Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Photosynth Res ; 147(3): 345-358, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33528756

RESUMO

PAM fluorescence of leaves of cherry laurel (Prunus laurocerasus L.) was measured simultaneously in the spectral range below 700 nm (sw) and above 700 nm (lw). A high-sensitivity photodiode was employed to measure the low intensities of sw fluorescence. Photosystem II (PSII) performance was analyzed by the saturation pulse method during a light response curve with subsequent dark phase. The sw fluorescence was more variable, resulting in higher PSII photochemical yields compared to lw fluorescence. The variations between sw and lw data were explained by different levels of photosystem I (PSI) fluorescence: the contribution of PSI fluorescence to minimum fluorescence (F0) was calculated to be 14% at sw wavelengths and 45% at lw wavelengths. With the results obtained, the validity of an earlier method for the quantification of PSI fluorescence (Genty et al. in Photosynth Res 26:133-139, 1990, https://doi.org/10.1007/BF00047085 ) was reconsidered. After subtracting PSI fluorescence from all fluorescence levels, the maximum PSII photochemical yield (FV/FM) in the sw range was 0.862 and it was 0.883 in the lw range. The lower FV/FM at sw wavelengths was suggested to arise from inactive PSII reaction centers in the outermost leaf layers. Polyphasic fluorescence transients (OJIP or OI1I2P kinetics) were recorded simultaneously at sw and lw wavelengths: the slowest phase of the kinetics (IP or I2P) corresponded to 11% and 13% of total variable sw and lw fluorescence, respectively. The idea that this difference is due to variable PSI fluorescence is critically discussed. Potential future applications of simultaneously recording fluorescence in two spectral windows include studies of PSI non-photochemical quenching and state I-state II transitions, as well as measuring the fluorescence from pH-sensitive dyes simultaneously with chlorophyll fluorescence.


Assuntos
Clorofila/fisiologia , Luz , Folhas de Planta/fisiologia , Folhas de Planta/efeitos da radiação , Prunus/fisiologia , Prunus/efeitos da radiação , Fluorescência , Fotossíntese/fisiologia , Complexo de Proteína do Fotossistema I/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo
2.
Anal Bioanal Chem ; 398(2): 943-53, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20623272

RESUMO

The effects of high dose γ-irradiation on six herbal medicines were investigated using gas chromatography-mass spectrometry (GC/MS) and high-performance liquid chromatography (HPLC). Herbal medicines were irradiated at 0-50 kGy with (60)Co irradiator. HPLC was used to quantify changes of major components including glycyrrhizin, cinnamic acid, poncirin, hesperidin, berberine, and amygdalin in licorice, cinnamon bark, poncirin immature fruit, citrus unshiu peel, coptis rhizome, and apricot kernel. No significant differences were found between gamma-irradiated and non-irradiated samples with regard to the amounts of glycyrrhizin, berberine, and amygdalin. However, the contents of cinnamic acid, poncirin, and hesperidin were increased after irradiation. Volatile compounds were analyzed by GC/MS. The relative proportion of ketone in licorice was diminished after irradiation. The relative amount of hydrocarbons in irradiated cinnamon bark and apricot kernel was higher than that in non-irradiated samples. Therefore, ketone in licorice and hydrocarbons in cinnamon bark and apricot kernel can be considered radiolytic markers. Three unsaturated hydrocarbons, i.e., 1,7,10-hexadecatriene, 6,9-heptadecadiene, and 8-heptadecene, were detected only in apricot kernels irradiated at 25 and 50 kGy. These three hydrocarbons could be used as radiolytic markers to distinguish between irradiated (>25 kGy) and non-irradiated apricot kernels.


Assuntos
Cromatografia Gasosa-Espectrometria de Massas , Plantas Medicinais/química , Plantas Medicinais/efeitos da radiação , Cromatografia Líquida de Alta Pressão/métodos , Cinnamomum zeylanicum/química , Cinnamomum zeylanicum/efeitos da radiação , Citrus/química , Citrus/efeitos da radiação , Coptis/química , Coptis/efeitos da radiação , Flavonoides , Raios gama , Cromatografia Gasosa-Espectrometria de Massas/métodos , Glycyrrhiza/química , Glycyrrhiza/efeitos da radiação , Estruturas Vegetais/química , Estruturas Vegetais/efeitos da radiação , Poncirus/química , Poncirus/efeitos da radiação , Prunus/química , Prunus/efeitos da radiação , Compostos Orgânicos Voláteis/análise
3.
J Exp Bot ; 61(4): 1177-92, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20124356

RESUMO

The productivity of fruit trees is a linear function of the light intercepted, although the relationship is less tight when greater than 50% of available light is intercepted. This paper investigates the management of light energy in peach using the measurement of whole-tree light interception and gas exchange, along with the absorbed energy partitioning at the leaf level by concurrent measurements of gas exchange and chlorophyll fluorescence. These measurements were performed on trees of a custom-built 'asymmetric' orchard. Whole-tree gas exchange for north-south, vertical canopies (C) was similar to that for canopies intercepting the highest irradiance in the morning hours (W), but trees receiving the highest irradiance in the afternoon (E) had the highest net photosynthesis and transpiration while maintaining a water use efficiency (WUE) comparable to the other treatments. In the W trees, 29% and 8% more photosystems were damaged than in C and E trees, respectively. The quenching partitioning revealed that the non-photochemical quenching (NPQ) played the most important role in excess energy dissipation, but it was not fully active at low irradiance, possibly due to a sub-optimal trans-thylakoid DeltapH. The non-net carboxylative mechanisms (NC) appeared to be the main photoprotective mechanisms at low irradiance levels and, probably, they could facilitate the establishment of a trans-thylakoid DeltapH more appropriate for NPQ. These findings support the conclusion that irradiance impinging on leaves may be excessive and can cause photodamage, whose repair requires energy in the form of carbohydrates that are thereby diverted from tree growth and productivity.


Assuntos
Gases/metabolismo , Prunus/metabolismo , Prunus/efeitos da radiação , Dióxido de Carbono/metabolismo , Gases/química , Cinética , Luz , Fotossíntese , Folhas de Planta/química , Folhas de Planta/metabolismo , Folhas de Planta/efeitos da radiação , Prunus/química
4.
J Agric Food Chem ; 57(2): 724-34, 2009 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-19090764

RESUMO

The fruits of Rosaceae species may frequently induce allergic reactions in both adults and children, especially in the Mediterranean area. In peach, true allergens and cross-reactive proteins may cause hypersensitive reactions involving a wide diversity of symptoms. Three known classes of allergenic proteins, namely, Pru p 1, Pru p 3, and Pru p 4, have been reported to be mostly involved, but an exhaustive survey of the proteins determining the overall allergenic potential, their biological functions, and the factors affecting the expression of the related genes is still missing. In the present study, the expression profiles of some selected genes encoding peach allergen isoforms were studied during fruit growth and development and upon different fruit load and light radiation regimens. The results indicate that the majority of allergen-encoding genes are expressed at their maximum during the ripening stage, therefore representing a potential risk for peach consumers. Nevertheless, enhancing the light radiation and decreasing the fruit load achieved a reduction of the transcription rate of most genes and a possible decrease of the overall allergenic potential at harvest. According to these data, new growing practices could be set up to obtain hypoallergenic peach fruits and eventually combined with the cultivation of hypoallergenic genotypes to obtain a significant reduction of the allergenic potential.


Assuntos
Antígenos de Plantas/genética , Regulação da Expressão Gênica no Desenvolvimento/efeitos da radiação , Proteínas de Plantas/genética , Prunus/imunologia , Prunus/efeitos da radiação , Sequência de Aminoácidos , Antígenos de Plantas/química , Antígenos de Plantas/imunologia , Hipersensibilidade Alimentar/imunologia , Frutas/genética , Frutas/crescimento & desenvolvimento , Frutas/imunologia , Frutas/efeitos da radiação , Humanos , Dados de Sequência Molecular , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/imunologia , Prunus/genética , Prunus/crescimento & desenvolvimento , Alinhamento de Sequência
5.
Ann Bot ; 99(2): 255-63, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17138580

RESUMO

BACKGROUND AND AIMS: Kaolin applied as a suspension to plant canopies forms a film on leaves that increases reflection and reduces absorption of light. Photosynthesis of individual leaves is decreased while the photosynthesis of the whole canopy remains unaffected or even increases. This may result from a better distribution of light within the canopy following kaolin application, but this explanation has not been tested. The objective of this work was to study the effects of kaolin application on light distribution and absorption within tree canopies and, ultimately, on canopy photosynthesis and radiation use efficiency. METHODS: Photosynthetically active radiation (PAR) incident on individual leaves within the canopy of almond (Prunus dulcis) and walnut (Juglans regia) trees was measured before and after kaolin application in order to study PAR distribution within the canopy. The PAR incident on, and reflected and transmitted by, the canopy was measured on the same day for kaolin-sprayed and control trees in order to calculate canopy PAR absorption. These data were then used to model canopy photosynthesis and radiation use efficiency by a simple method proposed in previous work, based on the photosynthetic response to incident PAR of a top-canopy leaf. KEY RESULTS: Kaolin increased incident PAR on surfaces of inner-canopy leaves, although there was an estimated 20 % loss in PAR reaching the photosynthetic apparatus, due to increased reflection. Assuming a 20 % loss of PAR, modelled photosynthesis and photosynthetic radiation use efficiency (PRUE) of kaolin-coated leaves decreased by only 6.3 %. This was due to (1) more beneficial PAR distribution within the kaolin-sprayed canopy, and (2) with decreasing PAR, leaf photosynthesis decreases less than proportionally, due to the curvature of the photosynthesis response-curve to PAR. The relatively small loss in canopy PRUE (per unit of incident PAR), coupled with the increased incident PAR on the leaf surface on inner-canopy leaves, resulted in an estimated increase in modelled photosynthesis of the canopy (+9 % in both walnut and almond). The small loss in PRUE (per unit of incident PAR) resulted in an increase in radiation use efficiency per unit of absorbed PAR, which more than compensated for the minor (7 %) reduction in canopy PAR absorption. CONCLUSIONS: The results explain the apparently contradictory findings in the literature of positive or no effects of kaolin applications on canopy photosynthesis and yield, despite the decrease in photosynthesis by individual leaves when measured at the same PAR.


Assuntos
Juglans/efeitos dos fármacos , Juglans/efeitos da radiação , Caulim/farmacologia , Luz , Fotossíntese/efeitos dos fármacos , Fotossíntese/efeitos da radiação , Prunus/efeitos dos fármacos , Prunus/efeitos da radiação , Juglans/metabolismo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Folhas de Planta/efeitos da radiação , Prunus/metabolismo
6.
Biochim Biophys Acta ; 1657(1): 33-46, 2004 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-15238210

RESUMO

The relationship between the fluorescence lifetime (tau) and yield (Phi) obtained in phase and modulation fluorometry at 54 MHz during the chlorophyll fluorescence induction in dark-adapted leaves under low actinic light has been investigated. Three typical phases have been identified: (i) linear during the OI photochemical rise, (ii) convex curvature during the subsequent IP thermal rise, and (iii) linear during the PS slow decay. A similar relationship has been obtained in the fluorescence induction for the fluorescence yield measured at 685 nm plotted versus the fluorescence yield measured at 735 nm. A spectrally resolved analysis shows that the curvature of the tau-Phi relationship is not due to chlorophyll fluorescence reabsorption effects. Several other hypotheses are discussed and we conclude that the curvature of the tau-Phi relationship is due to a variable and transitory nonphotochemical quenching. We tentatively propose that this quenching results from a conformational change of a pigment-protein complex of Photosystem II core antenna during the IP phase and could explain both spectral and temporal transitory changes of the fluorescence. A variable blue shift of the 685 nm peak of the fluorescence spectrum during the IP phase has been observed, supporting this hypothesis.


Assuntos
Clorofila/metabolismo , Folhas de Planta/metabolismo , Folhas de Planta/efeitos da radiação , Espectrometria de Fluorescência/métodos , Adaptação Fisiológica/fisiologia , Adaptação Fisiológica/efeitos da radiação , Clorofila A , Escuridão , Hordeum/metabolismo , Hordeum/efeitos da radiação , Cinética , Luz , Pisum sativum/metabolismo , Pisum sativum/efeitos da radiação , Prunus/metabolismo , Prunus/efeitos da radiação , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Espectrometria de Fluorescência/instrumentação , Estatística como Assunto , Temperatura , Nicotiana/metabolismo , Nicotiana/efeitos da radiação
7.
Ann Bot ; 93(5): 567-74, 2004 May.
Artigo em Inglês | MEDLINE | ID: mdl-15044212

RESUMO

BACKGROUND AND AIMS: Photosynthetic radiation use efficiency (PhRUE) over the course of a day has been shown to be constant for leaves throughout a general canopy where nitrogen content (and thus photosynthetic properties) of leaves is distributed in relation to the light gradient. It has been suggested that this daily PhRUE can be calculated simply from the photosynthetic properties of a leaf at the top of the canopy and from the PAR incident on the canopy, which can be obtained from weather-station data. The objective of this study was to investigate whether this simple method allows estimation of PhRUE of different crops and with different daily incident PAR, and also during the growing season. METHODS: The PhRUE calculated with this simple method was compared with that calculated with a more detailed model, for different days in May, June and July in California, on almond (Prunus dulcis) and walnut (Juglans regia) trees. Daily net photosynthesis of 50 individual leaves was calculated as the daylight integral of the instantaneous photosynthesis. The latter was estimated for each leaf from its photosynthetic response to PAR and from the PAR incident on the leaf during the day. KEY RESULTS: Daily photosynthesis of individual leaves of both species was linearly related to the daily PAR incident on the leaves (which implies constant PhRUE throughout the canopy), but the slope (i.e. the PhRUE) differed between the species, over the growing season due to changes in photosynthetic properties of the leaves, and with differences in daily incident PAR. When PhRUE was estimated from the photosynthetic light response curve of a leaf at the top of the canopy and from the incident radiation above the canopy, obtained from weather-station data, the values were within 5 % of those calculated with the more detailed model, except in five out of 34 cases. CONCLUSIONS: The simple method of estimating PhRUE is valuable as it simplifies calculation of canopy photosynthesis to a multiplication between the PAR intercepted by the canopy, which can be obtained with remote sensing, and the PhRUE calculated from incident PAR, obtained from standard weather-station data, and from the photosynthetic properties of leaves at the top of the canopy. The latter properties are the sole crop parameters needed. While being simple, this method describes the differences in PhRUE related to crop, season, nutrient status and daily incident PAR.


Assuntos
Fotossíntese/fisiologia , Folhas de Planta/efeitos da radiação , Juglans/fisiologia , Juglans/efeitos da radiação , Luz , Nitrogênio/metabolismo , Prunus/fisiologia , Prunus/efeitos da radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA