Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.546
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
PLoS One ; 19(5): e0301252, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38696454

RESUMO

Bacteria are exposed to reactive oxygen and nitrogen species that provoke oxidative and nitrosative stress which can lead to macromolecule damage. Coping with stress conditions involves the adjustment of cellular responses, which helps to address metabolic challenges. In this study, we performed a global transcriptomic analysis of the response of Pseudomonas extremaustralis to nitrosative stress, induced by S-nitrosoglutathione (GSNO), a nitric oxide donor, under microaerobic conditions. The analysis revealed the upregulation of genes associated with inositol catabolism; a compound widely distributed in nature whose metabolism in bacteria has aroused interest. The RNAseq data also showed heightened expression of genes involved in essential cellular processes like transcription, translation, amino acid transport and biosynthesis, as well as in stress resistance including iron-dependent superoxide dismutase, alkyl hydroperoxide reductase, thioredoxin, and glutathione S-transferase in response to GSNO. Furthermore, GSNO exposure differentially affected the expression of genes encoding nitrosylation target proteins, encompassing metalloproteins and proteins with free cysteine and /or tyrosine residues. Notably, genes associated with iron metabolism, such as pyoverdine synthesis and iron transporter genes, showed activation in the presence of GSNO, likely as response to enhanced protein turnover. Physiological assays demonstrated that P. extremaustralis can utilize inositol proficiently under both aerobic and microaerobic conditions, achieving growth comparable to glucose-supplemented cultures. Moreover, supplementing the culture medium with inositol enhances the stress tolerance of P. extremaustralis against combined oxidative-nitrosative stress. Concordant with the heightened expression of pyoverdine genes under nitrosative stress, elevated pyoverdine production was observed when myo-inositol was added to the culture medium. These findings highlight the influence of nitrosative stress on proteins susceptible to nitrosylation and iron metabolism. Furthermore, the activation of myo-inositol catabolism emerges as a protective mechanism against nitrosative stress, shedding light on this pathway in bacterial systems, and holding significance in the adaptation to unfavorable conditions.


Assuntos
Inositol , Estresse Nitrosativo , Pseudomonas , Inositol/metabolismo , Pseudomonas/metabolismo , Pseudomonas/genética , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , S-Nitrosoglutationa/metabolismo , S-Nitrosoglutationa/farmacologia , Aerobiose , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Perfilação da Expressão Gênica , Estresse Oxidativo
2.
Physiol Plant ; 176(2): e14258, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38522952

RESUMO

Salt and drought are documented among the most detrimental and persistent abiotic stresses for crop production. Here, we investigated the impact of Pseudomonas koreensis strain S4T10 on plant performance under salt and drought stress. Arabidopsis thaliana Col-0 wild type and atnced3 mutant plants were inoculated with P. koreensis or tap water and exposed to NaCl (100 mM) for five days and drought stress by withholding water for seven days. P. koreensis significantly enhanced plant biomass and photosynthetic pigments under salt and drought stress conditions. Moreover, P. koreensis activated the antioxidant defence by modulating glutathione (GSH), superoxide dismutase (SOD), peroxidase (POD), and polyphenol oxidase (PPO) activities to scavenge the reactive oxygen species produced due to the stress. In addition, the application of P. koreensis upregulated the expression of genes associated with antioxidant responses, such as AtCAT1, AtCAT3, and AtSOD. Similarly, genes linked to salt stress, such as AtSOS1, AtSOS2, AtSOS3, AtNHX1, and AtHKT1, were also upregulated, affirming the positive role of P. koreensis S4T10 in streamlining the cellular influx and efflux transport systems during salt stress. Likewise, the PGPB inoculation was observed to regulate the expression of drought-responsive genes AtDREB2A, AtDREB2B, and ABA-responsive genes AtAO3, AtABA3 indicating that S4T10 enhanced drought tolerance via modulation of the ABA pathway. The results of this study affirm that P. koreensis S4T10 could be further developed as a biofertilizer to mitigate salt and drought stress at the same time.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Pseudomonas , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Secas , Antioxidantes/metabolismo , Plantas Geneticamente Modificadas/genética , Estresse Fisiológico , Água/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/metabolismo
3.
Chemosphere ; 355: 141828, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38552800

RESUMO

Microorganisms play an important role in heavy metal bioremediation and soil fertility. The effects of soil inoculation with Pseudomonas sp. W112 on Cd accumulation in wheat were investigated by analyzing the transport, subcellular distribution and speciation of Cd in the soil and plants. Pseudomonas sp. W112 application significantly decreased Cd content in the roots, internode and grains by 10.2%, 29.5% and 33.0%, respectively, and decreased Cd transfer from the basal nodes to internodes by 63.5%. Treatment with strain W112 decreased the inorganic and water-soluble Cd content in the roots and increased the proportion of residual Cd in both the roots and basal nodes. At the subcellular level, the Cd content in the root cell wall and basal node cytosol increased by 19.6% and 61.8%, respectively, indicating that strain W112 improved the ability of the root cell wall and basal node cytosol to fix Cd. In the rhizosphere soil, strain W112 effectively colonized and significantly decreased the exchangeable Cd, carbonate-bound Cd and iron-manganese oxide-bound Cd content by 43.5%, 27.3% and 17.6%, respectively, while it increased the proportion of residual Cd by up to 65.2%. Moreover, a 3.1% and 23.5% increase in the pH and inorganic nitrogen content in the rhizosphere soil, respectively, was recorded. Similarly, soil bacterial community sequencing revealed that inoculating with strain W112 increased the abundance of Pseudomonas, Thauera and Azoarcus, which are associated with inorganic nitrogen metabolism, and decreased that of Acidobacteria, which is indicative of soil alkalinization. Hence, root application of Pseudomonas sp. W112 improved soil nitrogen availability and inhibited Cd accumulation in the wheat grains in a two-stage process: by reducing the Cd availability in the rhizosphere soil and by improving Cd interception and fixation in the wheat roots and basal nodes. Pseudomonas sp. W112 may be a suitable bioremediation agent for restoring Cd-contaminated wheat fields.


Assuntos
Cádmio , Poluentes do Solo , Cádmio/análise , Triticum/metabolismo , Solo/química , Disponibilidade Biológica , Pseudomonas/metabolismo , Poluentes do Solo/análise , Raízes de Plantas/metabolismo , Nitrogênio/análise
4.
Food Microbiol ; 120: 104466, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38431318

RESUMO

In this study, we evaluated the histomorphology, reactive oxygen species (ROS), protein degradation, and iron metabolism characteristics and differential expression analysis of genes for siderophores synthesis and protease secretion in prepared beef steaks inoculated alone or co-inoculated with P. weihenstephanensis, B. thermotrichothrix and M. caseolyticus at 4 °C for 12 days. The results showed that the P. weihenstephanensis was the key bacteria that degraded protein in the process of prepared beef steaks spoilage, which led to protein oxidation by promoting ferritin degradation to release free iron and inducing ROS accumulation. The highest expression of FpvA and AprE was detected in the P. weihenstephanensis group by comparing qRT-PCR of the different inoculation groups. Both qRT-PCR and Western blot revealed that ferritin heavy polypeptide and ferritin light chain polypeptide gene and protein expressions were significantly higher in the P. weihenstephanensis inoculation group compared to the other inoculation groups. Results suggested that FpvA and AprE might play roles in meat spoilage and were potential positional, physiological and functional candidate genes for improving the quality traits of prepared beef steaks. This work may provide insights on controlling food quality and safety by intervening in spoilage pathways targeting iron carrier biosynthesis or protease secretion genes.


Assuntos
Carne , Peptídeo Hidrolases , Pseudomonas , Animais , Bovinos , Espécies Reativas de Oxigênio , Carne/microbiologia , Ferritinas/genética , Peptídeos
5.
Front Cell Infect Microbiol ; 14: 1280188, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38435302

RESUMO

Human infections caused by Pseudomonas citronellolis, an environmental bacterium, are infrequent, with only two cases related to uncommon urinary tract infections and bacteremia reported in recent years. All these cases typically occurred in elderly patients with compromised or decreased immune function. Simultaneously, the epithelial barrier disruption induced by invasive biopsy procedures or gastrointestinal disorders such as gastroenteritis provided a pathway for Pseudomonas citronellolis to infiltrate the organism. In this study, we present the first report of a case where Pseudomonas citronellolis and Escherichia coli were isolated from the inflamed appendix of a patient without underlying conditions. Compared to the Escherichia coli, Pseudomonas citronellolis has never been isolated in patients with appendicitis. We identified the species using MALDI-TOF MS and genetic sequencing. Based on our findings, we highlight the perspective that Pseudomonas citronellolis can colonize the intestines of healthy individuals and may trigger infections like appendicitis.


Assuntos
Apendicite , Enterocolite , Pseudomonas , Idoso , Humanos , Escherichia coli/genética , Virulência , Intestinos , Doença Aguda , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
6.
Pestic Biochem Physiol ; 199: 105759, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38458662

RESUMO

The natural antimicrobial peptide, epsilon-poly-l-lysine (ε-PL), is widely acknowledged as a food preservative. However, its potential in managing bacterial brown blotch disease in postharvest edible mushrooms and the associated mechanism remain unexplored. In this study, concentrations of ε-PL ≥ 150 mg L-1 demonstrated significant inhibition effects, restraining over 80% of growth and killed over 99% of Pseudomonas tolaasii (P. tolaasii). This inhibition effect occurred in a concentration-dependent manner. The in vivo findings revealed that treatment with 150 mg L-1 ε-PL effectively inhibited P. tolaasii-caused brown blotch disease in Agaricus bisporus (A. bisporus) mushrooms. Plausible mechanisms underlying ε-PL's action against P. tolaasii in A. bisporus involve: (i) damaging the cell morphology and membrane integrity, and increasing uptake of propidium iodide and leakage of cellular components of P. tolaasii; (ii) interaction with intracellular proteins and DNA of P. tolaasii; (iii) inhibition of P. tolaasii-induced activation of polyphenol oxidase, elevation of antioxidative enzyme activities, stimulation of phenylpropanoid biosynthetic enzyme activities and metabolite production, and augmentation of pathogenesis-related protein contents in A. bisporus mushrooms. These findings suggest promising prospects for the application of ε-PL in controlling bacterial brown blotch disease in A. bisporus.


Assuntos
Agaricus , Polilisina , Pseudomonas , Polilisina/farmacologia , Resistência à Doença
7.
Front Immunol ; 15: 1358247, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38469316

RESUMO

Galleria mellonella larvae repeatedly infected with Pseudomonas entomophila bacteria re-induced their immune response. Its parameters, i.e. the defence activities of cell-free hemolymph, the presence and activity of antimicrobial peptides, and the expression of immune-relevant genes were modulated after the re-challenge in comparison to non-primed infected larvae, resulting in better protection. No enhanced resistance was observed when the larvae were initially infected with other microorganisms, and larvae pre-infected with P. entomophila were not more resistant to further infection with other pathogens. Then, the peptide profiles of hemolymph from primed- and non-primed larvae infected with P. entomophila were compared by quantitative RP-HPLC (Reverse Phase - High Performance Liquid Chromatography). The level of carbonic anhydrase, anionic peptide-1, proline peptide-2, and finally, unknown so far, putative Kazal peptide Pr13a was higher in the primed infected animals than in the larvae infected with P. entomophila for the first time. The expression of the Pr13a gene increased two-fold after the infection, but only in the primed animals. To check whether the enhanced level of Pr13a could have physiological significance, the peptide was purified to homogeneity and checked for its defence properties. In fact, it had antibacterial activity: at the concentration of 15 µM and 7.5 µM it reduced the number of P. entomophila and Bacillus thuringiensis CFU, respectively, to about 40%. The antibacterial activity of Pr13a was correlated with changes observed on the surface of the peptide-treated bacteria, e.g. surface roughness and adhesion force. The presented results bring us closer to finding hemolymph constituents responsible for the effect of priming on the immune response in re-infected insects.


Assuntos
Mariposas , Pseudomonas , Animais , Larva , Peptídeos/farmacologia , Antibacterianos/farmacologia
8.
Bioresour Technol ; 399: 130589, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38490461

RESUMO

The tolerance of Pseudomonas monteilii X1, isolated from pig manure compost, to Cd and Zn, as well as its capacity for biosorption, were investigated. The minimum inhibitory concentrations (MIC) of Cd and Zn for the strain were 550 mg/L and 800 mg/L, respectively. Untargeted metabolomics analysis revealed that organic acids and derivatives, lipids and lipid-like molecules, and organic heterocyclic compounds were the main metabolites. The glyoxylate and dicarboxylate metabolism pathway were significantly enriched under Cd2+ stress. The isothermal adsorption and adsorption kinetics experiments determined that the strain had adsorption capacities of 9.96 mg/g for Cd2+ and 23.4 mg/g for Zn2+. Active groups, such as hydroxyl, carboxyl, and amino groups on the cell surface, were found to participate in metal adsorption. The strain was able to convert Zn2+ into Zn3(PO4)2·4H2O crystal. Overall, this study suggested that Pseudomonas monteilii has potential as a remediation material for heavy metals.


Assuntos
Compostagem , Metais Pesados , Pseudomonas , Suínos , Animais , Cádmio/química , Zinco/química , Esterco , Metais Pesados/análise , Cinética , Compostos Orgânicos , Adsorção
9.
Plant Cell Rep ; 43(3): 70, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38358510

RESUMO

KEY MESSAGE: NOI10 and NOI11 are two RIN4-like/NOI proteins that participate in the immune response of the Arabidopsis plant and affect the RIN4-regulated mechanisms involving the R-proteins RPM1 and RPS2. The immune response in plants depends on the regulation of signaling pathways triggered by pathogens and herbivores. RIN4, a protein of the RIN4-like/NOI family, is considered to be a central immune signal in the interactions of plants and pathogens. In Arabidopsis thaliana, four of the 15 members of the RIN4-like/NOI family (NOI3, NOI5, NOI10, and NOI11) were induced in response to the plant herbivore Tetranychus urticae. While overexpressing NOI10 and NOI11 plants did not affect mite performance, opposite callose accumulation patterns were observed when compared to RIN4 overexpressing plants. In vitro and in vivo analyses demonstrated the interaction of NOI10 and NOI11 with the RIN4 interactors RPM1, RPS2, and RIPK, suggesting a role in the context of the RIN4-regulated immune response. Transient expression experiments in Nicotiana benthamiana evidenced that NOI10 and NOI11 differed from RIN4 in their functionality. Furthermore, overexpressing NOI10 and NOI11 plants had significant differences in susceptibility with WT and overexpressing RIN4 plants when challenged with Pseudomonas syringae bacteria expressing the AvrRpt2 or the AvrRpm1 effectors. These results demonstrate the participation of NOI10 and NOI11 in the RIN4-mediated pathway. Whereas RIN4 is considered a guardee protein, NOI10 and NOI11 could act as decoys to modulate the concerted activity of effectors and R-proteins.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Herbivoria , Nicotiana/genética , Pseudomonas , Estresse Fisiológico , Proteínas de Arabidopsis/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética
10.
Antonie Van Leeuwenhoek ; 117(1): 41, 2024 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-38400879

RESUMO

In the search of new enzymatic activities with a possible industrial application, we focused on those microorganisms and their molecular mechanisms that allow them to succeed in the environment, particularly in the proteolytic activity and its central role in the microorganisms' successful permanence. The use of highly active serine proteases for industrial applications is a modern need, especially for the formulation of detergents, protein processing, and hair removal from animal skins. This report provides the isolation and identification of a highly proteolytic fragment derived from DegQ produced by a Pseudomonas fluorescens environmental strain isolated from a frog carcass. Zymograms demonstrate that a 10 kDa protein mainly generates the total proteolytic activity of this strain, which is enhanced by the detergent SDS. Mass spectroscopy analysis revealed that the protein derived a couple of peptides, the ones showing the highest coverage belonging to DegQ. Interestingly, this small protein fragment contains a PDZ domain but no obvious residues indicating that it is a protease. Protein model analysis shows that this fragment corresponds to the main PDZ domain from DegQ, and its unique sequence and structure render a proteolytic peptide. The results presented here indicate that a novel DegQ fragment is sufficient for obtaining high protease activity highlighting that the analysis of environmental microorganisms can render new strains or enzymes with helpful biotechnological characteristics.


Assuntos
Domínios PDZ , Pseudomonas , Animais , Pseudomonas/genética , Pseudomonas/metabolismo , Serina Endopeptidases/química , Serina Endopeptidases/metabolismo , Peptídeos , Serina Proteases
11.
Diagn Microbiol Infect Dis ; 109(1): 116212, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38387214

RESUMO

Pseudomonas aeruginosa, one of the most notorious organisms, causes fatal diseases like-, meningitis, pneumonia as well as worsens the prognosis of cystic fibrosis patients. It is also multi-drug resistant and resists a wide range of antibiotics. Attempts have been made to reduce its virulence/pathogenic potential using a number of organic compounds. For this purpose, the Quorum sensing (QS) system of P. aeruginosa was targeted, which regulates its virulence. Pseudomonas Quinolone System (PQS), one of the four quorum sensing systems, producing pyocyanin pigment was chosen. 2-heptyl-3-hydroxy-4-quinolone (HHQ) is a ligand which binds to PQS protein is responsible for pyocyanin pigment production. Attempts were made to find a compound analogous to HHQ which could bind to PQS active site and inhibit the pigment formation. In-silico analysis was performed to estimate possible interactions and to find/predict the possible PQS inhibitors.


Assuntos
Infecções por Pseudomonas , Quinolonas , Humanos , Percepção de Quorum/fisiologia , Pseudomonas aeruginosa/metabolismo , Pseudomonas/metabolismo , Piocianina/metabolismo , Quinolonas/farmacologia , Infecções por Pseudomonas/tratamento farmacológico , Proteínas de Bactérias/metabolismo
12.
Microb Genom ; 10(2)2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38421269

RESUMO

Pseudomonas aeruginosa, a harmful nosocomial pathogen associated with cystic fibrosis and burn wounds, encodes for a large number of LysR-type transcriptional regulator proteins. To understand how and why LTTR proteins evolved with such frequency and to establish whether any relationships exist within the distribution we set out to identify the patterns underpinning LTTR distribution in P. aeruginosa and to uncover cluster-based relationships within the pangenome. Comparative genomic studies revealed that in the JGI IMG database alone ~86 000 LTTRs are present across the sequenced genomes (n=699). They are widely distributed across the species, with core LTTRs present in >93 % of the genomes and accessory LTTRs present in <7 %. Analysis showed that subsets of core LTTRs can be classified as either variable (typically specific to P. aeruginosa) or conserved (and found to be distributed in other Pseudomonas species). Extending the analysis to the more extensive Pseudomonas database, PA14 rooted analysis confirmed the diversification patterns and revealed PqsR, the receptor for the Pseudomonas quinolone signal (PQS) and 2-heptyl-4-quinolone (HHQ) quorum-sensing signals, to be amongst the most variable in the dataset. Successful complementation of the PAO1 pqsR - mutant using representative variant pqsR sequences suggests a degree of structural promiscuity within the most variable of LTTRs, several of which play a prominent role in signalling and communication. These findings provide a new insight into the diversification of LTTR proteins within the P. aeruginosa species and suggests a functional significance to the cluster, conservation and distribution patterns identified.


Assuntos
Fibrose Cística , Infecções por Pseudomonas , Humanos , Pseudomonas aeruginosa/genética , Genômica , Pseudomonas , Fibrose Cística/genética
13.
ISME J ; 18(1)2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38365234

RESUMO

Siderophores have long been implicated in sociomicrobiology as determinants of bacterial interrelations. For plant-associated genera, like Bacillus and Pseudomonas, siderophores are well known for their biocontrol functions. Here, we explored the functional role of the Bacillus subtilis siderophore bacillibactin (BB) in an antagonistic interaction with Pseudomonas marginalis. The presence of BB strongly influenced the outcome of the interaction in an iron-dependent manner. The BB producer B. subtilis restricts colony spreading of P. marginalis by repressing the transcription of histidine kinase-encoding gene gacS, thereby abolishing production of secondary metabolites such as pyoverdine and viscosin. By contrast, lack of BB restricted B. subtilis colony growth. To explore the specificity of the antagonism, we cocultured B. subtilis with a collection of fluorescent Pseudomonas spp. and found that the Bacillus-Pseudomonas interaction is conserved, expanding our understanding of the interplay between two of the most well-studied genera of soil bacteria.


Assuntos
Bacillus subtilis , Ferro , Ferro/metabolismo , Bacillus subtilis/genética , Sideróforos/metabolismo , Pseudomonas/genética , Pseudomonas/metabolismo
14.
Virulence ; 15(1): 2313410, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38378443

RESUMO

Benign prostatic hyperplasia (BPH) is a prevalent disease among middle-aged and elderly males, but its pathogenesis remains unclear. Dysbiosis of the microbiome is increasingly recognized as a significant factor in various human diseases. Prostate tissue also contains a unique microbiome, and its dysbiosis has been proposed to contribute to prostate diseases. Here, we obtained prostate tissues and preoperative catheterized urine from 24 BPH individuals, and 8 normal prostate samples as controls, which followed strict aseptic measures. Using metagenomic next-generation sequencing (mNGS), we found the disparities in the microbiome composition between normal and BPH tissues, with Pseudomonas significantly enriched in BPH tissues, as confirmed by fluorescence in situ hybridization (FISH). Additionally, we showed that the prostate microbiome differed from the urine microbiome. In vitro experiments revealed that lipopolysaccharide (LPS) of Pseudomonas activated NF-κB signalling, leading to inflammation, proliferation, and EMT processes, while inhibiting apoptosis in prostatic cells. Overall, our research determines the presence of microbiome dysbiosis in BPH, and suggests that Pseudomonas, as the dominant microflora, may promote the progression of BPH through LPS activation of NF-κB signalling.


Assuntos
Microbiota , Hiperplasia Prostática , Masculino , Pessoa de Meia-Idade , Idoso , Humanos , Hiperplasia Prostática/patologia , NF-kappa B/genética , Pseudomonas , Disbiose , Hibridização in Situ Fluorescente , Lipopolissacarídeos
15.
Sci Rep ; 14(1): 3489, 2024 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-38347062

RESUMO

Following localized infection, the entire plant foliage becomes primed for enhanced defense. However, specific genes induced during defense priming (priming-marker genes) and those showing increased expression in defense-primed plants upon rechallenge (priming-readout genes) remain largely unknown. In our Arabidopsis thaliana study, genes AT1G76960 (function unknown), CAX3 (encoding a vacuolar Ca2+/H+ antiporter), and CRK4 (encoding a cysteine-rich receptor-like protein kinase) were strongly expressed during Pseudomonas cannabina pv. alisalensis-induced defense priming, uniquely marking the primed state for enhanced defense. Conversely, PR1 (encoding a pathogenesis-related protein), RLP23 and RLP41 (both encoding receptor-like proteins) were similarly activated in defense-primed plants before and after rechallenge, suggesting they are additional marker genes for defense priming. In contrast, CASPL4D1 (encoding Casparian strip domain-like protein 4D1), FRK1 (encoding flg22-induced receptor-like kinase), and AT3G28510 (encoding a P loop-containing nucleoside triphosphate hydrolases superfamily protein) showed minimal activation in uninfected, defense-primed, or rechallenged plants, but intensified in defense-primed plants after rechallenge. Notably, mutation in only priming-readout gene NHL25 (encoding NDR1/HIN1-like protein 25) impaired both defense priming and systemic acquired resistance, highlighting its previously undiscovered pivotal role in systemic plant immunity.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/fisiologia , Pseudomonas/genética , Pseudomonas/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Imunidade Vegetal/genética , Pseudomonas syringae/metabolismo , Doenças das Plantas/genética , Regulação da Expressão Gênica de Plantas , Receptores de Superfície Celular/metabolismo
16.
BMC Infect Dis ; 24(1): 180, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38336644

RESUMO

BACKGROUND: Pseudomonas nitroreducens is a non-fermenting, gram-negative, rod-shaped bacterium commonly inhabiting soil, particularly soil contaminated with oil brine. To our knowledge, no cases of human infection with P. nitroreducens have been previously reported. Here, we present the first documented case of cholangitis caused by P. nitroreducens in a patient with bacteremia. CASE PRESENTATION: A 46-year-old Japanese man with an advanced pancreatic neuroendocrine tumor was hospitalized with fever and chills. Four days before admission, the patient developed right upper abdominal pain. Two days later, he also experienced fever and chills. Endoscopic retrograde cholangiopancreatography was performed on the day of admission, and the patient was diagnosed as having cholangitis associated with stent dysfunction. Gram-negative rods were isolated from blood cultures, but attempts to identify the bacteria using VITEK2 and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) with VITEK MS ver. 4.7.1 (bioMérieux Japan Co. Ltd., Tokyo, Japan) were unsuccessful. Finally, the organism was identified as P. nitroreducens using MALDI-TOF MS with a MALDI Biotyper (Bruker Daltonics Co., Ltd., Billerica, MA, USA) and 16 S ribosomal RNA sequencing. Despite thorough interviews with the patient, he denied any exposure to contaminated soil. The patient was treated with intravenous cefepime and oral ciprofloxacin for 16 days based on susceptibility results, achieving a good therapeutic outcome. At the outpatient follow-up on day 28, the patient was in good general condition. CONCLUSIONS: This is the first reported human case of cholangitis with bloodstream infection caused by P. nitroreducens. This report provides clinicians with novel insights into the clinical manifestations and diagnostic methods necessary for the accurate diagnosis of P. nitroreducens, along with guidance on treatment.


Assuntos
Bacteriemia , Colangite , Tumores Neuroendócrinos , Neoplasias Pancreáticas , Masculino , Humanos , Pessoa de Meia-Idade , Bacteriemia/diagnóstico , Bacteriemia/tratamento farmacológico , Bacteriemia/microbiologia , Bactérias , Pseudomonas , Bactérias Aeróbias , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Colangite/tratamento farmacológico , Colangite/etiologia , Solo
17.
Int J Mol Sci ; 25(4)2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38396736

RESUMO

Mycobacterium immunogenum (MI) colonizing metalworking fluids (MWFs) has been associated with chronic hypersensitivity pneumonitis (HP) in machinists. However, it is etiologically unclear why only certain mycobacteria-contaminated fluids induce this interstitial lung disease. We hypothesized that this may be due to differential immunogenicity and the HP-inducing potential of MI strains/genotypes as well as the confounding effect of co-inhaled endotoxin-producers. To test this hypothesis, we optimized a chronic HP mouse model in terms of MI antigen dose, timepoint of sacrifice, and form of antigen (cell lysates vs. live cells) and compared six different field-isolated MI strains. Overall, MJY10 was identified as the most immunogenic and MJY4 (or MJY13) as the least immunogenic genotype based on lung pathoimmunological changes as well as Th1 cellular response (IFN-γ release). Infection with MI live cells induced a more severe phenotype than MI cell lysate. Co-exposure with Pseudomonas fluorescens caused a greater degree of lung innate immune response and granuloma formation but a diminished adaptive (Th1) immune response (IFN-γ) in the lung and spleen. In summary, this study led to the first demonstration of differential immunogenicity and the disease-inducing potential of field strains of MI and an interfering effect of the co-contaminating Pseudomonas. The improved chronic MI-HP mouse model and the identified polar pair of MI strains will facilitate future diagnostic and therapeutic research on this poorly understood environmental lung disease.


Assuntos
Alveolite Alérgica Extrínseca , Mycobacteriaceae , Pseudomonas , Camundongos , Animais , Pseudomonas/genética , Pulmão , Genótipo
18.
Bioelectrochemistry ; 157: 108656, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38290303

RESUMO

Owing to the effects of seawater erosion, dry/wet cycles, dissolved oxygen and microorganisms, the corrosion of steel in marine tidal environments is a serious threat to the safe and stable operation of marine equipment and facilities. Among them, microbiologically influenced corrosion (MIC) of steel has received increasing attention. Cathodic protection (CP) is frequently used to control the corrosion of offshore steel structures. However, in the presence of microorganisms, implementation of CP and its specific effects remain controversial. In this study, the influence of Pseudomonas sp. on the CP efficiency of Zn sacrificial anodes (ZnSAs) during the tidal corrosion of X80 steel was studied. The results showed that CP efficiency exceeded 92% in an abiotic tidal environment. However, in the biotic tidal environment, Pseudomonas sp. significantly reduced the CP efficiency. Pseudomonas sp. and its biofilm promoted the corrosion of steel under CP, inhibited the formation of a complete calcareous deposit layer, which weakened the CP efficiency of ZnSA in the marine tidal environment.


Assuntos
Pseudomonas , Aço , Aço/química , Corrosão , Biofilmes , Eletrodos
19.
Artigo em Inglês | MEDLINE | ID: mdl-38190241

RESUMO

Five strains of two novel species were isolated from the wastewater treatment systems of a pharmaceutical factory located in Zhejiang province, PR China. Strains ZM22T and Y6 were identified as belonging to a potential novel species of the genus Comamonas, whereas strains ZM23T, ZM24 and ZM25 were identified as belonging to a novel species of the genus Pseudomonas. These strains were characterized by polyphasic approaches including 16S rRNA gene analysis, multi-locus sequence analysis, average nucleotide identity (ANI), in silico DNA-DNA hybridization (isDDH), physiological and biochemical tests, as well as chemotaxonomic analysis. Genome-based phylogenetic analysis further confirmed that strains ZM22T and Y6 form a distinct clade closely related to Comamonas testosteroni ATCC 11996T and Comamonas thiooxydans DSM 17888T. Strains ZM23T, ZM24 and ZM25 were grouped as a separate clade closely related to Pseudomonas nitroreducens DSM 14399T and Pseudomonas nicosulfuronedens LAM1902T. The orthoANI and isDDH results indicated that strains ZM22T and Y6 belong to the same species. In addition, genomic DNA fingerprinting demonstrated that these strains do not originate from a single clone. The same results were observed for strains ZM23T, ZM24 and ZM25. Strains ZM22T and Y6 were resistant to multiple antibiotics, whereas strains ZM23T, ZM24 and ZM25 were able to degrade an emerging pollutant, triclosan. The phylogenetic, physiological and biochemical characteristics, as well as chemotaxonomy, allowed these strains to be distinguished from their genus, and we therefore propose the names Comamonas resistens sp. nov. (type strain ZM22=MCCC 1K08496T=KCTC 82561T) and Pseudomonas triclosanedens sp. nov. (type strain ZM23T=MCCC 1K08497T=JCM 36056T), respectively.


Assuntos
Comamonas , Ácidos Graxos , Purificação da Água , Técnicas de Tipagem Bacteriana , Composição de Bases , Comamonas/genética , DNA Bacteriano/genética , Ácidos Graxos/química , Filogenia , Pseudomonas/genética , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Indústria Farmacêutica
20.
Diagn Microbiol Infect Dis ; 108(3): 116182, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38215518

RESUMO

This case presents the clinical and genomic aspects of a rare and multidrug-resistant Pseudomonas guariconensis isolate carrying blaVIM-2 and highlights the need for heightened awareness in healthcare facilities. A 63-year-old woman underwent surgery for the diagnosis of a paraspinal abscess and infectious spondylitis. During hospitalization, the patient was diagnosed with heart failure exacerbation. The patient had no symptoms of urinary tract infection and met the criteria for asymptomatic bacteriuria. In urine culture, colonies of the organism grew >105 CFU/mL on blood agar and on MacConkey agar. The Bruker Biotyper mass spectrometry showed P. guariconensis. Based on the 16S rRNA gene sequence showed that a 99.79 % match with as P. guariconensis LMG 27394T. The average nucleotide identity with P. guariconensis LMG 27394T was 91.53 %. Antimicrobial susceptibility testing showed that the isolate was not susceptible to most of the antibiotics. Antimicrobial resistance genes identified were aph(6)-Id, aph(3″)-Ib, aac(6')-Ib3, aac(3)-If, gyrA mutation (T83I) and blaVIM-2.


Assuntos
Bacteriúria , Pseudomonas , beta-Lactamases , Humanos , Feminino , Pessoa de Meia-Idade , beta-Lactamases/genética , Bacteriúria/diagnóstico , DNA Bacteriano/genética , DNA Bacteriano/química , RNA Ribossômico 16S/genética , Ágar , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA