected to isolation of gut bacteria using culture-dependent 16S rRNA generic characterization, metagenomics analysis and qualitative enzymatic assays. Sixty culturable aerobic gut bacterial isolates comprising Firmicutes (54%) and Proteobacteria (46%); and twelve culturable facultative anaerobic bacteria comprising Proteobacteria (92%) and Firmicutes (8%) were identified inhabiting the gut of S. ricini. The results of metagenomics analysis revealed the presence of a diverse community of both culturable and un-culturable gut bacteria belonging to Proteobacteria (60%) and Firmicutes (20%) associated with seven orders. An analysis of the results of culturable isolation indicates that these bacterial isolates inhabited all the three compartments of the gut. Investigation on persistence of bacteria coupled with metagenomics analysis of the fifth instar suggested that bacteria persist in the gut across the different instar stages. In addition, enzymatic assays indicated that 48 and 75% of culturable aerobic, and 75% of anaerobic gut bacterial isolates had cellulolytic, lipolytic and nitrate reductase activities, thus suggesting that they may be involved in food digestion and nutritional provision to the host. These bacterial isolates may be good sources for profiling novel genes and biomolecules for biotechnological application.


Assuntos
Bombyx/metabolismo , Bombyx/microbiologia , Microbioma Gastrointestinal , Metagenômica , RNA Ribossômico 16S/isolamento & purificação , Animais , Bactérias Aeróbias/isolamento & purificação , Bactérias Aeróbias/metabolismo , Bactérias Anaeróbias/isolamento & purificação , Bactérias Anaeróbias/metabolismo , Contagem de Colônia Microbiana , DNA Bacteriano/genética , DNA Bacteriano/isolamento & purificação , Firmicutes/isolamento & purificação , Firmicutes/metabolismo , Larva/metabolismo , Larva/microbiologia , Filogenia , Proteobactérias/isolamento & purificação , Proteobactérias/metabolismo , RNA Ribossômico 16S/genética
14.
FEMS Microbiol Lett ; 367(12)2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32556312

RESUMO

Wetlands have been proposed as a sink for pollutants such as heavy metals. Wetland plants play a significant role in the phytoremediation of heavy metals. Here, we isolated and characterized three novel nickel (Ni)-resistant endophytic bacteria (NiEB) from the wetland plant Tamarix chinensis. The NiEB were identified as Stenotrophomonas sp. S20, Pseudomonas sp. P21 and Sphingobium sp. S42. All isolates tolerated 50 mg L-1 Ni, with isolates S20 and P21 being more tolerant to Ni at up to 400 mg L-1. Moreover, isolate S42 removed 33.7% of nickel sulfate from the water by forming white precipitates. The three isolates exhibited different plant growth-promoting (PGP) traits related to the production of indole acetic acid (IAA), siderophores and 1-aminocyclopropane-1-carboxylate (ACC) deaminase. Phytotoxicity studies revealed that the growth of the wetland plants in a high Ni concentration (200 mg L-1) recovered after co-incubation with isolate S42. Overall, this study presents the first report of NiEB isolation from wetland plants and provides novel insights into the diverse functions of endophytic bacteria in a plant host with the potential to improve Ni phytoremediation.


Assuntos
Biodegradação Ambiental , Farmacorresistência Bacteriana , Níquel , Proteobactérias/efeitos dos fármacos , Proteobactérias/metabolismo , Tamaricaceae/microbiologia , Endófitos/efeitos dos fármacos , Endófitos/isolamento & purificação , Endófitos/metabolismo , Níquel/toxicidade , Proteobactérias/isolamento & purificação
15.
PLoS One ; 15(4): e0231839, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32310978

RESUMO

Magnetotactic bacteria (MTB) are prokaryotes that sense the geomagnetic field lines to geolocate and navigate in aquatic sediments. They are polyphyletically distributed in several bacterial divisions but are mainly represented in the Proteobacteria. In this phylum, magnetotactic Deltaproteobacteria represent the most ancestral class of MTB. Like all MTB, they synthesize membrane-enclosed magnetic nanoparticles, called magnetosomes, for magnetic sensing. Magnetosome biogenesis is a complex process involving a specific set of genes that are conserved across MTB. Two of the most conserved genes are mamB and mamM, that encode for the magnetosome-associated proteins and are homologous to the cation diffusion facilitator (CDF) protein family. In magnetotactic Alphaproteobacteria MTB species, MamB and MamM proteins have been well characterized and play a central role in iron-transport required for biomineralization. However, their structural conservation and their role in more ancestral groups of MTB like the Deltaproteobacteria have not been established. Here we studied magnetite cluster MamB and MamM cytosolic C-terminal domain (CTD) structures from a phylogenetically distant magnetotactic Deltaproteobacteria species represented by BW-1 strain, which has the unique ability to biomineralize magnetite and greigite. We characterized them in solution, analyzed their crystal structures and compared them to those characterized in Alphaproteobacteria MTB species. We showed that despite the high phylogenetic distance, MamBBW-1 and MamMBW-1 CTDs share high structural similarity with known CDF-CTDs and will probably share a common function with the Alphaproteobacteria MamB and MamM.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Transporte/metabolismo , Cátions/metabolismo , Magnetossomos/metabolismo , Proteobactérias/metabolismo , Alphaproteobacteria/química , Alphaproteobacteria/genética , Alphaproteobacteria/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Biomineralização , Proteínas de Transporte/química , Proteínas de Transporte/genética , Sequência Conservada , Deltaproteobacteria/química , Deltaproteobacteria/genética , Deltaproteobacteria/metabolismo , Transporte de Íons , Magnetossomos/química , Magnetossomos/genética , Modelos Moleculares , Filogenia , Conformação Proteica , Proteobactérias/química , Proteobactérias/genética , Alinhamento de Sequência
16.
World J Microbiol Biotechnol ; 36(2): 29, 2020 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-32016527

RESUMO

Short-chain halogenated aliphatic hydrocarbons (e.g. perchloroethene, trichloroethene) are among the most toxic environmental pollutants. Perchloroethene and trichloroethene can be dechlorinated to non-toxic ethene through reductive dechlorination by Dehalococcoides sp. Bioaugmentation, applying cultures containing organohalide-respiring microorganisms, is a possible technique to remediate sites contaminated with chlorinated ethenes. Application of site specific inocula is an efficient alternative solution. Our aim was to develop site specific dechlorinating microbial inocula by enriching microbial consortia from groundwater contaminated with trichloroethene using microcosm experiments containing clay mineral as solid phase. Our main goal was to develop fast and reliable method to produce large amount (100 L) of bioactive agent with anaerobic fermentation technology. Polyphasic approach has been applied to monitor the effectiveness of dechlorination during the transfer process from bench-scale (500 mL) to industrial-scale (100 L). Gas chromatography measurement and T-RFLP (Terminal Restriction Fragment Length Polymorphism) revealed that the serial subculture of the enrichments shortened the time-course of the complete dechlorination of trichloroethene to ethene and altered the composition of bacterial communities. Complete dechlorination was observed in enrichments with significant abundance of Dehalococcoides sp. cultivated at 8 °C. Consortia incubated in fermenters at 18 °C accelerated the conversion of TCE to ethene by 7-14 days. Members of the enrichments belong to the phyla Bacteroidetes, Chloroflexi, Proteobacteria and Firmicutes. According to the operational taxonomic units, main differences between the composition of the enrichment incubated at 8 °C and 18 °C occurred with relative abundance of acetogenic and fermentative species. In addition to the temperature, the site-specific origin of the microbial communities and the solid phase applied during the fermentation technique contributed to the development of a unique microbial composition.


Assuntos
Anaerobiose/fisiologia , Bactérias/metabolismo , Biodegradação Ambiental , Argila/química , Microbiota/fisiologia , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Bacteroidetes/genética , Bacteroidetes/metabolismo , Chloroflexi/genética , Chloroflexi/metabolismo , DNA Bacteriano/genética , DNA Bacteriano/isolamento & purificação , Fermentação , Firmicutes/genética , Firmicutes/metabolismo , Geobacter/genética , Geobacter/metabolismo , Água Subterrânea/microbiologia , Consórcios Microbianos , Polimorfismo de Fragmento de Restrição , Proteobactérias/genética , Proteobactérias/metabolismo , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/isolamento & purificação , Tricloroetileno/química , Microbiologia da Água , Poluentes Químicos da Água/metabolismo
17.
Appl Microbiol Biotechnol ; 104(4): 1809-1820, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31867694

RESUMO

Constructed wetlands (CWs) are effective ecological remediation technologies for various contaminated water bodies. Here, we queried for benzene-degrading microbes in a horizontal subsurface flow CW with reducing conditions in the pore water and fed with benzene-contaminated groundwater. For identification of relevant microbes, we employed in situ microcosms (BACTRAPs, which are made from granulated activated carbon) coupled with 13C-stable isotope probing and Illumina sequencing of 16S rRNA amplicons. A significant incorporation of 13C was detected in RNA isolated from BACTRAPs loaded with 13C-benzene and exposed in the CW for 28 days. A shorter incubation time did not result in detectable 13C incorporation. After 28 days, members from four genera, namely Dechloromonas, Hydrogenophaga, and Zoogloea from the Betaproteobacteria and Arcobacter from the Epsilonproteobacteria were significantly labeled with 13C and were abundant in the bacterial community on the BACTRAPs. Sequences affiliated to Geobacter were also numerous on the BACTRAPs but apparently those microbes did not metabolize benzene as no 13C label incorporation was detected. Instead, they may have metabolized plant-derived organic compounds while using the BACTRAPs as electron sink. In representative wetland samples, sequences affiliated with Dechloromonas, Zoogloea, and Hydrogenophaga were present at relative proportions of up to a few percent. Sequences affiliated with Arcobacter were present at < 0.01% in wetland samples. In conclusion, we identified microbes of likely significance for benzene degradation in a CW used for remediation of contaminated water.


Assuntos
Benzeno/metabolismo , Proteobactérias/classificação , Proteobactérias/metabolismo , Áreas Alagadas , Isótopos de Carbono , Proteobactérias/isolamento & purificação , RNA Bacteriano/genética , RNA Ribossômico 16S/genética
18.
Arch Microbiol ; 202(2): 329-342, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31664492

RESUMO

The aim of the present study was to reveal how different microbial communities evolve in diesel fuel/crude oil-contaminated environments under aerobic and microaerobic conditions. To investigate this question, aerobic and microaerobic bacterial enrichments amended with a diesel fuel/crude oil mixture were established and analysed. The representative aerobic enrichment community was dominated by Gammaproteobacteria (64.5%) with high an abundance of Betaproteobacteriales (36.5%), followed by Alphaproteobacteria (8.7%), Actinobacteria (5.6%), and Candidatus Saccharibacteria (4.5%). The most abundant alkane monooxygenase (alkB) genotypes in this enrichment could be linked to members of the genus Rhodococcus and to a novel Gammaproteobacterium, for which we generated a high-quality draft genome using genome-resolved metagenomics of the enrichment culture. Contrarily, in the microaerobic enrichment, Gammaproteobacteria (99%) overwhelmingly dominated the microbial community with a high abundance of the genera Acinetobacter (66.3%), Pseudomonas (11%) and Acidovorax (11%). Under microaerobic conditions, the vast majority of alkB gene sequences could be linked to Pseudomonas veronii. Consequently, results shed light on the fact that the excellent aliphatic hydrocarbon degrading Rhodococcus species favour clear aerobic conditions, while oxygen-limited conditions can facilitate the high abundance of Acinetobacter species in aliphatic hydrocarbon-contaminated subsurface environments.


Assuntos
Biodegradação Ambiental , Gasolina/microbiologia , Hidrocarbonetos/metabolismo , Acinetobacter/classificação , Acinetobacter/isolamento & purificação , Acinetobacter/metabolismo , Actinobacteria/classificação , Actinobacteria/isolamento & purificação , Actinobacteria/metabolismo , Citocromo P-450 CYP4A/genética , Genótipo , Proteobactérias/classificação , Proteobactérias/isolamento & purificação , Proteobactérias/metabolismo , Pseudomonas/classificação , Pseudomonas/isolamento & purificação , Pseudomonas/metabolismo , Rhodococcus/classificação , Rhodococcus/isolamento & purificação , Rhodococcus/metabolismo
19.
Environ Pollut ; 255(Pt 1): 113190, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31541828

RESUMO

Microbial diversity in machine oil contaminated soil was determined by high-throughput amplicon sequencing technology. The diversity of culturable microbes in the contaminated soil was further characterized using polymerase chain reaction method. Proteobacteria and Bacteroidetes were the most dominant phyla and occupied 52.73 and 16.77%, respectively, while the most abundant genera were Methylotenera (21.62%) and Flavobacterium (3.06%) in the soil. In the culturable microbes, the major phyla were Firmicutes (46.15%) and Proteobacteria (37.36%) and the most abundant genera were Bacillus (42.86%) and Aeromonas (34.07%). Four isolated microbes with high machine oil degradation efficiency were selected to evaluate their characteristics on the oil degradation. All of them reached their highest oil degradation rate after 7 days of incubation. Most of them significantly increased their oil degradation rate by additional carbon or organic nitrogen source in the incubation medium. The oil degradation rate by combination of the four microbes at the same inoculation level was also higher than the rate from each individual microbe. The protocol and findings of this study are very useful for developing micro-bioremediation method to eliminate machine oil contaminants from soil.


Assuntos
Bacteroidetes/metabolismo , Óleos/análise , Petróleo/análise , Proteobactérias/metabolismo , Poluentes do Solo/análise , Solo/química , Bacteroidetes/classificação , Bacteroidetes/isolamento & purificação , Biodegradação Ambiental , Carbono/análise , Lubrificantes/análise , Nitrogênio/análise , Proteobactérias/classificação , Proteobactérias/isolamento & purificação , Microbiologia do Solo
20.
Nat Prod Rep ; 36(9): 1333-1350, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31490501

RESUMO

Covering: up to 2019Humanity is in dire need for novel medicinal compounds with biological activities ranging from antibiotic to anticancer and anti-dementia effects. Recent developments in genome sequencing and mining have revealed an unappreciated potential for bioactive molecule production in marine Proteobacteria. Also, novel bioactive compounds have been discovered through molecular manipulations of either the original marine host bacteria or in heterologous hosts. Nevertheless, in contrast to the large repertoire of such molecules as predicted by in silico analysis, few marine bioactive compounds have been reported. This review summarizes the recent advances in the study of natural products from marine Proteobacteria. Here we present successful examples on genetic engineering of biosynthetic gene clusters of natural products from marine Proteobacteria. We also discuss the future prospects of discovering novel bioactive molecules via both heterologous production methodology and the development of marine Proteobacteria as new cell factories.


Assuntos
Organismos Aquáticos/metabolismo , Produtos Biológicos/metabolismo , Engenharia Metabólica , Proteobactérias/metabolismo , Organismos Aquáticos/genética , Engenharia Metabólica/métodos , Proteobactérias/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA