Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.583
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 3909, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38724493

RESUMO

Aberrant signaling pathway activity is a hallmark of tumorigenesis and progression, which has guided targeted inhibitor design for over 30 years. Yet, adaptive resistance mechanisms, induced by rapid, context-specific signaling network rewiring, continue to challenge therapeutic efficacy. Leveraging progress in proteomic technologies and network-based methodologies, we introduce Virtual Enrichment-based Signaling Protein-activity Analysis (VESPA)-an algorithm designed to elucidate mechanisms of cell response and adaptation to drug perturbations-and use it to analyze 7-point phosphoproteomic time series from colorectal cancer cells treated with clinically-relevant inhibitors and control media. Interrogating tumor-specific enzyme/substrate interactions accurately infers kinase and phosphatase activity, based on their substrate phosphorylation state, effectively accounting for signal crosstalk and sparse phosphoproteome coverage. The analysis elucidates time-dependent signaling pathway response to each drug perturbation and, more importantly, cell adaptive response and rewiring, experimentally confirmed by CRISPR knock-out assays, suggesting broad applicability to cancer and other diseases.


Assuntos
Neoplasias do Colo , Resistencia a Medicamentos Antineoplásicos , Fosfoproteínas , Proteômica , Transdução de Sinais , Humanos , Resistencia a Medicamentos Antineoplásicos/genética , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Proteômica/métodos , Fosfoproteínas/metabolismo , Transdução de Sinais/efeitos dos fármacos , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/metabolismo , Neoplasias do Colo/genética , Linhagem Celular Tumoral , Fosforilação , Algoritmos , Proteoma/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico
2.
Sci Rep ; 14(1): 11279, 2024 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-38760463

RESUMO

The detrimental effects of smoking are multisystemic and its effects on the eye health are significant. Smoking is a strong risk factor for age-related nuclear cataract, age-related macular degeneration, glaucoma, delayed corneal epithelial healing and increased risk of cystoid macular edema in patients with intermediate uveitis among others. We aimed to characterize the aqueous humor (AH) proteome in chronic smokers to gain insight into its perturbations and to identify potential biomarkers for smoking-associated ocular pathologies. Compared to the control group, chronic smokers displayed 67 (37 upregulated, 30 downregulated) differentially expressed proteins (DEPs). Analysis of DEPs from the biological point of view revealed that they were proteins involved in complement activation, lymphocyte mediated immunity, innate immune response, cellular oxidant detoxification, bicarbonate transport and platelet degranulation. From the molecular function point of view, DEPs were involved in oxygen binding, oxygen carrier activity, hemoglobin binding, peptidase/endopeptidase/cysteine-type endopeptidase inhibitory activity. Several of the upregulated proteins were acute phase reactant proteins such as clusterin, alpha-2-HS-glycoprotein, fibrinogen, alpha-1-antitrypsin, C4b-binding protein and serum amyloid A-2. Further research should confirm if these proteins might serve as biomarkers or therapeutic target for smoking-associated ocular diseases.


Assuntos
Humor Aquoso , Proteômica , Humanos , Humor Aquoso/metabolismo , Proteômica/métodos , Masculino , Feminino , Pessoa de Meia-Idade , Fumar/efeitos adversos , Proteoma/metabolismo , Biomarcadores/metabolismo , Fumantes , Idoso , Adulto
3.
Nat Commun ; 15(1): 4243, 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38762540

RESUMO

Methionine plays a critical role in various biological and cell regulatory processes, making its chemoproteomic profiling indispensable for exploring its functions and potential in protein therapeutics. Building on the principle of rapid oxidation of methionine, we report Copper(I)-Nitrene Platform for robust, and selective labeling of methionine to generate stable sulfonyl sulfimide conjugates under physiological conditions. We demonstrate the versatility of this platform to label methionine in bioactive peptides, intact proteins (6.5-79.5 kDa), and proteins in complex cell lysate mixtures with varying payloads. We discover ligandable proteins and sites harboring hyperreactive methionine within the human proteome. Furthermore, this has been utilized to profile oxidation-sensitive methionine residues, which might increase our understanding of the protective role of methionine in diseases associated with elevated levels of reactive oxygen species. The Copper(I)-Nitrene Platform allows labeling methionine residues in live cancer cells, observing minimal cytotoxic effects and achieving dose-dependent labeling. Confocal imaging further reveals the spatial distribution of modified proteins within the cell membrane, cytoplasm, and nucleus, underscoring the platform's potential in profiling the cellular interactome.


Assuntos
Cobre , Metionina , Proteômica , Humanos , Metionina/metabolismo , Metionina/química , Cobre/metabolismo , Cobre/química , Proteômica/métodos , Oxirredução , Proteoma/metabolismo , Linhagem Celular Tumoral , Peptídeos/metabolismo , Peptídeos/química , Iminas
4.
Nat Commun ; 15(1): 3860, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38719824

RESUMO

Dual blocker therapy (DBT) has the enhanced antitumor benefits than the monotherapy. Yet, few effective biomarkers are developed to monitor the therapy response. Herein, we investigate the DBT longitudinal plasma proteome profiling including 113 longitudinal samples from 22 patients who received anti-PD1 and anti-CTLA4 DBT therapy. The results show the immune response and cholesterol metabolism are upregulated after the first DBT cycle. Notably, the cholesterol metabolism is activated in the disease non-progressive group (DNP) during the therapy. Correspondingly, the clinical indicator prealbumin (PA), free triiodothyronine (FT3) and triiodothyronine (T3) show significantly positive association with the cholesterol metabolism. Furthermore, by integrating proteome and radiology approach, we observe the high-density lipoprotein partial remodeling are activated in DNP group and identify a candidate biomarker APOC3 that can reflect DBT response. Above, we establish a machine learning model to predict the DBT response and the model performance is validated by an independent cohort with balanced accuracy is 0.96. Thus, the plasma proteome profiling strategy evaluates the alteration of cholesterol metabolism and identifies a panel of biomarkers in DBT.


Assuntos
Colesterol , Proteoma , Humanos , Colesterol/sangue , Colesterol/metabolismo , Proteoma/metabolismo , Feminino , Masculino , Pessoa de Meia-Idade , Antígeno CTLA-4/antagonistas & inibidores , Antígeno CTLA-4/metabolismo , Antígeno CTLA-4/sangue , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Receptor de Morte Celular Programada 1/metabolismo , Receptor de Morte Celular Programada 1/sangue , Biomarcadores/sangue , Idoso , Tri-Iodotironina/sangue , Aprendizado de Máquina , Inibidores de Checkpoint Imunológico/uso terapêutico , Inibidores de Checkpoint Imunológico/farmacologia , Neoplasias/tratamento farmacológico , Neoplasias/sangue , Neoplasias/metabolismo , Proteômica/métodos
5.
Int J Mol Sci ; 25(9)2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38731977

RESUMO

Mesenchymal stem cells (MSCs) isolated from Wharton's jelly (WJ-MSCs) and adipose tissue (AD-MSCs) are alternative sources for bone marrow-derived MSCs. Owing to their multiple functions in angiogenesis, immune modulation, proliferation, migration, and nerve regeneration, MSC-derived exosomes can be applied in "cell-free cell therapy". Here, we investigated the functional protein components between the exosomes from WJ-MSCs and AD-MSCs to explain their distinct functions. Proteins of WJ-MSC and AD-MSC exosomes were collected and compared based on iTRAQ gel-free proteomics data. Results: In total, 1695 proteins were detected in exosomes. Of these, 315 were more abundant (>1.25-fold) in AD-MSC exosomes and 362 kept higher levels in WJ-MSC exosomes, including fibrinogen proteins. Pathway enrichment analysis suggested that WJ-MSC exosomes had higher potential for wound healing than AD-MSC exosomes. Therefore, we treated keratinocyte cells with exosomes and the recombinant protein of fibrinogen beta chain (FGB). It turned out that WJ-MSC exosomes better promoted keratinocyte growth and migration than AD-MSC exosomes. In addition, FGB treatment had similar results to WJ-MSC exosomes. The fact that WJ-MSC exosomes promoted keratinocyte growth and migration better than AD-MSC exosomes can be explained by their higher FGB abundance. Exploring the various components of AD-MSC and WJ-MSC exosomes can aid in their different clinical applications.


Assuntos
Movimento Celular , Proliferação de Células , Exossomos , Queratinócitos , Células-Tronco Mesenquimais , Geleia de Wharton , Exossomos/metabolismo , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia , Humanos , Geleia de Wharton/citologia , Geleia de Wharton/metabolismo , Queratinócitos/metabolismo , Queratinócitos/citologia , Fibrinogênio/metabolismo , Proteômica/métodos , Tecido Adiposo/citologia , Tecido Adiposo/metabolismo , Células Cultivadas , Cicatrização , Proteoma/metabolismo
6.
Sci Rep ; 14(1): 10235, 2024 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-38702370

RESUMO

To reveal the sources of obesity and type 2 diabetes (T2D) in humans, animal models, mainly rodents, have been used. Here, we propose a pig model of T2D. Weaned piglets were fed high fat/high sugar diet suppling 150% of metabolizable energy. Measurements of weight gain, blood morphology, glucose plasma levels, cholesterol, and triglycerides, as well as glucose tolerance (oral glucose tolerance test, OGTT) were employed to observe T2D development. The histology and mass spectrometry analyses were made post mortem. Within 6 months, the high fat-high sugar (HFHS) fed pigs showed gradual and significant increase in plasma triglycerides and glucose levels in comparison to the controls. Using OGTT test, we found stable glucose intolerance in 10 out of 14 HFHS pigs. Mass spectrometry analysis indicated significant changes in 330 proteins in the intestine, liver, and pancreas of the HFHS pigs. These pigs showed also an increase in DNA base modifications and elevated level of the ALKBH proteins in the tissues. Six diabetic HFHS pigs underwent Scopinaro bariatric surgery restoring glycaemia one month after surgery. In conclusion, a high energy diet applied to piglets resulted in the development of hyperlipidaemia, hyperglycaemia, and type 2 diabetes being reversed by a bariatric procedure, excluding the proteomic profile utill one month after the surgery.


Assuntos
Cirurgia Bariátrica , Diabetes Mellitus Tipo 2 , Proteômica , Animais , Diabetes Mellitus Tipo 2/metabolismo , Suínos , Proteômica/métodos , Dieta Hiperlipídica/efeitos adversos , Teste de Tolerância a Glucose , Modelos Animais de Doenças , Glicemia/metabolismo , Proteoma/metabolismo , Obesidade/metabolismo , Obesidade/cirurgia , Triglicerídeos/sangue , Triglicerídeos/metabolismo
7.
Front Endocrinol (Lausanne) ; 15: 1328679, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38779451

RESUMO

Objective: The established link between posttranslational modifications of histone and non-histone lysine (K) residues in cell metabolism, and their role in cancer progression, is well-documented. However, the lactylation expression signature in triple-negative breast cancer (TNBC) remains underexplored. Methods: We conducted a comprehensive lactylproteome profiling of eight pairs of TNBC samples and their matched adjacent tissues. This was achieved through 4-Dimensional label-free quantitative proteomics combined with lactylation analysis (4D-LFQP-LA). The expression of identified lactylated proteins in TNBC was detected using immunoblotting and immunohistochemistry (IHC) with specific primary antibodies, and their clinicopathological and prognostic significance was evaluated. Results: Our analysis identified 58 lactylation sites on 48 proteins, delineating the protein lactylation alteration signature in TNBC. Bioinformatic and functional analyses indicated that these lactylated proteins play crucial roles in regulating key biological processes in TNBC. Notably, lactylation of lysine at position 12 (H4K12lac) in the histone H4 domain was found to be upregulated in TNBC. Further investigations showed a high prevalence of H4K12lac upregulation in TNBC, with positive rates of 93.19% (137/147) and 92.93% (92/99) in TNBC tissue chip and validation cohorts, respectively. H4K12lac expression correlated positively with Ki-67 and inversely with overall survival (OS) in TNBC (HR [hazard ratio] =2.813, 95%CI [credibility interval]: 1.242-6.371, P=0.0164), suggesting its potential as an independent prognostic marker (HR=3.477, 95%CI: 1.324-9.130, P=0.011). Conclusions: Lactylation is a significant post-translational modification in TNBC proteins. H4K12lac emerges as a promising biomarker for TNBC, offering insights into the lactylation profiles of TNBC proteins and linking histone modifications to clinical implications in TNBC.


Assuntos
Biomarcadores Tumorais , Histonas , Processamento de Proteína Pós-Traducional , Neoplasias de Mama Triplo Negativas , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Humanos , Histonas/metabolismo , Feminino , Biomarcadores Tumorais/metabolismo , Prognóstico , Pessoa de Meia-Idade , Proteômica/métodos , Proteoma/metabolismo , Adulto , Lisina/metabolismo
8.
OMICS ; 28(5): 246-255, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38722704

RESUMO

Prostate cancer is a major planetary health challenge wherein new ways of thinking drug discovery and therapeutics innovation are much needed. Numerous studies have shown that autophagy inhibition holds a significant role as an adjunctive intervention in prostate cancer. Hydroxychloroquine (HCQ) has gained considerable attention due to its established role as an autophagy inhibitor across diverse cancer types, but its proteomics landscape and systems biology in prostate cancer are currently lacking in the literature. This study reports the proteomic responses to HCQ in prostate cancer cells, namely, androgen-dependent LNCaP and androgen-independent PC3 cells. Differentially expressed proteins and proteome in HCQ-treated cells were determined by label-free quantification with nano-high-performance liquid chromatography and tandem mass spectrometry (nHPLC-MS/MS), and harnessing bioinformatics tools. In PC3 cells, there was a marked shift toward metabolic reprogramming, highlighted by an upregulation of mitochondrial proteins in oxidative phosphorylation and tricarboxylic acid cycle, suggesting an adaptive mechanism to maintain energy production under therapeutic stress. In contrast, LNCaP cells prioritized proteostasis and cell cycle regulation, indicating a more conservative adaptation strategy. To the best of our knowledge, this study is the first to demonstrate the differential responses of prostate cancer cells to autophagy inhibition by HCQ, suggesting that a combination therapy approach, targeting distinct pathways in androgen-independent and androgen-dependent cells, could represent a promising treatment strategy. Moreover, the varied proteomic responses observed between these cell lines underscore the importance of personalized medicine in cancer therapy. Future translational and clinical research on HCQ and prostate cancer are called for.


Assuntos
Autofagia , Hidroxicloroquina , Neoplasias da Próstata , Proteômica , Masculino , Humanos , Hidroxicloroquina/farmacologia , Hidroxicloroquina/uso terapêutico , Autofagia/efeitos dos fármacos , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/metabolismo , Proteômica/métodos , Linhagem Celular Tumoral , Androgênios/metabolismo , Proteoma/metabolismo , Espectrometria de Massas em Tandem
9.
J Cell Mol Med ; 28(9): e18372, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38747737

RESUMO

Multicellular organisms have dense affinity with the coordination of cellular activities, which severely depend on communication across diverse cell types. Cell-cell communication (CCC) is often mediated via ligand-receptor interactions (LRIs). Existing CCC inference methods are limited to known LRIs. To address this problem, we developed a comprehensive CCC analysis tool SEnSCA by integrating single cell RNA sequencing and proteome data. SEnSCA mainly contains potential LRI acquisition and CCC strength evaluation. For acquiring potential LRIs, it first extracts LRI features and reduces the feature dimension, subsequently constructs negative LRI samples through K-means clustering, finally acquires potential LRIs based on Stacking ensemble comprising support vector machine, 1D-convolutional neural networks and multi-head attention mechanism. During CCC strength evaluation, SEnSCA conducts LRI filtering and then infers CCC by combining the three-point estimation approach and single cell RNA sequencing data. SEnSCA computed better precision, recall, accuracy, F1 score, AUC and AUPR under most of conditions when predicting possible LRIs. To better illustrate the inferred CCC network, SEnSCA provided three visualization options: heatmap, bubble diagram and network diagram. Its application on human melanoma tissue demonstrated its reliability in CCC detection. In summary, SEnSCA offers a useful CCC inference tool and is freely available at https://github.com/plhhnu/SEnSCA.


Assuntos
Comunicação Celular , Análise de Célula Única , Humanos , Ligantes , Análise de Célula Única/métodos , Software , Biologia Computacional/métodos , Algoritmos , Máquina de Vetores de Suporte , Análise de Sequência de RNA/métodos , Melanoma/metabolismo , Melanoma/patologia , Melanoma/genética , Proteoma/metabolismo , Redes Neurais de Computação
10.
Mol Cell ; 84(10): 1819-1821, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38759621

RESUMO

In this issue of Molecular Cell, Yang et al.1 find that arginine-to-cysteine substitutants are enriched in a subset of lung cancer proteomes, potentiated by arginine deprivation, and promote resistance to chemotherapy.


Assuntos
Arginina , Cisteína , Neoplasias Pulmonares , Proteoma , Humanos , Cisteína/metabolismo , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Arginina/metabolismo , Proteoma/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética
11.
Mol Cell ; 84(10): 1904-1916.e7, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38759626

RESUMO

Many types of human cancers suppress the expression of argininosuccinate synthase 1 (ASS1), a rate-limiting enzyme for arginine production. Although dependency on exogenous arginine can be harnessed by arginine-deprivation therapies, the impact of ASS1 suppression on the quality of the tumor proteome is unknown. We therefore interrogated proteomes of cancer patients for arginine codon reassignments (substitutants) and surprisingly identified a strong enrichment for cysteine (R>C) in lung tumors specifically. Most R>C events did not coincide with genetically encoded R>C mutations but were likely products of tRNA misalignments. The expression of R>C substitutants was highly associated with oncogenic kelch-like epichlorohydrin (ECH)-associated protein 1 (KEAP1)-pathway mutations and suppressed by intact-KEAP1 in KEAP1-mutated cancer cells. Finally, functional interrogation indicated a key role for R>C substitutants in cell survival to cisplatin, suggesting that regulatory codon reassignments endow cancer cells with more resilience to stress. Thus, we present a mechanism for enriching lung cancer proteomes with cysteines that may affect therapeutic decisions.


Assuntos
Arginina , Cisteína , Proteína 1 Associada a ECH Semelhante a Kelch , Neoplasias Pulmonares , Proteoma , Humanos , Cisteína/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Proteoma/metabolismo , Arginina/metabolismo , Mutação , Argininossuccinato Sintase/metabolismo , Argininossuccinato Sintase/genética , Cisplatino/farmacologia , Linhagem Celular Tumoral , Proteômica/métodos , Regulação Neoplásica da Expressão Gênica , Sobrevivência Celular/efeitos dos fármacos , RNA de Transferência/metabolismo , RNA de Transferência/genética
12.
Int J Mol Sci ; 25(9)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38732093

RESUMO

The chromatin organization and its dynamic remodeling determine its accessibility and sensitivity to DNA damage oxidative stress, the main source of endogenous DNA damage. We studied the role of the VRK1 chromatin kinase in the response to oxidative stress. which alters the nuclear pattern of histone epigenetic modifications and phosphoproteome pathways. The early effect of oxidative stress on chromatin was studied by determining the levels of 8-oxoG lesions and the alteration of the epigenetic modification of histones. Oxidative stress caused an accumulation of 8-oxoG DNA lesions that were increased by VRK1 depletion, causing a significant accumulation of DNA strand breaks detected by labeling free 3'-DNA ends. In addition, oxidative stress altered the pattern of chromatin epigenetic marks and the nuclear phosphoproteome pathways that were impaired by VRK1 depletion. Oxidative stress induced the acetylation of H4K16ac and H3K9 and the loss of H3K4me3. The depletion of VRK1 altered all these modifications induced by oxidative stress and resulted in losses of H4K16ac and H3K9ac and increases in the H3K9me3 and H3K4me3 levels. All these changes were induced by the oxidative stress in the epigenetic pattern of histones and impaired by VRK1 depletion, indicating that VRK1 plays a major role in the functional reorganization of chromatin in the response to oxidative stress. The analysis of the nuclear phosphoproteome in response to oxidative stress detected an enrichment of the phosphorylated proteins associated with the chromosome organization and chromatin remodeling pathways, which were significantly decreased by VRK1 depletion. VRK1 depletion alters the histone epigenetic pattern and nuclear phosphoproteome pathways in response to oxidative stress. The enzymes performing post-translational epigenetic modifications are potential targets in synthetic lethality strategies for cancer therapies.


Assuntos
Epigênese Genética , Histonas , Estresse Oxidativo , Proteínas Serina-Treonina Quinases , Humanos , Histonas/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteoma/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Fosfoproteínas/metabolismo , Fosfoproteínas/genética , Dano ao DNA , Núcleo Celular/metabolismo , Cromatina/metabolismo , Cromatina/genética , Linhagem Celular Tumoral , Acetilação , Processamento de Proteína Pós-Traducional
13.
Int J Mol Sci ; 25(9)2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38732251

RESUMO

Asthma is a chronic respiratory disease with one of the largest numbers of cases in the world; thus, constant investigation and technical development are needed to unravel the underlying biochemical mechanisms. In this study, we aimed to develop a nano-DESI MS method for the in vivo characterization of the cellular metabolome. Using air-liquid interface (ALI) cell layers, we studied the role of Interleukin-13 (IL-13) on differentiated lung epithelial cells acting as a lung tissue model. We demonstrate the feasibility of nano-DESI MS for the in vivo monitoring of basal-apical molecular transport, and the subsequent endogenous metabolic response, for the first time. Conserving the integrity of the ALI lung-cell layer enabled us to perform temporally resolved metabolomic characterization followed by "bottom-up" proteomics on the same population of cells. Metabolic remodeling was observed upon histamine and corticosteroid treatment of the IL-13-exposed lung cell monolayers, in correlation with alterations in the proteomic profile. This proof of principle study demonstrates the utility of in vivo nano-DESI MS for characterizing ALI tissue layers, and the new markers identified in our study provide a good starting point for future, larger-scale studies.


Assuntos
Interleucina-13 , Pulmão , Metaboloma , Metabolômica , Proteoma , Proteômica , Interleucina-13/metabolismo , Pulmão/metabolismo , Proteômica/métodos , Metabolômica/métodos , Humanos , Metaboloma/efeitos dos fármacos , Proteoma/metabolismo , Espectrometria de Massas/métodos , Células Epiteliais/metabolismo , Células Epiteliais/efeitos dos fármacos , Asma/metabolismo , Asma/tratamento farmacológico
14.
Biomed Environ Sci ; 37(4): 341-353, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38727157

RESUMO

Objective: Hydroquinone (HQ), one of the phenolic metabolites of benzene, is widely recognized as an important participant in benzene-induced hematotoxicity. However, there are few relevant proteomics in HQ-induced hematotoxicity and the mechanism hasn't been fully understood yet. Methods: In this study, we treated K562 cells with 40 µmol/L HQ for 72 h, examined and validated protein expression changes by Label-free proteomic analysis and Parallel reaction monitoring (PRM), and performed bioinformatics analysis to identify interaction networks. Results: One hundred and eighty-seven upregulated differentially expressed proteins (DEPs) and 279 downregulated DEPs were identified in HQ-exposed K562 cells, which were involved in neutrophil-mediated immunity, blood microparticle, and other GO terms, as well as the lysosome, metabolic, cell cycle, and cellular senescence-related pathways. Focusing on the 23 DEGs and 5 DEPs in erythroid differentiation-related pathways, we constructed the network of protein interactions and determined 6 DEPs (STAT1, STAT3, CASP3, KIT, STAT5B, and VEGFA) as main hub proteins with the most interactions, among which STATs made a central impact and may be potential biomarkers of HQ-induced hematotoxicity. Conclusion: Our work reinforced the use of proteomics and bioinformatic approaches to advance knowledge on molecular mechanisms of HQ-induced hematotoxicity at the protein level and provide a valuable basis for further clarification.


Assuntos
Benzeno , Hemolíticos , Proteoma , Proteoma/metabolismo , Proteômica , Benzeno/toxicidade , Células K562 , Humanos , Testes de Toxicidade/métodos , Hemolíticos/toxicidade
15.
Arch Dermatol Res ; 316(6): 224, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38787414

RESUMO

Psoriasis is renowned for its chronic nature and complex pathophysiology, with exosomes playing a crucial regulatory role within it. However, the proteomic composition of exosomes extracted from psoriasis cells remains largely unexplored. This study aimed to analyze the proteomic makeup of exosomes derived from psoriasis-model keratinocytes and compare it with that of normal controls, with the goal of identifying specific proteins that could aid in understanding the disease's pathology and potentially serve as biomarkers or therapeutic targets. The normal cultured keratinocyte line HaCaT served as the control group, while a concentration of 10 ng/mL of TNF-α was utilized to stimulate HaCaT cells and induce the formation of psoriasis model cells for the test group. Exosomes were extracted and prepared from the culture supernatant using the magnetic bead method, and their identity was confirmed through transmission electron microscopy, nanoparticle tracking analysis, and Western blotting. Data-independent acquisition (DIA) mass spectrometry was employed to detect the protein composition of exosomes, followed by GO, KEGG, Reactome, and PPI analyses. The analysis revealed a total of 2796 proteins within the exosomes, with 131 showing significant differential expression between the test and control groups. Notably, this study identified the proteins ADO, CBX1, and MIF within the exosomes derived from psoriasis model cells for the first time, highlighting their potential roles in angiogenesis, epigenetic regulation, and inflammatory responses in psoriasis. Several differentially expressed proteins identified in the KEGG enrichment analysis were implicated in immune infiltration pathways, keratinocyte-regulating pathways, angiogenesis pathways, and inflammation pathways. The identification of unique proteins within exosomes derived from psoriasis-model cells offers novel insights into the molecular mechanisms underlying psoriasis. These findings pave the way for further research into the biological functions of these exosomal proteins and their potential utility in diagnosing and treating psoriasis.


Assuntos
Exossomos , Queratinócitos , Proteômica , Psoríase , Exossomos/metabolismo , Psoríase/metabolismo , Psoríase/diagnóstico , Psoríase/patologia , Humanos , Proteômica/métodos , Queratinócitos/metabolismo , Células HaCaT , Proteoma/metabolismo , Espectrometria de Massas , Biomarcadores/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Linhagem Celular
16.
BMC Genomics ; 25(1): 394, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38649832

RESUMO

BACKGROUND: Untargeted metabolomics and proteomics were employed to investigate the intracellular response of yak rumen epithelial cells (YRECs) to conditions mimicking subacute rumen acidosis (SARA) etiology, including exposure to short-chain fatty acids (SCFA), low pH5.5 (Acid), and lipopolysaccharide (LPS) exposure for 24 h. RESULTS: These treatments significantly altered the cellular morphology of YRECs. Metabolomic analysis identified significant perturbations with SCFA, Acid and LPS treatment affecting 259, 245 and 196 metabolites (VIP > 1, P < 0.05, and fold change (FC) ≥ 1.5 or FC ≤ 0.667). Proteomic analysis revealed that treatment with SCFA, Acid, and LPS resulted in differential expression of 1251, 1396, and 242 proteins, respectively (FC ≥ 1.2 or ≤ 0.83, P < 0.05, FDR < 1%). Treatment with SCFA induced elevated levels of metabolites involved in purine metabolism, glutathione metabolism, and arginine biosynthesis, and dysregulated proteins associated with actin cytoskeleton organization and ribosome pathways. Furthermore, SCFA reduced the number, morphology, and functionality of mitochondria, leading to oxidative damage and inhibition of cell survival. Gene expression analysis revealed a decrease the genes expression of the cytoskeleton and cell cycle, while the genes expression associated with inflammation and autophagy increased (P < 0.05). Acid exposure altered metabolites related to purine metabolism, and affected proteins associated with complement and coagulation cascades and RNA degradation. Acid also leads to mitochondrial dysfunction, alterations in mitochondrial integrity, and reduced ATP generation. It also causes actin filaments to change from filamentous to punctate, affecting cellular cytoskeletal function, and increases inflammation-related molecules, indicating the promotion of inflammatory responses and cellular damage (P < 0.05). LPS treatment induced differential expression of proteins involved in the TNF signaling pathway and cytokine-cytokine receptor interaction, accompanied by alterations in metabolites associated with arachidonic acid metabolism and MAPK signaling (P < 0.05). The inflammatory response and activation of signaling pathways induced by LPS treatment were also confirmed through protein interaction network analysis. The integrated analysis reveals co-enrichment of proteins and metabolites in cellular signaling and metabolic pathways. CONCLUSIONS: In summary, this study contributes to a comprehensive understanding of the detrimental effects of SARA-associated factors on YRECs, elucidating their molecular mechanisms and providing potential therapeutic targets for mitigating SARA.


Assuntos
Acidose , Proliferação de Células , Células Epiteliais , Metabolômica , Proteômica , Rúmen , Animais , Rúmen/metabolismo , Rúmen/efeitos dos fármacos , Acidose/veterinária , Acidose/metabolismo , Células Epiteliais/metabolismo , Células Epiteliais/efeitos dos fármacos , Bovinos , Proliferação de Células/efeitos dos fármacos , Ácidos Graxos Voláteis/metabolismo , Lipopolissacarídeos , Doenças dos Bovinos/metabolismo , Proteoma/metabolismo
17.
Mol Vis ; 30: 17-35, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38586604

RESUMO

Purpose: Diabetic macular edema (DME) is a sight-threatening complication of diabetes. Consequently, studying the proteome of DME may provide novel insights into underlying molecular mechanisms. Methods: In this study, aqueous humor samples from eyes with treatment-naïve clinically significant DME (n = 13) and age-matched controls (n = 11) were compared with label-free liquid chromatography-tandem mass spectrometry. Additional aqueous humor samples from eyes with treatment-naïve DME (n = 15) and controls (n = 8) were obtained for validation by enzyme-linked immunosorbent assay (ELISA). Best-corrected visual acuity (BCVA) was evaluated, and the severity of DME was measured as central subfield thickness (CST) employing optical coherence tomography. Control samples were obtained before cataract surgery. Significantly changed proteins were identified using a permutation-based calculation, with a false discovery rate of 0.05. A human donor eye with DME and a control eye were used for immunofluorescence. Results: A total of 101 proteins were differentially expressed in the DME. Regulated proteins were involved in complement activation, glycolysis, extracellular matrix interaction, and cholesterol metabolism. The highest-fold change was observed for the fibrinogen alpha chain (fold change = 17.8). Complement components C2, C5, and C8, fibronectin, and hepatocyte growth factor-like protein were increased in DME and correlated with best-corrected visual acuity (BCVA). Ceruloplasmin and complement component C8 correlated with central subfield thickness (CST). Hemopexin, plasma kallikrein, monocyte differentiation antigen CD14 (CD14), and lipopolysaccharide-binding protein (LBP) were upregulated in the DME. LBP was correlated with vascular endothelial growth factor. The increased level of LBP in DME was confirmed using ELISA. The proteins involved in desmosomal integrity, including desmocollin-1 and desmoglein-1, were downregulated in DME and correlated negatively with CST. Immunofluorescence confirmed the extravasation of fibrinogen at the retinal level in the DME. Conclusion: Elevated levels of pro-inflammatory proteins, including the complement components LBP and CD14, were observed in DME. DME was associated with the loss of basal membrane proteins, compromised desmosomal integrity, and perturbation of glycolysis.


Assuntos
Diabetes Mellitus , Retinopatia Diabética , Edema Macular , Humanos , Edema Macular/tratamento farmacológico , Retinopatia Diabética/complicações , Proteoma/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Humor Aquoso/metabolismo , Tomografia de Coerência Óptica , Fibrinogênio/metabolismo , Injeções Intravítreas , Inibidores da Angiogênese/uso terapêutico , Diabetes Mellitus/metabolismo
18.
Biomolecules ; 14(4)2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38672516

RESUMO

Adenosine triphosphate (ATP) acts as the universal energy currency that drives various biological processes, while nucleic acids function to store and transmit genetic information for all living organisms. Liquid-liquid phase separation (LLPS) represents the common principle for the formation of membrane-less organelles (MLOs) composed of proteins rich in intrinsically disordered regions (IDRs) and nucleic acids. Currently, while IDRs are well recognized to facilitate LLPS through dynamic and multivalent interactions, the precise mechanisms by which ATP and nucleic acids affect LLPS still remain elusive. This review summarizes recent NMR results on the LLPS of human FUS, TDP-43, and the viral nucleocapsid (N) protein of SARS-CoV-2, as modulated by ATP and nucleic acids, revealing the following: (1) ATP binds to folded domains overlapping with nucleic-acid-binding interfaces; (2) ATP and nucleic acids interplay to biphasically modulate LLPS by competitively binding to overlapping pockets of folded domains and Arg/Lys within IDRs; (3) ATP energy-independently induces protein folding with the highest efficiency known so far. As ATP likely emerged in the prebiotic monomeric world, while LLPS represents a pivotal mechanism to concentrate and compartmentalize rare molecules for forming primordial cells, ATP appears to control protein homeostasis and shape genome-proteome interfaces throughout the evolutionary trajectory, from prebiotic origins to modern cells.


Assuntos
Trifosfato de Adenosina , Proteoma , Humanos , Trifosfato de Adenosina/metabolismo , Proteoma/metabolismo , SARS-CoV-2/metabolismo , SARS-CoV-2/química , SARS-CoV-2/genética , Proteostase , Ácidos Nucleicos/metabolismo , Ácidos Nucleicos/química , Proteínas Intrinsicamente Desordenadas/metabolismo , Proteínas Intrinsicamente Desordenadas/química , Proteínas Intrinsicamente Desordenadas/genética , Homeostase , Dobramento de Proteína , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética
19.
Cells ; 13(7)2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38607010

RESUMO

Extracellular vesicles (EVs) are secreted from many tumors, including glioblastoma multiforme (GBM), the most common and lethal brain tumor in adults, which shows high resistance to current therapies and poor patient prognosis. Given the high relevance of the information provided by cancer cell secretome, we performed a proteomic analysis of microvesicles (MVs) and exosomes (EXOs) released from GBM-derived stem cells (GSCs). The latter, obtained from the brain of GBM patients, expressed P2X7 receptors (P2X7Rs), which positively correlate with GBM growth and invasiveness. P2X7R stimulation of GSCs caused significant changes in the EV content, mostly ex novo inducing or upregulating the expression of proteins related to cytoskeleton reorganization, cell motility/spreading, energy supply, protection against oxidative stress, chromatin remodeling, and transcriptional regulation. Most of the induced/upregulated proteins have already been identified as GBM diagnostic/prognostic factors, while others have only been reported in peripheral tumors. Our findings indicate that P2X7R stimulation enhances the transport and, therefore, possible intercellular exchange of GBM aggressiveness-increasing proteins by GSC-derived EVs. Thus, P2X7Rs could be considered a new druggable target of human GBM, although these data need to be confirmed in larger experimental sets.


Assuntos
Vesículas Extracelulares , Glioblastoma , Receptores Purinérgicos P2X7 , Secretoma , Humanos , Linhagem Celular Tumoral , Vesículas Extracelulares/metabolismo , Glioblastoma/metabolismo , Células-Tronco Neoplásicas/patologia , Proteoma/metabolismo , Proteômica , Receptores Purinérgicos P2X7/metabolismo
20.
Nat Commun ; 15(1): 3560, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38671151

RESUMO

Pediatric papillary thyroid carcinomas (PPTCs) exhibit high inter-tumor heterogeneity and currently lack widely adopted recurrence risk stratification criteria. Hence, we propose a machine learning-based objective method to individually predict their recurrence risk. We retrospectively collect and evaluate the clinical factors and proteomes of 83 pediatric benign (PB), 85 pediatric malignant (PM) and 66 adult malignant (AM) nodules, and quantify 10,426 proteins by mass spectrometry. We find 243 and 121 significantly dysregulated proteins from PM vs. PB and PM vs. AM, respectively. Function and pathway analyses show the enhanced activation of the inflammatory and immune system in PM patients compared with the others. Nineteen proteins are selected to predict recurrence using a machine learning model with an accuracy of 88.24%. Our study generates a protein-based personalized prognostic prediction model that can stratify PPTC patients into high- or low-recurrence risk groups, providing a reference for clinical decision-making and individualized treatment.


Assuntos
Aprendizado de Máquina , Recidiva Local de Neoplasia , Câncer Papilífero da Tireoide , Neoplasias da Glândula Tireoide , Humanos , Câncer Papilífero da Tireoide/patologia , Feminino , Masculino , Criança , Neoplasias da Glândula Tireoide/patologia , Prognóstico , Adolescente , Estudos Retrospectivos , Adulto , Biomarcadores Tumorais/metabolismo , Proteoma/metabolismo , Medicina de Precisão , Proteômica/métodos , Pré-Escolar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA