RESUMO
BACKGROUND: Ubiquitin ligases (E3) are the enzymes in the ubiquitin/26S proteasome pathway responsible for targeting proteins to the degradation pathway and play major roles in multiple biological activities. However, the E3 family and their functions are yet to be identified in the fruit of peach. RESULTS: In this study, genome-wide identification, classification and characterization of the E3 ligase genes within the genome of peach (Prunus persica) was carried out. In total, 765 E3 (PpE3) ligase genes were identified in the peach genome. The PpE3 ligase genes were divided into eight subfamilies according to the presence of known functional domains. The RBX subfamily was not detected in peach. The PpE3 ligase genes were not randomly distributed among the 8 chromosomes, with a greater concentration on the longer chromosomes. The primary mode of gene duplication of the PpE3 ligase genes was dispersed gene duplication (DSD). Four subgroups of the BTB subfamily never characterized before were newly identified in peach, namely BTBAND, BTBBL, BTBP and BTBAN. The expression patterns of the identified E3 ligase genes in two peach varieties that display different types of fruit softening (melting flesh, MF, and stony hard, SH) were analyzed at 4 different stages of ripening using Illumina technology. Among the 765 PpE3 ligase genes, 515 (67.3%) were expressed (FPKM > 1) in the fruit of either MF or SH during fruit ripening. In same-stage comparisons, 231 differentially expressed genes (DEGs) were identified between the two peach cultivars. The number of DEGs in each subfamily varied. Most DEGs were members of the BTB, F-box, U-box and RING subfamilies. PpE3 ligase genes predicted to be involved in ethylene, auxin, or ABA synthesis or signaling and DNA methylation were differentially regulated. Eight PpE3 ligase genes with possible roles in peach flesh texture and fruit ripening were discussed. CONCLUSIONS: The results of this study provide useful information for further understanding the functional roles of the ubiquitin ligase genes in peach. The findings also provide the first clues that E3 ligase genes may function in the regulation of peach ripening.
Assuntos
Frutas/enzimologia , Frutas/genética , Prunus persica/enzimologia , Prunus persica/genética , Ubiquitina-Proteína Ligases/genética , Ácido Abscísico/metabolismo , Cromossomos de Plantas , Etilenos/metabolismo , Frutas/crescimento & desenvolvimento , Duplicação Gênica , Perfilação da Expressão Gênica , Genoma de Planta , Ácidos Indolacéticos/metabolismo , Filogenia , Prunus persica/classificação , Prunus persica/crescimento & desenvolvimento , Ubiquitina-Proteína Ligases/metabolismoRESUMO
BACKGROUND: Sugars and antioxidants in peaches contribute to fresh fruit quality and nutrition; however, information on widely grown cultivars and changes induced after peach jam preparation is limited. In the present study, colour, sugars and antioxidant parameters were determined in fruit and jam from 45 peach and nectarine cultivars. RESULTS: Pronounced varietal differences were found in sorbitol (42-fold range), total phenolics (TPs) and antioxidant capacities (10- to 19-fold range). Sorbitol levels were greater in non-melting peach, followed by nectarine, and lower values were found in melting peach cultivars. Late-harvested peach and nectarine cultivars tended to have a higher soluble solid content and antioxidant potential. Cultivars with relatively high antioxidant contents produced darker and redder jams, containing more antioxidants, than the jam or the fruit from the other cultivars. Jam-TPs were reduced by 48% compared to fruit-TPs, with greater reduction being noted in high antioxidant cultivars. The most favorable jam organoleptic characteristics were found in 'Morsiani 90', 'Amiga', 'Romea' and 'Alirosada', as well as in non-melting compared to melting peach cultivars. CONCLUSION: The best cultivars for each fruit flesh type and jam were identified. Peach jam could be an alternative substitute when fresh fruit is not available and when it is prepared with high antioxidant cultivars. © 2016 Society of Chemical Industry.