Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Food Chem ; 458: 140218, 2024 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-38964104

RESUMO

Carthamus tinctorius L. (Safflower) is extensively used as a functional food and herbal medicine, with its application closely associated with hydroxysafflor yellow A (HSYA). However, the low oral bioavailability of HSYA in safflower extract (SFE) limits its health benefits and application. Our study found that co-administration of 250, 330, and 400 mg/kg peach kernel oil (PKO) increased the oral bioavailability of HSYA in SFE by 1.99-, 2.11-, and 2.49-fold, respectively. The enhanced bioavailability is attributed to improved lipid solubility and intestinal permeability of HSYA in SFE due to PKO. PKO is believed to modify membrane fluidity and tight junctions, increase paracellular penetration, and inhibit the expression and function of P-glycoprotein, enhancing the transcellular transport of substrates. These mechanisms suggest that PKO is an effective absorption enhancer. Our findings provide valuable insights for developing functional foods with improved bioavailability.


Assuntos
Disponibilidade Biológica , Carthamus tinctorius , Chalcona , Extratos Vegetais , Prunus persica , Quinonas , Chalcona/química , Chalcona/análogos & derivados , Chalcona/farmacologia , Extratos Vegetais/química , Extratos Vegetais/administração & dosagem , Extratos Vegetais/metabolismo , Quinonas/química , Quinonas/metabolismo , Carthamus tinctorius/química , Animais , Prunus persica/química , Prunus persica/metabolismo , Humanos , Óleos de Plantas/química , Masculino , Ratos Sprague-Dawley , Ratos , Absorção Intestinal/efeitos dos fármacos
2.
Plant Physiol Biochem ; 212: 108761, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38805756

RESUMO

Abnormal pollination from chance events or hybridization between species leads to unusual embryo development, resulting in fruit abortion. To elucidate the mechanism underlying fruit abortion, we conducted a comprehensive analysis of the transcriptome and hormone profiles in aborting fruits (AF) derived from an interspecific cross between the peach cultivar 'Huangjinmi 3' and the Prunus mume cultivar 'Jiangmei', as well as in normal-seeded fruits (NF) resulting from an intraspecific cross of 'Huangjinmi 3' with the 'Manyuanhong' peach cultivars. Growth of AF was inhibited during the exponential growth phase, with up-regulation of oxidative stress related genes and down-regulation of DNA replication and cell cycle genes. Accumulation of the tissue growth-related hormones auxin and cytokinin was reduced in AF, while levels of the growth inhibiting hormone abscisic acid (ABA) were higher compared to NF. The increased ABA concentration aligned with down-regulation of the ABA catabolism gene CYP707A2, which encodes abscisic acid 8'-hydroxylase. Correlation analysis showed ABA could explain the maximum proportion of differently expressed genes between NF and AF. We also showed that expression of KIRA1-LIKE1 (PpeKIL1), a peach ortholog of the Arabidopsis KIRA1 gene, was up-regulated in AF. PpeKIL1 promotes senescence or delays normal growth in tobacco and Arabidopsis, and its promoter activity increases with exogenous ABA treatment. Our study demonstrates a candidate mechanism where ABA induces expression of PpeKIL1, which further blocks normal fruit growth and triggers fruit abscission.


Assuntos
Ácido Abscísico , Frutas , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas , Prunus persica , Ácido Abscísico/metabolismo , Ácido Abscísico/farmacologia , Frutas/crescimento & desenvolvimento , Frutas/genética , Frutas/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Prunus persica/genética , Prunus persica/metabolismo , Prunus persica/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Reguladores de Crescimento de Plantas/metabolismo
3.
Plant Physiol ; 194(4): 2472-2490, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38217865

RESUMO

LATERAL ORGAN BOUNDARIES DOMAIN/ASYMMETRIC LEAVES2-LIKEs (LBDs/ASLs) are plant-specific transcription factors that function downstream of auxin-regulated lateral root (LR) formation. Our previous research found that PpLBD16 positively regulates peach (Prunus persica) LR formation. However, the downstream regulatory network and target genes of PpLBD16 are still largely unknown. Here, we constructed a PpLBD16 homologous overexpression line and a PpLBD16 silenced line. We found that overexpressing PpLBD16 promoted peach root initiation, while silencing PpLBD16 inhibited peach root formation. Through RNA sequencing (RNA-seq) analysis of roots from PpLBD16 overexpression and silenced lines, we discovered that genes positively regulated by PpLBD16 were closely related to cell wall synthesis and degradation, ion/substance transport, and ion binding and homeostasis. To further detect the binding motifs and potential target genes of PpLBD16, we performed DNA-affinity purification sequencing (DAP-seq) analysis in vitro. PpLBD16 preferentially bound to CCNGAAANNNNGG (MEME-1), [C/T]TTCT[C/T][T/C] (MEME-2), and GCGGCGG (ABR1) motifs. By combined analysis of RNA-seq and DAP-seq data, we screened candidate target genes for PpLBD16. We demonstrated that PpLBD16 bound and activated the cell wall modification-related genes EXPANSIN-B2 (PpEXPB2) and SUBTILISIN-LIKE PROTEASE 1.7 (PpSBT1.7), the ion transport-related gene CYCLIC NUCLEOTIDE-GATED ION CHANNEL 1 (PpCNGC1) and the polyphenol oxidase (PPO)-encoding gene PpPPO, thereby controlling peach root organogenesis and promoting LR formation. Moreover, our results displayed that PpLBD16 and its target genes are involved in peach LR primordia development. Overall, this work reveals the downstream regulatory network and target genes of PpLBD16, providing insights into the molecular network of LBD16-mediated LR development.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Prunus persica , Fatores de Transcrição/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Prunus persica/genética , Prunus persica/metabolismo , Regulação da Expressão Gênica de Plantas , Transporte de Íons , Parede Celular/genética , Parede Celular/metabolismo , Raízes de Plantas/metabolismo , Ácidos Indolacéticos/metabolismo
4.
Int J Phytoremediation ; 26(4): 569-578, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37684742

RESUMO

To promote the selenium (Se) uptakes in fruit trees under Se-contaminated soil, the effects of water extract of Fagopyrum dibotrys (D. Don) Hara straw on the Se accumulation in peach seedlings under selenium-contaminated soil were studied. The results showed that the root biomass, chlorophyll content, activities of antioxidant enzymes, and soluble protein content of peach seedlings were increased by the F. dibotrys straw extract. The different forms of Se (total Se, inorganic Se, and organic Se) were also increased in peach seedlings following treatment with the F. dibotrys straw extract. The highest total shoot Se content was treated by the 300-fold dilution of F. dibotrys straw, which was 30.87% higher than the control. The F. dibotrys straw extract also increased the activities of adenosine triphosphate sulfurase (ATPS), and adenosine 5'-phosphosulfate reductase (APR) in peach seedlings, but decreased the activity of serine acetyltransferase (SAT). Additionally, correlation and grey relational analyses revealed that chlorophyll a content, APR activity, and root biomass were closely associated with the total shoot Se content. Overall, this study shows that the water extract of F. dibotrys straw can promote Se uptake in peach seedlings, and 300-fold dilution is the most suitable concentration.


The water extract of Fagopyrum dibotrys (D. Don) Hara straw promoted the selenium (Se) uptake in peach seedlings under selenium-contaminated soil. The concentration of F. dibotrys straw extract showed a quadratic polynomial regression relationship with the total root and shoot Se. Furthermore, chlorophyll a content, APR activity, and root biomass were closely associated with the total shoot Se. This study shows that water extract of F. dibotrys straw can promote Se uptake in peach seedlings, and 300-fold dilution is the most suitable concentration.


Assuntos
Fagopyrum , Prunus persica , Selênio , Biodegradação Ambiental , Clorofila A/análise , Fagopyrum/metabolismo , Prunus persica/metabolismo , Plântula/química , Selênio/metabolismo , Solo , Água/análise
5.
Int J Mol Sci ; 24(22)2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-38003323

RESUMO

The yellowing of leaves due to iron deficiency is a prevalent issue in peach production. Although the capacity of exogenous melatonin (MT) to promote iron uptake in peach plants has been demonstrated, its underlying mechanism remains ambiguous. This investigation was carried out to further study the effects of exogenous MT on the iron absorption and transport mechanisms of peach (Prunus persica) plants under iron-deficient conditions through transcriptome sequencing. Under both iron-deficient and iron-supplied conditions, MT increased the content of photosynthetic pigments in peach leaves and decreased the concentrations of pectin, hemicellulose, cell wall iron, pectin iron, and hemicellulose iron in peach plants to a certain extent. These effects stemmed from the inhibitory effect of MT on the polygalacturonase (PG), cellulase (Cx), phenylalanine ammonia-lyase (PAL), and cinnamoyl-coenzyme A reductase (CCR) activities, as well as the promotional effect of MT on the cinnamic acid-4-hydroxylase (C4H) activity, facilitating the reactivation of cell wall component iron. Additionally, MT increased the ferric-chelate reductase (FCR) activity and the contents of total and active iron in various organs of peach plants under iron-deficient and iron-supplied conditions. Transcriptome analysis revealed that the differentially expressed genes (DEGs) linked to iron metabolism in MT-treated peach plants were primarily enriched in the aminoacyl-tRNA biosynthesis pathway under iron-deficient conditions. Furthermore, MT influenced the expression levels of these DEGs, regulating cell wall metabolism, lignin metabolism, and iron translocation within peach plants. Overall, the application of exogenous MT promotes the reactivation and reutilization of iron in peach plants.


Assuntos
Deficiências de Ferro , Melatonina , Prunus persica , Ferro/metabolismo , Prunus persica/metabolismo , Melatonina/farmacologia , Pectinas/metabolismo
6.
Plant Physiol Biochem ; 204: 108092, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37852068

RESUMO

In this study, we compared sorbitol metabolism, energy metabolism, and CI development in yellow peach fruit at 1 °C (less susceptible to CI) and 8 °C (more susceptible to CI) storage to elucidate potential connections between them. The results indicated that storage at 1 °C effectively maintained the textural quality of yellow peach fruit and delayed the onset of CI by 12 days compared to 8 °C. This positive effect might be attributable to 1 °C storage maintaining higher sorbitol content throughout the storage duration, thus sustaining the higher adenosine triphosphate (ATP) level and energy charge. The regulation of sorbitol accumulation by 1 °C storage was closely linked to the metabolic activity of sorbitol, which stimulated sorbitol synthesis by enhancing sorbitol-6-phosphate dehydrogenase (S6PDH) activity after 12 days while suppressing sorbitol degradation via decreased sorbitol oxidase (SOX) and NAD+-sorbitol dehydrogenase (NAD+-SDH) activities before 24 days. In addition, the notable up-regulation in the NAD+-SDH activity in the late storage period promoted the conversion of sorbitol to fructose and glucose under 1 °C storage, thereby providing ample energy substrate for ATP generation. Moreover, sorbitol acts as a vital signaling molecule, and substantially up-regulated expressions of sorbitol transporters genes (PpeSOT3, PpeSOT5, and PpeSOT7) were observed in fruit stored at 1 °C, which might promote sorbitol transport and improve cold tolerance in peach fruit. Taken together, these findings suggested that 1 °C storage delayed CI by enhancing sorbitol metabolism and transporter activity, promoting sorbitol accumulation, and finally elevating the energy status in yellow peach fruit.


Assuntos
Prunus persica , Prunus persica/metabolismo , NAD/metabolismo , Trifosfato de Adenosina/metabolismo , Metabolismo Energético/fisiologia , Frutas/metabolismo , Sorbitol/metabolismo , Temperatura Baixa
7.
J Food Sci ; 88(11): 4529-4543, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37872835

RESUMO

Foliar spraying to improve the quality of fruits is a general approach nowadays. In this study, 10 ppm nano-selenium (nano-Se) diluted with distilled water was sprayed on peach leaves every 10 days for a total of 7 sprays during the fruit set period. And then their fruit quality was compared with that of control group. It was found that the firmness, soluble solid concentration, total phenol, and proanthocyanidin content of the peaches were raised after the nano-Se treatment. Moreover, the ascorbic acid glutathione loop (ASA-GSH loop) was fully activated in the nano-Se treated group, and the associated antioxidant capacity and enzyme activity were significantly increased. Metabolomics revealed that nano-Se could upregulate some metabolites, such as phenylalanine, naringenin, and pinocembrin, to fully activate the metabolism of phenylpropanoids. Further, based on transcriptomics, nano-Se treatment was found to affect fruit quality by regulating genes related to phenylpropanoid metabolism, such as arogenate/prephenate dehydratase (ADT), genes related to abscisic acid metabolism such as (+)-abscisic acid 8'-hydroxylase (CYP707A), and some transcription factors such as MYB. Based on the comprehensive analysis of physicochemical indicators, metabolomics, and transcriptomics, it was found that nano-Se improved fruit quality by activating phenylpropanoid metabolism and enhancing antioxidant capacity. This work provides insights into the mechanism of the effect of nano-Se fertilizer on peach fruit quality. PRACTICAL APPLICATION: The firmness and soluble solid concentration of peaches are higher after nano-Se treatment, which is more in line with people's demand for hard soluble peaches like "Yingzui." The antioxidant capacity, antioxidant substance content, and antioxidant enzyme activity of nano-Se-treated peaches are higher, with potential storage resistance and health effects on human body. The mechanism of nano-Se affecting peach quality was analyzed by metabolomics and transcriptomics, which is a reference and guide for the research and application of nano-Se.


Assuntos
Prunus persica , Selênio , Humanos , Antioxidantes/análise , Selênio/análise , Prunus persica/genética , Prunus persica/metabolismo , Transcriptoma , Ácido Ascórbico/análise , Frutas/química
8.
Molecules ; 28(10)2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-37241845

RESUMO

Exposure to ultraviolet light can cause oxidative damage and accelerate skin aging and is one of the main causes of skin aging. Peach gum polysaccharide (PG) is a natural edible plant component that has many biological activities, such as regulating blood glucose and blood lipids and improving colitis, as well as antioxidant and anticancer properties. However, there are few reports on the antiphotoaging effect of peach gum polysaccharide. Therefore, in this paper, we study the basic composition of the raw material peach gum polysaccharide and its ability to improve UVB-induced skin photoaging damage in vivo and in vitro. The results show that peach gum polysaccharide is mainly composed of mannose, glucuronic acid, galactose, xylose, and arabinose, and its molecular weight (Mw) is 4.10 × 106 g/mol. The results of the in vitro cell experiments show that PG could significantly alleviate UVB-induced apoptosis of human skin keratinocytes, promote cell growth repair, reduce the expression of intracellular oxidative factors and matrix metal collagenase, and improve the extent of oxidative stress repair. Moreover, the results from the in vivo animal experiments showed that PG could not only effectively improve the phenotype of UVB-induced photoaged skin in model mice but also significantly improve their oxidative stress status, regulate the contents of ROS and the levels of SOD and CAT, and repair the oxidative skin damage induced by UVB in vivo. In addition, PG improved UVB-induced photoaging-mediated collagen degradation in mice by inhibiting the secretion of matrix metalloproteinases. The above results indicate that peach gum polysaccharide has the ability to repair UVB-induced photoaging and may be used as a potential drug and antioxidant functional food to resist photoaging in the future.


Assuntos
Prunus persica , Envelhecimento da Pele , Camundongos , Humanos , Animais , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Prunus persica/metabolismo , Pele/metabolismo , Estresse Oxidativo , Polissacarídeos/farmacologia , Polissacarídeos/metabolismo , Raios Ultravioleta/efeitos adversos , Fibroblastos
9.
Plant Physiol ; 192(4): 3134-3151, 2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37165714

RESUMO

Gummosis is 1 of the most common and destructive diseases threatening global peach (Prunus persica) production. Our previous studies have revealed that ethylene and methyl jasmonate enhance peach susceptibility to Lasiodiplodia theobromae, a virulent pathogen inducing gummosis; however, the underlying molecular mechanisms remain obscure. Here, 2 ethylene response factors (ERFs), PpERF98 and PpERF1, were identified as negative regulators in peach response to L. theobromae infection. Expression of 2 putative paralogs, PpERF98-1/2, was dramatically induced by ethylene and L. theobromae treatments and accumulated highly in the gummosis-sensitive cultivar. Silencing of PpERF98-1/2 increased salicylic acid (SA) content and pathogenesis-related genes PpPR1 and PpPR2 transcripts, conferring peach resistance to L. theobromae, whereas peach and tomato (Solanum lycopersicum) plants overexpressing either of PpERF98-1/2 showed opposite changes. Also, jasmonic acid markedly accumulated in PpERF98-1/2-silenced plants, but reduction in PpPR3, PpPR4, and PpCHI (Chitinase) transcripts indicated a blocked signaling pathway. PpERF98-1 and 2 were further demonstrated to directly bind the promoters of 2 putative paralogous PpERF1 genes and to activate the ERF branch of the jasmonate/ethylene signaling pathway, thus attenuating SA-dependent defenses. The lesion phenotypes of peach seedlings overexpressing PpERF1-1/2 and PpERF98-1/2 were similar. Furthermore, PpERF98-1/2 formed homodimers/heterodimers and interacted with the 2 PpERF1 proteins to amplify the jasmonate/ethylene signaling pathway, as larger lesions were observed in peach plants cooverexpressing PpERF98 with PpERF1 relative to individual PpERF98 overexpression. Overall, our work deciphers an important regulatory network of ethylene-mediated peach susceptibility to L. theobromae based on a PpERF98-PpERF1 transcriptional cascade, which could be utilized as a potential target for genetic engineering to augment protection against L. theobromae-mediated diseases in crops and trees.


Assuntos
Prunus persica , Prunus persica/genética , Prunus persica/metabolismo , Etilenos/metabolismo , Plantas
10.
Tree Physiol ; 43(7): 1265-1283, 2023 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-36905330

RESUMO

Waterlogging is a major abiotic stress that plants encounter as a result of climate change impacts. Peach is very sensitive to hypoxia during waterlogging, which causes poor tree vigor and huge economic losses. The molecular mechanism underlying the peach response to waterlogging and reoxygenation remains unclear. Here, the physiological and molecular responses of 3-week-old peach seedlings under waterlogged and recovery conditions were comprehensively analyzed. As a result, waterlogging significantly reduced plant height and biomass with inhibition of root growth when compared with control and reoxygenation. Similar results were observed for photosynthetic activities and gaseous exchange parameters. Waterlogging increased lipid peroxidation, hydrogen peroxide, proline, glutamic acid and glutathione contents, while superoxide dismutase, peroxidases and catalase activities were decreased. The glucose and fructose contents were accumulated, contrary to sucrose which was reduced remarkably throughout the stress periods. The level of endogenous indole acetic acid (IAA) was increased in waterlogging but decreased after reoxygenation. However, the change trends of jasmonic acid (JA), cytokinins and abscisic acid (ABA) levels were opposite to IAA. In transcriptomic analysis, there were 13,343 differentially expressed genes (DEGs) with higher and 16,112 genes with lower expression. These DEGs were greatly enriched in carbohydrate metabolism, anaerobic fermentation, glutathione metabolism and IAA hormone biosynthesis under waterlogging, while they were significantly enriched in photosynthesis, reactive oxygen species scavenging, ABA and JA hormones biosynthesis in reoxygenation. Moreover, several genes related to stress response, carbohydrate metabolism and hormones biosynthesis were significantly changed in waterlogging and reoxygenation, which indicated unbalanced amino acid, carbon and fatty acid pools in peach roots. Taken together, these results suggest that glutathione, primary sugars and hormone biosynthesis and signaling might play key roles in plant response to waterlogging. Our work provides a comprehensive understanding of gene regulatory networks and metabolites in waterlogging stress and its recuperation, which will facilitate peach waterlogging control.


Assuntos
Prunus persica , Prunus persica/metabolismo , Transcriptoma , Ácido Abscísico/metabolismo , Plantas/metabolismo , Glutationa , Hormônios
11.
Plant Physiol ; 192(2): 1638-1655, 2023 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-36943294

RESUMO

Auxin can inhibit or promote fruit ripening, depending on the species. Melting flesh (MF) peach fruit (Prunus persica L. Batsch) cultivars produce high levels of ethylene caused by high concentrations of indole-3-acetic acid (IAA), which leads to rapid fruit softening at the late stage of development. In contrast, due to the low concentrations of IAA, the fruit of stony hard (SH) peach cultivars does not soften and produces little ethylene. Auxin seems necessary to trigger the biosynthesis of ethylene in peach fruit; however, the mechanism is not well understood. In this study, we identified miRNA gene family members ppe-miR393a and ppe-miR393b that are differentially expressed in SH and MF fruits. RNA ligase-mediated 5' rapid amplification of cDNA ends and transient transformation of Nicotiana benthamiana revealed TRANSPORT INHIBITOR RESPONSE 1 (PpTIR1), part of the auxin perception and response system, as a target of ppe-miR393a and b. Yeast 2-hybrid assay and bimolecular fluorescence complementation assay revealed that PpTIR1 physically interacts with an Aux/IAA protein PpIAA13. The results of yeast 1-hybrid assay, electrophoretic mobility shift assay, and dual-luciferase assay indicated that PpIAA13 could directly bind to and trans-activate the promoter of 1-aminocyclopropane-1-carboxylic acid synthase 1 (PpACS1), required for ethylene biosynthesis. Transient overexpression and suppression of ppe-miR393a and PpIAA13 in peach fruit induced and repressed the expression of PpACS1, confirming their regulatory role in ethylene synthesis. Gene expression analysis in developing MF and SH fruits, combined with postharvest α-naphthalene acetic acid (NAA) treatment, supports a role for a ppe-miR393-PpTIR1-PpIAA13-PpACS1 module in regulating auxin-related differences in ethylene production and softening extent in different types of peach.


Assuntos
Prunus persica , Prunus persica/genética , Prunus persica/metabolismo , Frutas , Saccharomyces cerevisiae/metabolismo , Etilenos/metabolismo , Ácidos Indolacéticos/metabolismo , Regulação da Expressão Gênica de Plantas
12.
Int J Mol Sci ; 24(3)2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36768256

RESUMO

The ATP-binding cassette (ABC) transporter family is a large and diverse protein superfamily that plays various roles in plant growth and development. Although the ABC transporters are known to aid in the transport of a wide range of substrates across biological membranes, their role in anthocyanin transport remains elusive. In this study, we identified a total of 132 putative ABC genes in the peach genome, and they were phylogenetically classified into eight subfamilies. Variations in spatial and temporal gene expression levels resulted in differential expression patterns of PpABC family members in various tissues of peach. PpABCC1 was identified as the most likely candidate gene essential for anthocyanin accumulation in peach. Transient overexpression of PpABCC1 caused a significant increase in anthocyanin accumulation in tobacco leaves and peach fruit, whereas virus-induced gene silencing of PpABCC1 in the blood-fleshed peach resulted in a significant decrease in anthocyanin accumulation. The PpABCC1 promoter contained an MYB binding cis-element, and it could be activated by anthocyanin-activator PpMYB10.1 based on yeast one-hybrid and dual luciferase assays. Thus, it seems that PpABCC1 plays a crucial role in anthocyanin accumulation in peach. Our results provide a new insight into the vacuolar transport of anthocyanins in peach.


Assuntos
Prunus persica , Prunus persica/genética , Prunus persica/metabolismo , Antocianinas/metabolismo , Fatores de Transcrição/metabolismo , Regiões Promotoras Genéticas , Trifosfato de Adenosina/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Frutas/genética , Frutas/metabolismo
13.
Food Chem ; 400: 133996, 2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36055140

RESUMO

24-Epibrassinolide (EBR) may act as a modulator for chilling injury in peach fruit during cold storage. In this study, we screened a EBR-induced GATA-type zinc finger protein PpGATA12. The objective of this study was to investigate the potential roles of EBR treatment and transcriptional regulation of PpGATA12 in regulating chilling resistance of peaches. In the current study, we found that EBR treatment promoted the activities and transcriptions of energy and sucrose metabolism-related enzymes, maintained higher ATP content and energy status, improved the accumulation of sucrose and hexose. Furthermore, molecular biology assays suggested that PpGATA12 up-regulated transcriptions of sucrose metabolism-related genes including PpSS and PpNI, and energy metabolism-related genes including PpCCO, PpSDH and PpH+-ATPase. These results provided a new insight that the enhancement of chilling resistance in peach fruit by EBR treatment might be closely related to the regulatory role of PpGATA12 on sucrose and energy metabolisms.


Assuntos
Prunus persica , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/metabolismo , Brassinosteroides , Temperatura Baixa , Metabolismo Energético , Frutas/genética , Frutas/metabolismo , Prunus persica/genética , Prunus persica/metabolismo , Esteroides Heterocíclicos , Sacarose/metabolismo
14.
Food Chem ; 400: 134048, 2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36067690

RESUMO

The inhibition mechanisms of soluble PPO (sPPO) by l-cysteine, reduced glutathione and thiourea, and membrane-bound (mPPO) by l-cysteine, reduced glutathione, thiourea, anisaldehyde and cinnamaldehyde were investigated by combining multispectroscopic analysis and computational simulations. Reduced glutathione showed the strongest inhibitory effect, with IC50 of 0.46 and 0.94 mM, respectively. The multispectral results showed that all inhibitors inhibited activity by destroying the secondary and tertiary structure, and the structure of sPPO were more easily affected. Docking showed that hydrogen bond and metal contact were the main driving force for inhibitors binding to sPPO and mPPO, respectively. Simulation showed that sPPO-inhibitor system had more fluctuation than mPPO-inhibitor system, indicating easier inhibition of sPPO activity. This work revealed that the structural differences between sPPO and mPPO led to different inhibition mechanisms of PPOs by inhibitors at the molecular level, which could provide the guidance for the selection of inhibitors in fruit and vegetable processing.


Assuntos
Prunus persica , Catecol Oxidase/metabolismo , Cisteína/metabolismo , Glutationa/metabolismo , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Prunus persica/metabolismo , Tioureia
15.
BMC Genomics ; 23(1): 730, 2022 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-36307759

RESUMO

BACKGROUND: The rapid growth of annual shoots is detrimental to peach production. While gibberellin (GA) promotes the rapid growth of peach shoots, there is limited information on the identity and expression profiles of GA-metabolism genes for this species. RESULTS: All six GA biosynthetic gene families were identified in the peach genome, and the expression profiles of these family members were determined in peach shoots. The upstream biosynthetic gene families have only one or two members (1 CPS, 2 KSs, and 1 KO), while the downstream gene families have multiple members (7 KAOs, 6 GA20oxs, and 5 GA3oxs). Between the two KS genes, PpKS1 showed a relatively high transcript level in shoots, while PpKS2 was undetectable. Among the seven KAO genes, PpKAO2 was highly expressed in shoots, while PpKAO1 and - 6 were weakly expressed. For the six GA20ox genes, both PpGA20ox1 and - 2 were expressed in shoots, but PpGA20ox1 levels were higher than PpGA20ox2. For the five GA3ox genes, only PpGA3ox1 was highly expressed in shoots. Among these biosynthesis genes, PpGA20ox1 and PpGA3ox1 showed a gradual decrease in transcript level along shoots from top to bottom, and a similar trend was observed in bioactive GA1 and GA4 distribution. Among the GA-deactivation genes, PpGA2ox6 was highly expressed in peach shoots. PpGA2ox1 and - 5 transcripts were relatively lower and showed a similar pattern to PpGA20ox1 and PpGA3ox1 in peach shoots. Overexpression of PpGA20ox1, - 2, or PpGA2ox6 in Arabidopsis or tobacco promoted or depressed the plant growth, respectively, while PpGA3ox1 did not affect plant height. Transient expression of PpGA20ox1 in peach leaves significantly increased bioactive GA1 content. CONCLUSIONS: Our results suggest that PpGA20ox and PpGA2ox expression are closely associated with the distribution of active GA1 and GA4 in peach annual shoots. Our research lays a foundation for future studies into ways to effectively repress the rapid growth of peach shoot.


Assuntos
Arabidopsis , Prunus persica , Giberelinas/metabolismo , Prunus persica/genética , Prunus persica/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Arabidopsis/genética
16.
Int J Mol Sci ; 23(18)2022 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-36142414

RESUMO

Calmodulin-binding transcription activator (CAMTA) is a transcription factor family containing calmodulin (CaM) binding sites and is involved in plant development. Although CAMTAs in Arabidopsis have been extensively investigated, the functions of CAMTAs remain largely unclear in peaches. In this study, we identified five peach CAMTAs which contained conserved CG-1 box, ANK repeats, CaM binding domain (CaMBD) and IQ motifs. Overexpression in tobacco showed that PpCAMTA1/2/3 were located in the nucleus, while PpCAMTA4 and PpCAMTA5 were located in the plasma membrane. Increased expression levels were observed for PpCAMTA1 and PpCAMTA3 during peach fruit ripening. Expression of PpCAMTA1 was induced by cold treatment and was inhibited by ultraviolet B irradiation (UV-B). Driven by AtCAMTA3 promoter, PpCAMTA1/2/3 were overexpressed in Arabidopsis mutant. Here, we characterized peach PpCAMTA1, representing an ortholog of AtCAMTA3. PpCAMTA1 expression in Arabidopsis complements the developmental deficiencies of the camta2,3 mutant, and restored the plant size to the wild type level. Moreover, overexpressing PpCAMTA1 in camta2,3 mutant inhibited salicylic acid (SA) biosynthesis and expression of SA-related genes, resulting in a susceptibility phenotype to Pst DC3000. Taken together, our results provide new insights for CAMTAs in peach fruit and indicate that PpCAMTA1 is associated with response to stresses during development.


Assuntos
Arabidopsis , Prunus persica , Arabidopsis/metabolismo , Calmodulina/metabolismo , Expressão Ectópica do Gene , Frutas/genética , Frutas/metabolismo , Regulação da Expressão Gênica de Plantas , Desenvolvimento Vegetal , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Prunus persica/genética , Prunus persica/metabolismo , Ácido Salicílico/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
17.
Plant Physiol Biochem ; 186: 107-120, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35835077

RESUMO

Flat peach fruit are cold-sensitive and vulnerable to chilling injury (CI), particularly internal browning (IB) during cold storage, which limits the consumer acceptance and market value of the fruit. Controlled atmosphere (CA) has been used to alleviate IB in fruit. However, the mechanisms of CA on IB in peach remains unknown. This study investigated the effects of CA (3-3.5% Oxygen, 3-3.5% Carbon dioxide, and 93-94% nitrogen) treatment on IB development, sugar metabolism, and energy metabolism in cold-stored (1 ± 0.5 °C) peach. The CA treatment effectively inhibited the development of IB and markedly inhibited the reduction of sugar contents and energy charge. The protein expression of the V-type proton ATPase subunit was significantly inhibited by the CA treatment, accompanied by higher adenosine triphosphate (ATP) content, and energy charge than the control fruit. Notably, the expressions of the pyruvate kinase family of proteins, pyruvate decarboxylases, and sucrose synthase were induced by CA treatment that had complex protein interactions with the ATPase and the energy metabolism pathway. These results indicated that CA treatment enhanced the chilling tolerance attributed to maintaining higher levels of energy status and sugar contents by regulating the expression of key proteins involved in energy metabolism during cold storage and shelf life. Taken together, our study can provide theoretical support for the research and development of fresh-keeping and cold-chain logistics technology.


Assuntos
Prunus persica , Adenosina Trifosfatases/metabolismo , Atmosfera , Temperatura Baixa , Armazenamento de Alimentos , Frutas/metabolismo , Prunus persica/metabolismo , Açúcares/metabolismo
18.
Plant Sci ; 322: 111362, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35753620

RESUMO

Silicon (Si) is abundant in nature, and it has been proved to be beneficial for the healthy growth and development of many plant species, improve plant stress resistance. Gummosis in peach is an invasive disease that causes widespread and serious damage. Mechanical damage and ethylene (ETH) can induce gummosis in peach shoots in the field. In this research, we found that Si as a chemical substance or signal to enhance plant resistance can reduce the synthesis of ETH, thereby inhibiting gummosis in peach. The results showed that Si can decrease the rate of gummosis, reduce the expression level of PpACS1 (1-aminocyclopropane -1-carboxylate synthase gene) and reduce the enzyme activity of polygalacturonase (PG). It was further discovered that Si can regulate the gene expression of PpERF21 and PpERF27. Yeast one-hybrid and dual-luciferase reporter assays showed that PpERF21 and PpERF27, through direct interaction with the promoter of PpPG1, inhibited the transcriptional activation of PpPG1. Overexpression of PpERF21 and PpERF27 effectively reduced fruit colloid production when bacterial cells harbouring the expression vector were used to instantaneously infect peach fruit. These results show that Si can inhibit the synthesis of ETH and mediate PpERF21 and PpERF27 expression to inhibit the expression of PpPG1, thereby inhibiting gummosis in peach.


Assuntos
Prunus persica , Etilenos/metabolismo , Frutas/genética , Frutas/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Poligalacturonase/genética , Poligalacturonase/metabolismo , Prunus persica/genética , Prunus persica/metabolismo , Silício/metabolismo , Silício/farmacologia
19.
Food Chem ; 391: 133283, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-35623280

RESUMO

Effects of hydrogen sulfide (H2S) on chilling injury (CI), H2S, antioxidant and cell-wall metabolisms of refrigerated peaches treated with H2S and hypotaurine (HT, H2S scavenger) were investigated in present study. Results revealed that H2S treatment enhanced endogenous H2S content, which was associated with increased related H2S synthase enzymes activities, while HT showed the opposite results. Moreover, H2S treatment induced the accumulation of ascorbic acid, glutathione and the enhancement of antioxidant enzymes activities compared to control and HT, contributing to lower hydrogen peroxide content and superoxide radical production. Furthermore, H2S suppressed the increase of cell-wall degradation enzymes accompanied by higher levels of water-insoluble pectin, 24% KOH-soluble hemicellulose and cellulose, while HT accelerated these components degradation. Therefore, results indicated that H2S mitigated CI of refrigerated peaches by regulating H2S, antioxidant and cell-wall metabolisms, maintaining higher H2S and antioxidants contents, suppressing cell-wall degradation, thereby contributing to redox homeostasis maintenance and cell structure integrity.


Assuntos
Sulfeto de Hidrogênio , Prunus persica , Antioxidantes/farmacologia , Parede Celular/metabolismo , Frutas/metabolismo , Peróxido de Hidrogênio/metabolismo , Sulfeto de Hidrogênio/química , Prunus persica/genética , Prunus persica/metabolismo , Plântula/metabolismo
20.
Plant Cell Environ ; 45(7): 2158-2175, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35357710

RESUMO

Flavonol glycosides are bioactive compounds important for plant defence and human nutrition. Glycosylation and methylation play an important role in enriching the diversity of flavonols in response to the environment. Peach flowers and fruit are rich in flavonol diglycosides such as isorhamnetin 3-O-rutinoside (I3Rut), kaempferol 3-O-rutinoside and quercetin 3-O-rutinoside, and flavonol monoglycosides such as I 3-O-glucoside and Q 3-O-galactoside. UV-B irradiation of fruit significantly induced accumulation of all these flavonol glycosides. Candidate biosynthetic genes induced by UV-B were identified by genome homology searches and the in vitro catalytic activities of purified recombinant proteins determined. PpUGT78T3 and PpUGT78A2 were identified as flavonol 3-O-glucosyltransferase and 3-O-galactosyltransferase, respectively. PpUGT91AK6 was identified as flavonol 1,6-rhamnosyl trasferase catalysing the formation of flavonol rutinosides and PpFOMT1 was identified as a flavonol O-methyltransferase that methylated Q at the 3'-OH-OH to form isorhamnetin derivatives. Transient expression in Nicotiana benthamiana confirmed the specificity of PpUGT78T3 as a flavonol 3-O-glucosyltransferase, PpUGT78A2 as a 3-O-galactosyltransferase, PpUGT91AK6 as a 1,6-rhamnosyltrasferase and PpFOMT1 as an O-methyltransferase. This study provides new insights into the mechanisms of glycosylation and methylation of flavonols, especially the formation of flavonol diglycosides such as I3Rut, and will also be useful for future potential metabolic engineering of complex flavonols.


Assuntos
Flavonóis , Prunus persica , Flavonóis/metabolismo , Galactosiltransferases/metabolismo , Glicosídeos , Glicosilação , Metilação , Metiltransferases/genética , Metiltransferases/metabolismo , Prunus persica/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA