Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biomolecules ; 11(10)2021 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-34680040

RESUMO

Fluorescence light microscopy provided convincing evidence for the domain organization of plant plasma membrane (PM) proteins. Both peripheral and integral PM proteins show an inhomogeneous distribution within the PM. However, the size of PM nanodomains and protein clusters is too small to accurately determine their dimensions and nano-organization using routine confocal fluorescence microscopy and super-resolution methods. To overcome this limitation, we have developed a novel correlative light electron microscopy method (CLEM) using total internal reflection fluorescence microscopy (TIRFM) and advanced environmental scanning electron microscopy (A-ESEM). Using this technique, we determined the number of auxin efflux carriers from the PINFORMED (PIN) family (NtPIN3b-GFP) within PM nanodomains of tobacco cell PM ghosts. Protoplasts were attached to coverslips and immunostained with anti-GFP primary antibody and secondary antibody conjugated to fluorochrome and gold nanoparticles. After imaging the nanodomains within the PM with TIRFM, the samples were imaged with A-ESEM without further processing, and quantification of the average number of molecules within the nanodomain was performed. Without requiring any post-fixation and coating procedures, this method allows to study details of the organization of auxin carriers and other plant PM proteins.


Assuntos
Ácidos Indolacéticos/metabolismo , Microscopia Eletrônica de Varredura , Nicotiana/ultraestrutura , Reguladores de Crescimento de Plantas/metabolismo , Protoplastos/ultraestrutura , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Membrana Celular/genética , Membrana Celular/metabolismo , Membrana Celular/ultraestrutura , Ouro/química , Processamento de Imagem Assistida por Computador , Nanopartículas Metálicas/química , Microscopia Confocal , Reguladores de Crescimento de Plantas/genética , Protoplastos/metabolismo , Nicotiana/genética , Nicotiana/metabolismo
2.
Methods Mol Biol ; 1662: 159-170, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28861826

RESUMO

Combinations of multiple fluorescent fusion proteins are commonly generated and used for colocalization studies in live cell imaging but also biochemical analysis of protein-protein interactions by co-immunoprecipitation in vitro. Advanced microscopy techniques like Förster resonance energy transfer through fluorescence lifetime imaging microscopy (FRET/FLIM) nowadays enable the combination of both approaches. This opens up the possibility to perform a location-specific protein-protein interaction analysis in vivo. To this end, the nonradiant energy transfer from a donor to an acceptor fluorophore (FRET) is harnessed to test for close proximity as an indicator for interaction, while the spectromicroscopical measurement of the fluorescence lifetime by FLIM serves as a readout.Here, we describe FRET/FLIM measurements performed with a Leica TCS SP8/PicoHarp 300 combination to demonstrate the interaction between a RFP-tagged GFP-nanobody and its epitope, GFP, in the cytoplasm of tobacco mesophyll protoplasts.


Assuntos
Epitopos/metabolismo , Transferência Ressonante de Energia de Fluorescência/métodos , Microscopia de Fluorescência/métodos , Nicotiana/metabolismo , Proteínas de Plantas/metabolismo , Anticorpos de Domínio Único/metabolismo , Epitopos/química , Expressão Gênica , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Imagem Óptica/métodos , Proteínas de Plantas/genética , Ligação Proteica , Protoplastos/metabolismo , Protoplastos/ultraestrutura , Anticorpos de Domínio Único/química , Nicotiana/ultraestrutura , Proteína Vermelha Fluorescente
3.
Methods Mol Biol ; 1662: 171-182, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28861827

RESUMO

Over the past few decades, quantitative protein transport analyses have been used to elucidate the sorting and transport of proteins in the endomembrane system of plants. Here, we have applied our knowledge about transport routes and the corresponding sorting signals to establish an in vivo system for testing specific interactions between soluble proteins.Here, we describe the use of quantitative protein transport assays in tobacco mesophyll protoplasts to test for interactions occurring between a GFP-binding nanobody and its GFP epitope. For this, we use a secreted GFP-tagged α-amylase as a reporter together with a vacuolar-targeted RFP-tagged nanobody. The interaction between these proteins is then revealed by a transport alteration of the secretory reporter due to the interaction-triggered attachment of the vacuolar sorting signal.


Assuntos
Bioensaio , Epitopos/metabolismo , Nicotiana/metabolismo , Proteínas de Plantas/metabolismo , Anticorpos de Domínio Único/metabolismo , alfa-Amilases/metabolismo , Epitopos/química , Transferência Ressonante de Energia de Fluorescência/métodos , Expressão Gênica , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Proteínas de Plantas/genética , Ligação Proteica , Transporte Proteico , Protoplastos/metabolismo , Protoplastos/ultraestrutura , Anticorpos de Domínio Único/química , Nicotiana/ultraestrutura , Transfecção/métodos , Vacúolos/metabolismo , Vacúolos/ultraestrutura , alfa-Amilases/genética , Proteína Vermelha Fluorescente
4.
Methods Mol Biol ; 1662: 209-221, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28861831

RESUMO

Despite a long case history, the use of protoplasts in cell biology research still divides scientists but their weaknesses can be exploited as strengths. Transient expression in protoplasts can saturate protein-protein interactions very efficiently, inhibiting the process of interest more efficiently than other approaches at gene expression level. The method described here consists of an assay providing a functional characterization of SNARE proteins in a heterogeneous population of cells, by the comparison of native and dominant negative mutant forms. In particular, it allows for discriminating between t-SNARE and i-SNARE functional classes.


Assuntos
Proteínas de Arabidopsis/metabolismo , Nicotiana/genética , Protoplastos/metabolismo , Proteínas Qa-SNARE/metabolismo , Proteínas SNARE/genética , Vesículas Transportadoras/metabolismo , Proteínas de Arabidopsis/genética , Bioensaio , Expressão Gênica , Fusão de Membrana , Mutação , Imagem Óptica/métodos , Folhas de Planta/genética , Folhas de Planta/metabolismo , Folhas de Planta/ultraestrutura , Proteínas de Plantas , Plantas Geneticamente Modificadas , Plasmídeos/química , Plasmídeos/metabolismo , Regiões Promotoras Genéticas , Transporte Proteico , Protoplastos/ultraestrutura , Proteínas Qa-SNARE/genética , Proteínas SNARE/classificação , Proteínas SNARE/metabolismo , Nicotiana/metabolismo , Nicotiana/ultraestrutura , Transformação Genética , Vacúolos/metabolismo , Vacúolos/ultraestrutura
5.
Methods Mol Biol ; 1662: 231-241, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28861833

RESUMO

Unconventional protein secretion (UPS) together with conventional protein secretion (CPS) is responsible for protein secretion in plants. We have previously identified a novel UPS pathway in plants, which is mediated by exocyst-positive organelle-EXPO. Here, we describe detailed protocols to study UPS in plants by using Arabidopsis protoplasts or transgenic suspension cells, expressing the EXPO marker Exo70E2-XFP, as materials. Via drug and osmotic treatment plus secretion assay, we illustrate several major methods to analyze EXPO-mediated UPS in plant cells, which also supplys mining tools for similar study.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Nicotiana/metabolismo , Organelas/metabolismo , Protoplastos/metabolismo , Via Secretória , Proteínas de Transporte Vesicular/metabolismo , Agrobacterium tumefaciens/genética , Agrobacterium tumefaciens/metabolismo , Arabidopsis/genética , Arabidopsis/ultraestrutura , Proteínas de Arabidopsis/genética , Células Cultivadas , Eletroporação/métodos , Expressão Gênica , Genes Reporter , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Microscopia de Fluorescência/métodos , Organelas/ultraestrutura , Pressão Osmótica , Células Vegetais/metabolismo , Células Vegetais/ultraestrutura , Folhas de Planta/genética , Folhas de Planta/metabolismo , Folhas de Planta/ultraestrutura , Plantas Geneticamente Modificadas , Protoplastos/ultraestrutura , Nicotiana/genética , Nicotiana/ultraestrutura , Transformação Genética , Proteínas de Transporte Vesicular/genética , Proteína Vermelha Fluorescente
6.
Methods Mol Biol ; 1662: 87-95, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28861819

RESUMO

Topology of membrane proteins provides important information for the understanding of protein function and intermolecular associations. Integrate membrane proteins are generally transported from endoplasmic reticulum (ER) to Golgi and downstream compartments in the plant secretory pathway. Here, we describe a simple method to study membrane protein topology along the plant secretory pathway by transiently coexpressing a fluorescent protein (XFP)-tagged membrane protein and an ER export inhibitor protein, ARF1 (T31N), in tobacco BY-2 protoplast. By fractionation, microsome isolation, and trypsin digestion, membrane protein topology could be easily detected by either direct confocal microscopy imaging or western-blot analysis using specific XFP antibodies. A similar strategy in determining membrane protein topology could be widely adopted and applied to protein analysis in a broad range of eukaryotic systems, including yeast cells and mammalian cells.


Assuntos
Membrana Celular/metabolismo , Retículo Endoplasmático/metabolismo , Complexo de Golgi/metabolismo , Microscopia de Fluorescência/métodos , Nicotiana/metabolismo , Protoplastos/metabolismo , Via Secretória/genética , Fator 1 de Ribosilação do ADP/genética , Fator 1 de Ribosilação do ADP/metabolismo , Western Blotting/métodos , Membrana Celular/ultraestrutura , Células Cultivadas , Eletroporação/métodos , Retículo Endoplasmático/ultraestrutura , Genes Reporter , Complexo de Golgi/ultraestrutura , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Microssomos/metabolismo , Microssomos/ultraestrutura , Células Vegetais/metabolismo , Células Vegetais/ultraestrutura , Plantas Geneticamente Modificadas , Plasmídeos/química , Plasmídeos/metabolismo , Transporte Proteico , Protoplastos/ultraestrutura , Nicotiana/genética , Transfecção/métodos
7.
Virus Res ; 230: 19-28, 2017 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-28087398

RESUMO

Mal de Río Cuarto virus (MRCV) is a member of the Fijivirus genus, within the Reoviridae family, that replicates and assembles in cytoplasmic inclusion bodies called viroplasms. In this study, we investigated interactions between ten MRCV proteins by yeast two-hybrid (Y2H) assays and identified interactions of non-structural proteins P6/P6, P9-2/P9-2 and P6/P9-1. P9-1 and P6 are the major and minor components of the viroplasms respectively, whereas P9-2 is an N-glycosylated membrane protein of unknown function. Interactions involving P6 and P9-1 were confirmed by bimolecular fluorescence complementation (BiFC) in rice protoplasts. We demonstrated that a region including a predicted coiled-coil domain within the C-terminal moiety of P6 was necessary for P6/P6 and P6/P9-1 interactions. In turn, a short C-terminal arm was necessary for the previously reported P9-1 self-interaction. Transient expression of these proteins by agroinfiltration of Nicotiana benthamiana leaves showed very low accumulation levels and further in silico analyses allowed us to identify conserved PEST degradation sequences [rich in proline (P), glutamic acid (E), serine (S), and threonine (T)] within P6 and P9-1. The removal of these PEST sequences resulted in a significant increase of the accumulation of both proteins.


Assuntos
Interações Hospedeiro-Patógeno , Corpos de Inclusão/virologia , Folhas de Planta/virologia , Protoplastos/virologia , Reoviridae/genética , Proteínas não Estruturais Virais/genética , Agrobacterium tumefaciens/genética , Agrobacterium tumefaciens/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Sequência Conservada , Expressão Gênica , Corpos de Inclusão/química , Corpos de Inclusão/metabolismo , Oryza/virologia , Doenças das Plantas/virologia , Folhas de Planta/metabolismo , Folhas de Planta/ultraestrutura , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Mapeamento de Interação de Proteínas , Proteólise , Protoplastos/metabolismo , Protoplastos/ultraestrutura , Reoviridae/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Nicotiana/virologia , Técnicas do Sistema de Duplo-Híbrido , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/metabolismo
8.
Methods Mol Biol ; 1511: 83-96, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27730604

RESUMO

Mitochondria are the sites of a diverse set of essential biochemical processes in plants. In order to facilitate the analysis of these functions, this chapter presents protocols for the isolation of intact mitochondria from a range of plant tissues as well two workflows for fractionation into their four subcompartments; the inner and outer membranes and the two aqueous compartments, the inter membrane space and matrix. Protocols for the assessment of mitochondrial integrity and purity through enzymatic function and suggestions of commercially available compartment marker antibodies are provided.


Assuntos
Proteínas de Arabidopsis/química , Arabidopsis/química , Fracionamento Celular/métodos , Membranas Intracelulares/química , Mitocôndrias/química , Peroxissomos/química , Protoplastos/química , Aconitato Hidratase/química , Biomarcadores/química , Catalase/química , Fracionamento Celular/instrumentação , Centrifugação com Gradiente de Concentração/instrumentação , Centrifugação com Gradiente de Concentração/métodos , Meios de Cultura/química , Ensaios Enzimáticos , Fumarato Hidratase/química , Membranas Intracelulares/ultraestrutura , Cinética , Mitocôndrias/ultraestrutura , Peroxissomos/ultraestrutura , Fosfotransferases (Aceptor do Grupo Álcool)/química , Povidona/química , Protoplastos/ultraestrutura , Dióxido de Silício/química
9.
Protoplasma ; 254(4): 1627-1637, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27928633

RESUMO

The ability of plants to regenerate lies in the capacity of differentiated cells to reprogram and re-enter the cell cycle. Reprogramming of cells requires changes in chromatin organisation and gene expression. However, there has been less focus on changes at the post transcription level. We have investigated P-bodies, sites of post transcriptional gene regulation, in plant cell reprogramming in cultured mesophyll protoplasts; by using a YFP-VARICOSE (YFP-VCSc) translational fusion. We showed an early increase in P-body number and volume, followed by a decline, then a subsequent continued increase in P-body number and volume as cell division was initiated and cell proliferation continued. We infer that plant P-bodies have a role to play in reprogramming the mature cell and re-initiating the cell division cycle. The timing of the first phase is consistent with the degredation of messages no longer required, as the cell transits to the division state, and may also be linked to the stress response associated with division induction in cultured cells. The subsequent increase in P-body formation, with partitioning to the daughter cells during the division process, suggests a role in the cell cycle and its re-initiation in daughter cells. P-bodies were shown to be mobile in the cytoplasm and show actin-based motility which facilitates their post-transcriptional role and partitioning to daughter cells.


Assuntos
Protoplastos/fisiologia , Processamento Pós-Transcricional do RNA , Actinas/metabolismo , Desdiferenciação Celular , Divisão Celular , Movimento Celular , Células Cultivadas , Células do Mesofilo/fisiologia , Células do Mesofilo/ultraestrutura , Proteínas de Plantas/metabolismo , Transporte Proteico , Protoplastos/ultraestrutura , Nicotiana
10.
PLoS One ; 11(3): e0151574, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26978070

RESUMO

Although multiple lines of evidence have indicated that Arabidopsis thaliana Tandem CCCH Zinc Finger proteins, AtTZF4, 5 and 6 are involved in ABA, GA and phytochrome mediated seed germination responses, the interacting proteins involved in these processes are unknown. Using yeast two-hybrid screens, we have identified 35 putative AtTZF5 interacting protein partners. Among them, Mediator of ABA-Regulated Dormancy 1 (MARD1) is highly expressed in seeds and involved in ABA signal transduction, while Responsive to Dehydration 21A (RD21A) is a well-documented stress responsive protein. Co-immunoprecipitation (Co-IP) and bimolecular fluorescence complementation (BiFC) assays were used to confirm that AtTZF5 can interact with MARD1 and RD21A in plant cells, and the interaction is mediated through TZF motif. In addition, AtTZF4 and 6 could also interact with MARD1 and RD21A in Y-2-H and BiFC assay, respectively. The protein-protein interactions apparently take place in processing bodies (PBs) and stress granules (SGs), because AtTZF5, MARD1 and RD21A could interact and co-localize with each other and they all can co-localize with the same PB and SG markers in plant cells.


Assuntos
Ácido Abscísico/fisiologia , Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Proteínas de Transporte/metabolismo , Cisteína Proteases/metabolismo , Desidratação/fisiopatologia , Estresse Fisiológico/fisiologia , Fatores de Transcrição/metabolismo , Arabidopsis/ultraestrutura , Secas , Regulação da Expressão Gênica de Plantas , Genes Reporter , Vetores Genéticos/genética , Imunoprecipitação , Microscopia de Fluorescência , Organelas/fisiologia , Fragmentos de Peptídeos/metabolismo , Mapeamento de Interação de Proteínas , Protoplastos/metabolismo , Protoplastos/ultraestrutura , Processamento Pós-Transcricional do RNA , RNA de Plantas/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Técnicas do Sistema de Duplo-Híbrido , Dedos de Zinco
11.
J Sci Food Agric ; 96(9): 2969-75, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26374695

RESUMO

BACKGROUND: 'Laba' garlic is usually processed by soaking garlic in vinegar for more than 1 week during winter. It is popular for its unique green colour and tasty flavour. Greening is desirable and required for this product as its characteristic. Dense phase carbon dioxide (DPCD) had a significant effect on the greening of intact garlic (Allium sativum L.) cloves. The relation between green colour generation and alliin consumption, alliinase activity and the cellular structure of garlic, respectively, were investigated in this work. The effects of treatment time, pressure and temperature of DPCD were also analysed and discussed. RESULTS: DPCD had a significant effect on the cellular structure of garlic cells. Garlic protoplast underwent greater morphological change after DPCD treatments at higher temperatures while the amount of precipitate increased with greater treatment time and temperature. Common trends on garlic greening and alliin consumption were observed except for DPCD treatment at 10 MPa and 65 °C. The alliinase activity decreased with increasing treatment time, pressure and temperature. It reached the lowest level at 13 MPa and 55 °C. CONCLUSION: The formation of the green colour was a comprehensive result of DPCD on changing cellular structure, alliin consumption and alliinase activity. DPCD treatment at 10 MPa and 55 °C was the optimum condition for the greening of 'Laba' garlic. This work further facilitated the application of DPCD in the industrial production of 'Laba' garlic. © 2015 Society of Chemical Industry.


Assuntos
Dióxido de Carbono/química , Liases de Carbono-Enxofre/metabolismo , Cisteína/análogos & derivados , Conservantes de Alimentos/química , Alho/química , Pigmentos Biológicos/análise , Raízes de Plantas/química , Precipitação Química , China , Produtos Agrícolas/química , Produtos Agrícolas/enzimologia , Produtos Agrícolas/ultraestrutura , Cisteína/análise , Cisteína/metabolismo , Qualidade dos Alimentos , Armazenamento de Alimentos , Alimentos em Conserva/análise , Alho/enzimologia , Alho/ultraestrutura , Temperatura Alta/efeitos adversos , Microscopia Eletrônica de Varredura , Proteínas de Plantas/metabolismo , Raízes de Plantas/enzimologia , Raízes de Plantas/ultraestrutura , Pressão/efeitos adversos , Protoplastos/química , Protoplastos/metabolismo , Protoplastos/ultraestrutura , Refrigeração , Fatores de Tempo
12.
Virology ; 485: 86-95, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26210077

RESUMO

Citrus tristeza virus (CTV), one of the most economically important viruses, produces a unique protein, p33, which is encoded only in the genomes of isolates of CTV. Recently, we demonstrated that membrane association of the p33 protein confers virus ability to extend its host range. In this work we show that p33 shares characteristics of viral movement proteins. Upon expression in a host cell, the protein localizes to plasmodesmata and displays the ability to form extracellular tubules. Furthermore, p33 appears to traffic via the cellular secretory pathway and the actin network to plasmodesmata locations and is likely being recycled through the endocytic pathway. Finally, our study reveals that p33 colocalizes with a putative movement protein of CTV, the p6 protein. These results suggest a potential role of p33 as a noncanonical viral movement protein, which mediates virus translocation in the specific hosts.


Assuntos
Citrus/virologia , Genoma Viral , Plasmodesmos/virologia , Protoplastos/virologia , Proteínas Virais/genética , Actinas/genética , Actinas/ultraestrutura , Closterovirus/genética , Endocitose/genética , Endossomos/metabolismo , Endossomos/ultraestrutura , Expressão Gênica , Genes Reporter , Proteínas de Fluorescência Verde/genética , Especificidade de Hospedeiro , Doenças das Plantas/virologia , Plasmodesmos/ultraestrutura , Transporte Proteico , Protoplastos/ultraestrutura , Proteínas Recombinantes/genética , Nicotiana/genética , Nicotiana/metabolismo , Proteínas Virais/metabolismo
13.
FEBS J ; 278(18): 3419-30, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21781282

RESUMO

In chloroplasts, thiol/disulfide-redox-regulated proteins have been linked to numerous metabolic pathways. However, the biochemical system for disulfide bond formation in chloroplasts remains undetermined. In the present study, we characterized an oxidoreductase, AtVKOR-DsbA, encoded by the gene At4g35760 as a potential disulfide bond oxidant in Arabidopsis. The gene product contains two distinct domains: an integral membrane domain homologous to the catalytic subunit of mammalian vitamin K epoxide reductase (VKOR) and a soluble DsbA-like domain. Transient expression of green fluorescent protein fusion in Arabidopsis protoplasts indicated that AtVKOR-DsbA is located in the chloroplast. The first 45 amino acids from the N-terminus were found to act as a transit peptide targeting the protein to the chloroplast. An immunoblot assay of chloroplast fractions revealed that AtVKOR-DsbA was localized in the thylakoid. A motility complementation assay showed that the full-length of AtVKOR-DsbA, if lacking its transit peptide, could catalyze the formation of disulfide bonds. Among the 10 cysteine residues present in the mature protein, eight cysteines (four in the AtVKOR domain and four in the AtDsbA domain) were found to be essential for promoting disulfide bond formation. The topological arrangement of AtVKOR-DsbA was assayed using alkaline phosphatase sandwich fusions. From these results, we developed a possible topology model of AtVKOR-DsbA in chloroplasts. We propose that the integral membrane domain of AtVKOR-DsbA contains four transmembrane helices, and that both termini and the cysteines involved in catalyzing the formation of disulfide bonds face the oxidative thylakoid lumen. These studies may help to resolve some of the issues surrounding the structure and function of AtVKOR-DsbA in Arabidopsis chloroplasts.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Cistina/metabolismo , Dissulfetos/metabolismo , NAD(P)H Desidrogenase (Quinona)/metabolismo , Tilacoides/enzimologia , Arabidopsis/genética , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Biocatálise , Células Cultivadas , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Oxigenases de Função Mista/química , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/metabolismo , Modelos Moleculares , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , NAD(P)H Desidrogenase (Quinona)/química , NAD(P)H Desidrogenase (Quinona)/genética , Oxirredução , Folhas de Planta/enzimologia , Plantas Geneticamente Modificadas , Isomerases de Dissulfetos de Proteínas/química , Isomerases de Dissulfetos de Proteínas/genética , Isomerases de Dissulfetos de Proteínas/metabolismo , Sinais Direcionadores de Proteínas , Estrutura Terciária de Proteína , Protoplastos/metabolismo , Protoplastos/ultraestrutura , Proteínas Recombinantes de Fusão/metabolismo , Vitamina K Epóxido Redutases
14.
Plant Cell Environ ; 34(2): 208-19, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20880204

RESUMO

Hyperaccumulators store accumulated metals in the vacuoles of large leaf epidermal cells (storage cells). For investigating cadmium uptake, we incubated protoplasts obtained from leaves of Thlaspi caerulescens (Ganges ecotype) with a Cd-specific fluorescent dye. A fluorescence kinetic microscope was used for selectively measuring Cd-uptake and photosynthesis in different cell types, so that physical separation of cell types was not necessary. Few minutes after its addition, cadmium accumulated in the cytoplasm before its transport into the vacuole. This demonstrated that vacuolar sequestration is the rate-limiting step in cadmium uptake into protoplasts of all leaf cell types. During accumulation in the cytoplasm, Cd-rich vesicle-like structures were observed. Cd uptake rates into epidermal storage cells were higher than into standard-sized epidermal cells and mesophyll cells. This shows that the preferential heavy metal accumulation in epidermal storage cells, previously observed for several metals in intact leaves of various hyperaccumulator species, is due to differences in active metal transport and not differences in passive mechanisms like transpiration stream transport or cell wall adhesion. Combining this with previous studies, it seems likely that the transport steps over the plasma and tonoplast membranes of leaf epidermal storage cells are driving forces behind the hyperaccumulation phenotype.


Assuntos
Cádmio/metabolismo , Protoplastos/metabolismo , Thlaspi/metabolismo , Transporte Biológico , Cádmio/farmacologia , Sobrevivência Celular , Citoplasma/metabolismo , Corantes Fluorescentes , Cinética , Células do Mesofilo/metabolismo , Células do Mesofilo/ultraestrutura , Microscopia de Fluorescência , Fotossíntese , Folhas de Planta/metabolismo , Folhas de Planta/ultraestrutura , Protoplastos/ultraestrutura , Rodaminas , Frações Subcelulares/metabolismo , Thlaspi/efeitos dos fármacos , Thlaspi/ultraestrutura , Vacúolos/metabolismo
15.
J Biol Chem ; 284(18): 12000-7, 2009 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-19254956

RESUMO

Calmodulin (CaM) is a highly conserved intracellular calcium sensor. In plants, CaM also appears to be present in the apoplasm, and application of exogenous CaM has been shown to influence a number of physiological functions as a polypeptide signal; however, the existence and localization of its corresponding apoplasmic binding sites remain controversial. To identify the site(s) of action, a CaM-conjugated quantum dot (QD) system was employed for single molecule level detection at the surface of plant cells. Using this approach, we show that QD-CaM binds selectively to sites on the outer surface of the plasma membrane, which was further confirmed by high resolution transmission electron microscopy. Measurements of Ca(2+) fluxes across the plasma membrane, using ion-selective microelectrodes, demonstrated that exogenous CaM induces a net influx into protoplasts. Consistent with these flux studies, calcium-green-dextran and FRET experiments confirmed that applied CaM/QD-CaM elicited an increase in cytoplasmic Ca(2+) levels. These results support the hypothesis that apoplasmic CaM can act as a signaling agent. These findings are discussed in terms of CaM acting as an apoplasmic peptide ligand to mediate transmembrane signaling in the plant kingdom.


Assuntos
Cálcio/metabolismo , Calmodulina/metabolismo , Membrana Celular/metabolismo , Lilium/metabolismo , Nicotiana/metabolismo , Proteínas de Plantas/metabolismo , Transdução de Sinais/fisiologia , Calmodulina/farmacologia , Membrana Celular/ultraestrutura , Lilium/ultraestrutura , Proteínas de Plantas/farmacologia , Protoplastos/metabolismo , Protoplastos/ultraestrutura , Pontos Quânticos , Transdução de Sinais/efeitos dos fármacos , Nicotiana/ultraestrutura
16.
J Gen Virol ; 89(Pt 8): 1811-1818, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18632951

RESUMO

Tomato spotted wilt virus (TSWV) particles are spherical and enveloped, an uncommon feature among plant infecting viruses. Previous studies have shown that virus particle formation involves the enwrapment of ribonucleoproteins with viral glycoprotein containing Golgi stacks. In this study, the localization and behaviour of the viral glycoproteins Gn and Gc were analysed, upon transient expression in plant protoplasts. When separately expressed, Gc was solely observed in the endoplasmic reticulum (ER), whereas Gn was found both within the ER and Golgi membranes. Upon co-expression, both glycoproteins were found at ER-export sites and ultimately at the Golgi complex, confirming the ability of Gn to rescue Gc from the ER, possibly due to heterodimerization. Interestingly, both Gc and Gn were shown to induce the deformation of ER and Golgi membranes, respectively, also observed upon co-expression of the two glycoproteins. The behaviour of both glycoproteins within the plant cell and the phenomenon of membrane deformation are discussed in light of the natural process of viral infection.


Assuntos
Retículo Endoplasmático/metabolismo , Glicoproteínas/metabolismo , Solanum lycopersicum/virologia , Tospovirus/patogenicidade , Proteínas Virais/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Membrana Celular/metabolismo , Membrana Celular/ultraestrutura , Retículo Endoplasmático/ultraestrutura , Glicoproteínas/genética , Complexo de Golgi/metabolismo , Complexo de Golgi/ultraestrutura , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Microscopia Eletrônica de Varredura , Precursores de Proteínas/genética , Precursores de Proteínas/metabolismo , Protoplastos/ultraestrutura , Protoplastos/virologia , Nicotiana/ultraestrutura , Nicotiana/virologia , Tospovirus/metabolismo , Proteínas Virais/genética
17.
Methods Mol Biol ; 451: 377-93, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18370269

RESUMO

In terms of functional genomics research, Nicotiana benthamiana, more so than other model plants, is highly amenable to high-throughput methods, especially those employing virus-induced gene silencing and agroinfiltration. Furthermore, through recent and ongoing sequencing projects, there are now upward of 18,000 unique N. benthamiana ESTs to support functional genomics research. Despite these advances, the cell biology of N. benthamiana itself, and in the context of virus infection, lags behind that of other model systems. Therefore, to meet the challenges of diverse cell biology studies that will be derived from ongoing functional genomics projects, a series of methods relevant to the characterization of membrane and protein dynamics in virus-infected cells are provided here. The data presented here were derived from our studies with plant rhabdoviruses. However, the employed techniques should be broadly applicable within the field of plant virology. We report here on the use of a novel series of binary vectors for the transient or stable expression of autofluorescent protein fusions in plants. Use of these vectors in conjunction with advanced microscopy techniques such as fluorescent recovery after photobleaching and total internal fluorescence microscopy, has revealed novel insight into the membrane and protein dynamics of virus-infected cells.


Assuntos
Caulimovirus/patogenicidade , Proteínas de Membrana/metabolismo , Doenças das Plantas/virologia , Proteínas de Plantas/metabolismo , Vírus de Plantas/patogenicidade , Clonagem Molecular , Etiquetas de Sequências Expressas , Genoma de Planta , Proteínas de Membrana/genética , Microscopia Confocal/métodos , Microscopia de Fluorescência , Modelos Biológicos , Proteínas de Plantas/genética , Reação em Cadeia da Polimerase , Protoplastos/ultraestrutura , Protoplastos/virologia , Nicotiana/genética
18.
Toxicol In Vitro ; 22(2): 328-37, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18083002

RESUMO

When tobacco BY-2 cells were treated with 60 microg/mL MC-RR for 5d, time-dependent effects of MC-RR on the cells were observed. Morphological changes such as abnormal elongation, evident chromatin condensation and margination, fragmentation of nucleus and formation of apoptotic-like bodies suggest that 60 microg/mL MC-RR induced rapid apoptosis in tobacco BY-2 cells. Moreover, there was a significant and rapid increase of ROS level before the loss of mitochondrial membrane potential (DeltaPsi(m)) and the onset of cell apoptosis. Ascorbic acid (AsA), a major primary antioxidant, prevented the increase of ROS generation, blocked the decrease in DeltaPsi(m) and subsequent cell apoptosis, indicating a critical role of ROS in serving as an important signaling molecule by causing a reduction of DeltaPsi(m) and MC-RR-induced tobacco BY-2 cell apoptosis. In addition, a specific mitochondrial permeability transition pores (PTP) inhibitor, cyclosporin A (CsA), significantly blocked the MC-RR-induced ROS formation, loss of DeltaPsi(m), as well as cell apoptosis when the cells were MC-RR stressed for 3d, suggesting that PTP is involved in 60 microg/mL MC-RR-induced tobacco cell apoptosis signalling process. Thus, we concluded that the mechanism of MC-RR-induced apoptosis signalling pathways in tobacco BY-2 cells involves not only the excess generation of ROS and oxidative stress, but also the opening of PTP inducing loss of mitochondrial membrane potential.


Assuntos
Apoptose/efeitos dos fármacos , Microcistinas/toxicidade , Mitocôndrias/metabolismo , Nicotiana/citologia , Espécies Reativas de Oxigênio/metabolismo , Divisão Celular/efeitos dos fármacos , Linhagem Celular , Células Cultivadas , Corantes Fluorescentes , Toxinas Marinhas , Microscopia Eletrônica de Transmissão , Microscopia de Fluorescência , Permeabilidade/efeitos dos fármacos , Protoplastos/efeitos dos fármacos , Protoplastos/ultraestrutura , Rodamina 123 , Fatores de Tempo , Nicotiana/ultraestrutura
19.
Protoplasma ; 230(3-4): 141-52, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17458629

RESUMO

The ability of plant cells to dedifferentiate represents an important survival strategy invoked in a range of situations from repair mechanisms following wounding to apomixis. Dedifferentiation requires that somatic cells reprogram and enter the cell division cycle. This in turn necessitates the accurate partitioning of nuclear content and organelles, such as chloroplasts, to daughter cells, thereby ensuring continuity of cellular information systems. The distribution of cytoplasm and its organelle content in mature plant cells is governed by a large, central vacuole, with connections between distant cortical and perinuclear cytoplasmic domains mediated by transvacuolar strands. Here we examined the changes to vacuolar architecture in Arabidopsis thaliana protoplasts expressing a green-fluorescent protein fusion to a delta-tonoplast-intrinsic protein (deltaTIP). We found that vacuolar architecture became increasingly intricate during protoplast culture with the development of numerous transvacuolar strands. The development of an intricate vacuolar architecture was an actin filament- and not microtubule-dependent process, as is the case in interphase plant cells. Furthermore, we show that myosin is required for this increased complexity of vacuolar architecture and the formation of subcortical actin filament arrays. Despite the likelihood that increased vacuolar invagination would allow better redistribution of cytoplasmic organelles, we found that repositioning of chloroplasts from cortical to perinuclear cytoplasm was not dependent on transvacuolar strands. Our findings indicate that the vacuole is a dynamic entity that develops a complex architecture before dedifferentiating plant cells enter cell division.


Assuntos
Citoesqueleto de Actina/metabolismo , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Divisão Celular/fisiologia , Protoplastos/metabolismo , Vacúolos/metabolismo , Actinas/metabolismo , Aquaporinas/metabolismo , Arabidopsis/ultraestrutura , Proteínas de Arabidopsis/metabolismo , Diferenciação Celular/fisiologia , Células Cultivadas , Cloroplastos/metabolismo , Cloroplastos/ultraestrutura , Proteínas de Fluorescência Verde/metabolismo , Miosinas/metabolismo , Protoplastos/ultraestrutura , Proteínas Recombinantes de Fusão/metabolismo , Regeneração/fisiologia , Vacúolos/ultraestrutura
20.
Autophagy ; 3(3): 215-21, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17224627

RESUMO

Mature plant cells have large vacuoles. But how these vacuoles are formed has not been fully understood. It has been reported that autophagy is involved in the genesis of plant vacuoles. Thus we examined whether autophagy occurs in the vacuole genesis of a plant cell model called miniprotoplasts, in which preexisting large vacuoles have been removed. We prepared miniprotoplasts from tobacco culture cells (BY-2) and observed the formation of vacuoles by light and electron microscopy. The miniprotoplasts had few vacuoles immediately after preparation, but had large vacuoles after 1 to 2 d. When the cysteine protease inhibitor E-64c or E-64d was added to culture media, almost all vacuoles formed contained materials of cytoplasmic origin. This result suggests that autophagy occurs together with the genesis of the vacuoles in miniprotoplasts. 3-Methyladenine and phosphatidylinositol 3-kinase inhibitors such as wortmannin and LY294002, all of which block starvation?induced autophagy in tobacco culture cells and constitutive autophagy in Arabidopsis root cells, did not affect the autophagy in miniprotoplasts. Thus the form of autophagy in miniprotoplasts is probably different from the form of autophagy that arises as a result of sucrose starvation and constitutive autophagy in root tip cells. The causal connection between autophagy and vacuole genesis in miniprotoplasts was not clarified in this study.


Assuntos
Autofagia , Nicotiana/citologia , Protoplastos/ultraestrutura , Vacúolos/metabolismo , Adenina/análogos & derivados , Adenina/farmacologia , Androstadienos/farmacologia , Autofagia/efeitos dos fármacos , Células Cultivadas , Cromonas/farmacologia , Inibidores de Cisteína Proteinase/farmacologia , Citoplasma/metabolismo , Leucina/análogos & derivados , Leucina/farmacologia , Morfolinas/farmacologia , Inibidores de Fosfoinositídeo-3 Quinase , Wortmanina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA