Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 488
Filtrar
1.
Front Immunol ; 15: 1438371, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39081314

RESUMO

Introduction: Variant pseudorabies virus (PRV) is a newly emerged zoonotic pathogen that can cause human blindness. PRV can take advantage of its large genome and multiple non-essential genes to construct recombinant attenuated vaccines carrying foreign genes. However, a major problem is that the foreign genes in recombinant PRV are only integrated into the genome for independent expression, rather than assembled on the surface of virion. Methods: We reported a recombinant PRV with deleted gE/TK genes and an inserted porcine circovirus virus 2 (PCV2) Cap gene into the extracellular domain of the PRV gE gene using the Cre-loxP recombinant system combined with the CRISPR-Cas9 gene editing system. This recombinant PRV (PRV-Cap), with the envelope-embedded Cap protein, exhibits a similar replication ability to its parental virus. Results: An immunogenicity assay revealed that PRV-Cap immunized mice have 100% resistance to lethal PRV and PCV2 attacks. Neutralization antibody and ELISPOT detections indicated that PRV-Cap can enhance neutralizing antibodies to PRV and produce IFN-γ secreting T cells specific for both PRV and PCV2. Immunological mechanistic investigation revealed that initial immunization with PRV-Cap stimulates significantly early activation and expansion of CD69+ T cells, promoting the activation of CD4 Tfh cell dependent germinal B cells and producing effectively specific effector memory T and B cells. Booster immunization with PRV-Cap recalled the activation of PRV-specific IFN-γ+IL-2+CD4+ T cells and IFN-γ+TNF-α+CD8+ T cells, as well as PCV2-specific IFN-γ+TNF-α+CD8+ T cells. Conclusion: Collectively, our data suggested an immunological mechanism in that the recombinant PRV with envelope-assembled PCV2 Cap protein can serve as an excellent vaccine candidate for combined immunity against PRV and PCV2, and provided a cost-effective method for the production of PRV- PCV2 vaccine.


Assuntos
Infecções por Circoviridae , Circovirus , Herpesvirus Suídeo 1 , Animais , Circovirus/imunologia , Circovirus/genética , Camundongos , Herpesvirus Suídeo 1/imunologia , Herpesvirus Suídeo 1/genética , Infecções por Circoviridae/imunologia , Infecções por Circoviridae/prevenção & controle , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/sangue , Vacinas Virais/imunologia , Proteínas do Envelope Viral/imunologia , Proteínas do Envelope Viral/genética , Suínos , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/sangue , Proteínas do Capsídeo/imunologia , Proteínas do Capsídeo/genética , Vacinas Sintéticas/imunologia , Pseudorraiva/imunologia , Pseudorraiva/prevenção & controle , Feminino , Camundongos Endogâmicos BALB C
2.
Front Immunol ; 15: 1403070, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39015575

RESUMO

Background: The cGAS-STING axis-mediated type I interferon pathway is a crucial strategy for host defense against DNA virus infection. Numerous evasion strategies developed by the pseudorabies virus (PRV) counteract host antiviral immunity. To what extent PRV-encoded proteins evade the cGAS-STING signaling pathway is unknown. Methods: Using US2 stably expressing cell lines and US2-deficient PRV model, we revealed that the PRV tegument protein US2 reduces STING protein stability and downregulates STING-mediated antiviral signaling. Results: To promote K48-linked ubiquitination and STING degradation, US2 interacts with the LBD structural domain of STING and recruits the E3 ligase TRIM21. TRIM21 deficiency consistently strengthens the host antiviral immune response brought on by PRV infection. Additionally, US2-deficient PRV is less harmful in mice. Conclusions: Our study implies that PRV US2 inhibits IFN signaling by a new mechanism that selectively targets STING while successfully evading the host antiviral response. As a result, the present study reveals a novel strategy by which PRV evades host defense and offers explanations for why the Bartha-K61 classical vaccine strain failed to offer effective defense against PRV variant strains in China, indicating that US2 may be a key target for developing gene-deficient PRV vaccines.


Assuntos
Herpesvirus Suídeo 1 , Imunidade Inata , Pseudorraiva , Transdução de Sinais , Proteínas do Envelope Viral , Animais , Humanos , Camundongos , Células HEK293 , Herpesvirus Suídeo 1/imunologia , Herpesvirus Suídeo 1/fisiologia , Interações Hospedeiro-Patógeno/imunologia , Evasão da Resposta Imune , Proteínas de Membrana/metabolismo , Proteínas de Membrana/imunologia , Proteínas de Membrana/genética , Nucleotidiltransferases/metabolismo , Nucleotidiltransferases/genética , Nucleotidiltransferases/imunologia , Pseudorraiva/imunologia , Pseudorraiva/virologia , Ribonucleoproteínas/imunologia , Ribonucleoproteínas/metabolismo , Ubiquitinação , Proteínas do Envelope Viral/metabolismo
3.
mSphere ; 9(8): e0029724, 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39041808

RESUMO

Interaction between viruses and bacteria during the development of infectious diseases is a complex question that requires continuous study. In this study, we explored the interactions between pseudorabies virus (PRV) and Pasteurella multocida (PM), which are recognized as the primary and secondary agents of porcine respiratory disease complex (PRDC), respectively. In vivo tests using mouse models demonstrated that intranasal inoculation with PRV at a sublethal dose induced disruption of murine respiratory barrier and promoted the invasion and damages caused by PM through respiratory infection. Inoculation with PRV also disrupted the barrier function of murine and porcine respiratory epithelial cells, and accelerated the adherence and invasion of PM to the cells. In mechanism, PRV infection resulted in decreased expression of tight junction proteins (ZO-1, occludin) and adherens junction proteins (ß-catenin, E-cadherin) between neighboring respiratory epithelial cells. Additionally, PRV inoculation at an early stage downregulated multiple biological processes contributing to epithelial adhesion and barrier functions while upregulating signals beneficial for respiratory barrier disruption (e.g., the HIF-1α signaling). Furthermore, PRV infection also stimulated the upregulation of cellular receptors (CAM5, ICAM2, ACAN, and DSCAM) that promote bacterial adherence. The data presented in this study provide insights into the understanding of virus-bacteria interactions in PRDC and may also contribute to understanding the mechanisms of secondary infections caused by different respiratory viruses (e.g., influenza virus and SARS-CoV-2) in both medical and veterinary medicine. IMPORTANCE: Co-infections caused by viral and bacterial agents are common in both medical and veterinary medicine, but the related mechanisms are not fully understood. This study investigated the interactions between the zoonotic pathogens PRV and PM during the development of respiratory infections in both cell and mouse models, and reported the possible mechanisms which included: (i) the primary infection of PRV may induce the disruption and/or damage of mammal respiratory barrier, thereby contributing to the invasion of PM; (ii) PRV infection at early stage accelerates the transcription and/or expression of several cellular receptors that are beneficial for bacterial adherence. This study may shed a light on understanding the mechanisms on the secondary infection of PM promoted by different respiratory viruses (e.g., influenza virus and SARS-CoV-2) in both medical and veterinary medicine.


Assuntos
Herpesvirus Suídeo 1 , Infecções por Pasteurella , Pasteurella multocida , Pseudorraiva , Animais , Pasteurella multocida/patogenicidade , Pasteurella multocida/fisiologia , Camundongos , Infecções por Pasteurella/microbiologia , Herpesvirus Suídeo 1/fisiologia , Suínos , Pseudorraiva/virologia , Pseudorraiva/metabolismo , Coinfecção/microbiologia , Coinfecção/virologia , Células Epiteliais/virologia , Células Epiteliais/microbiologia , Permeabilidade , Feminino , Doenças dos Suínos/microbiologia , Doenças dos Suínos/virologia , Doenças dos Suínos/metabolismo , Camundongos Endogâmicos BALB C , Modelos Animais de Doenças , Mucosa Respiratória/virologia , Mucosa Respiratória/microbiologia , Mucosa Respiratória/metabolismo
4.
Microb Pathog ; 194: 106791, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39019121

RESUMO

BACKGROUND: The Pseudorabies Virus (PRV) leading to pseudorabies and causes huge economic losses in pig industry. The development of novel PRV variations has diminished the efficacy of traditional vaccinations, and there is yet no medication that can stop the spread of PRV infection. Therefore, PRV eradication is challenging. Oregano essential oil, the plant-based ingredient for medication feed have been shown to has strong anti-herpesvirus activity, but no anti-PRV function has been reported. RESULTS: The current study assessed the anti-pseudorabies virus (PRV) activity of oregano essential oil and explored its mechanisms and most effective components against PRV. Our in vivo findings demonstrated that oregano essential oil could decrease the PRV load in tissues, mitigate tissue lesions, and enhance the survival rate of mice. The potential antiviral mechanism involves augmenting humoral and cellular immune responses in PRV-infected mice. To further investigate the most effective components of oregano essential oil against PRV, an in vitro study was conducted, revealing that oregano essential oil and its main constituents, carvacrol and thymol, all diminished PRV intracellular proliferation in vitro. Carvacrol exhibited the most potent anti-PRV effect, serving as the primary contributor to oregano essential oil's anti-PRV activity. The mechanisms underlying carvacrol's anti-PRV properties include the upregulation of cytokines TNF-α, IFN-ß, IFN-γ, IL-12, and the inhibition of PRV-induced apoptosis in BHK-21 cells. CONCLUSIONS: Our study provides an effective drug for the prevention and control of PRV infection.


Assuntos
Antivirais , Herpesvirus Suídeo 1 , Óleos Voláteis , Origanum , Pseudorraiva , Animais , Óleos Voláteis/farmacologia , Origanum/química , Camundongos , Herpesvirus Suídeo 1/efeitos dos fármacos , Antivirais/farmacologia , Pseudorraiva/tratamento farmacológico , Pseudorraiva/virologia , Cimenos/farmacologia , Timol/farmacologia , Citocinas/metabolismo , Linhagem Celular , Imunidade Celular/efeitos dos fármacos , Imunidade Humoral/efeitos dos fármacos , Feminino , Camundongos Endogâmicos BALB C , Carga Viral/efeitos dos fármacos , Suínos , Modelos Animais de Doenças , Óleos de Plantas/farmacologia
5.
J Virol ; 98(7): e0056124, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38869285

RESUMO

Alpha herpesvirus (α-HV) particles enter their hosts from mucosal surfaces and efficiently maintain fast transport in peripheral nervous system (PNS) axons to establish infections in the peripheral ganglia. The path from axons to distant neuronal nuclei is challenging to dissect due to the difficulty of monitoring early events in a dispersed neuron culture model. We have established well-controlled, reproducible, and reactivateable latent infections in compartmented rodent neurons by infecting physically isolated axons with a small number of viral particles. This system not only recapitulates the physiological infection route but also facilitates independent treatment of isolated cell bodies or axons. Consequently, this system enables study not only of the stimuli that promote reactivation but also the factors that regulate the initial switch from productive to latent infection. Adeno-associated virus (AAV)-mediated expression of herpes simplex-1 (HSV-1) VP16 alone in neuronal cell bodies enabled the escape from silencing of incoming pseudorabies virus (PRV) genomes. Furthermore, the expression of HSV VP16 alone reactivated a latent PRV infection in this system. Surprisingly, the expression of PRV VP16 protein supported neither PRV escape from silencing nor reactivation. We compared transcription transactivation activity of both VP16 proteins in primary neurons by RNA sequencing and found that these homolog viral proteins produce different gene expression profiles. AAV-transduced HSV VP16 specifically induced the expression of proto-oncogenes including c-Jun and Pim2. In addition, HSV VP16 induces phosphorylation of c-Jun in neurons, and when this activity is inhibited, escape of PRV silencing is dramatically reduced.IMPORTANCEDuring latency, alpha herpesvirus genomes are silenced yet retain the capacity to reactivate. Currently, host and viral protein interactions that determine the establishment of latency, induce escape from genome silencing or reactivation are not completely understood. By using a compartmented neuronal culture model of latency, we investigated the effect of the viral transcriptional activator, VP16 on pseudorabies virus (PRV) escape from genome silencing. This model recapitulates the physiological infection route and enables the study of the stimuli that regulate the initial switch from a latent to productive infection. We investigated the neuronal transcriptional activation profiles of two homolog VP16 proteins (encoded by HSV-1 or PRV) and found distinct gene activation signatures leading to diverse infection outcomes. This study contributes to understanding of how alpha herpesvirus proteins modulate neuronal gene expression leading to the initiation of a productive or a latent infection.


Assuntos
Proteína Vmw65 do Vírus do Herpes Simples , Herpesvirus Humano 1 , Herpesvirus Suídeo 1 , Neurônios , Ativação Viral , Latência Viral , Animais , Herpesvirus Suídeo 1/genética , Herpesvirus Suídeo 1/fisiologia , Neurônios/virologia , Neurônios/metabolismo , Proteína Vmw65 do Vírus do Herpes Simples/metabolismo , Proteína Vmw65 do Vírus do Herpes Simples/genética , Herpesvirus Humano 1/fisiologia , Herpesvirus Humano 1/genética , Inativação Gênica , Ratos , Axônios/virologia , Axônios/metabolismo , Dependovirus/genética , Dependovirus/fisiologia , Pseudorraiva/virologia , Pseudorraiva/metabolismo , Células Cultivadas , Herpes Simples/virologia , Herpes Simples/metabolismo
6.
Acta Biomater ; 183: 330-340, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38838909

RESUMO

Although vaccination with inactivated vaccines is a popular preventive method against pseudorabies virus (PRV) infection, inactivated vaccines have poor protection efficiency because of their weak immunogenicity. The development of an effective adjuvant is urgently needed to improve the efficacy of inactivated PRV vaccines. In this study, a promising nanocomposite adjuvant named as MIL@A-SW01-C was developed by combining polyacrylic acid-coated metal-organic framework MIL-53(Al) (MIL@A) and squalene (oil)-in-water emulsion (SW01) and then mixing it with a carbomer solution. One part of the MIL@A was loaded onto the oil/water interface of SW01 emulsion via hydrophobic interaction and coordination, while another part was dispersed in the continuous water phase using carbomer. MIL@A-SW01-C showed good biocompatibility, high PRV (antigen)-loading capability, and sustained antigen release. Furthermore, the MIL@A-SW01-C adjuvanted PRV vaccine induced high specific serum antibody titers, increased splenocyte proliferation and cytokine secretion, and a more balanced Th1/Th2 immune response compared with commercial adjuvants, such as alum and biphasic 201. In the mouse challenge experiment, two- and one-shot vaccinations resulted in survival rates of 73.3 % and 86.7 %, respectively. After one-shot vaccination, the host animal pigs were also challenged with wild PRV. A protection rate of 100 % was achieved, which was much higher than that observed with commercial adjuvants. This study not only establishes the superiority of MIL@A-SW01-C composite nanoadjuvant for inactivated PRV vaccine in mice and pigs but also presents an effective method for developing promising nanoadjuvants. STATEMENT OF SIGNIFICANCE: We have developed a nanocomposite of MIL-53(Al) and oil-in-water emulsion (MIL@A-SW01-C) as a promising adjuvant for the inactivated PRV vaccines. MIL@A-SW01-C has good biocompatibility, high PRV (antigen) loading capability, and prolonged antigen release. The developed nanoadjuvant induced much higher specific IgG antibody titers, increased splenocyte proliferation and cytokine secretion, and a more balanced Th1/Th2 immune response than commercial adjuvants alum and biphasic 201. In mouse challenge experiments, survival rates of 73.3 % and 86.7 % were achieved from two-shot and one-shot vaccinations, respectively. At the same time, a protection rate of 100 % was achieved with the host animal pigs challenged with wild PRV.


Assuntos
Adjuvantes Imunológicos , Emulsões , Animais , Adjuvantes Imunológicos/farmacologia , Emulsões/química , Camundongos , Suínos , Herpesvirus Suídeo 1/imunologia , Vacinas contra Pseudorraiva/imunologia , Camundongos Endogâmicos BALB C , Óleos/química , Feminino , Água/química , Vacinas de Produtos Inativados/imunologia , Pseudorraiva/prevenção & controle , Pseudorraiva/imunologia , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Citocinas/metabolismo
7.
Vet Microbiol ; 295: 110107, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38838382

RESUMO

Pseudorabies virus (PRV), an alphaherpesvirus, is a neglected zoonotic pathogen. Dectin-1 sensing of ß-glucan (BG) induces trained immunity, which can possibly form a new strategy for the prevention of viral infection. However, alphaherpesvirus including PRV have received little to no investigation in the context of trained immunity. Here, we found that BG pretreatment improved the survival rate, weight loss outcomes, alleviated histological injury and decreased PRV copy number of tissues in PRV-infected mice. Type I interferons (IFNs) including IFN-α/ß levels in serum were significantly increased by BG. However, these effects were abrogated in the presence of Dectin-1 antagonist. Dectin-1-mediated effect of BG was also confirmed in porcine and murine macrophages. These results suggested that BG have effects on type I IFNs with antiviral property involved in Dectin-1. In piglets, oral or injected immunization with BG and PRV vaccine could significantly elevated the level of PRV-specific IgG and type I IFNs. And it also increased the antibody levels of porcine reproductive and respiratory syndrome virus vaccine and classical swine fever vaccine that were later immunized, indicating a broad-spectrum effect on improving vaccine immunity. On the premise that the cost was greatly reducing, the immunological effect of oral was better than injection administration. Our findings highlighted that BG induced type I IFNs related antiviral effect against PRV involved in Dectin-1 and potential application value as a feed additive to help control the spread of PRV and future emerging viruses.


Assuntos
Herpesvirus Suídeo 1 , Interferon Tipo I , Lectinas Tipo C , Pseudorraiva , beta-Glucanas , Animais , beta-Glucanas/farmacologia , beta-Glucanas/administração & dosagem , Camundongos , Suínos , Lectinas Tipo C/imunologia , Pseudorraiva/imunologia , Pseudorraiva/prevenção & controle , Interferon Tipo I/imunologia , Herpesvirus Suídeo 1/imunologia , Herpesvirus Suídeo 1/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/efeitos dos fármacos , Antivirais/farmacologia , Vacinas Virais/imunologia , Feminino
8.
Viruses ; 16(5)2024 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-38793591

RESUMO

In recent years, pseudorabies virus (PRV) variants have resulted in an epidemic in swine herds and huge economic losses in China. Therefore, it is essential to develop an efficacious vaccine against the spread of PRV variants. Here, the triple-gene-deletion virus and the triple-gene-deletion plus gC virus were constructed by homologous recombination (HR). And then, their growth capacity, proliferation ability, and immune efficacy were evaluated. The results showed that the growth kinetics of the recombinant viruses were similar to those of the parental strain PRV-AH. Compared with the triple-gene-deletion virus group, the more dominant level of neutralizing antibody (NA) can be induced in the triple-gene-deletion plus gC virus group with the same 106.0 TCID50 dose after 4 and 6 weeks post-initial immunization (PII) (p < 0.0001). In addition, the antibody titers in mice immunized with the triple-gene-deletion plus gC virus were significantly higher than those immunized with triple-gene deletion virus with the same 105.0 TCID50 dose after 6 weeks PII (p < 0.001). More importantly, in the triple-gene-deletion plus gC virus group with 105.0 TCID50, the level of NA was close to that in the triple-gene deletion virus group with 106.0 TCID50 at 6 weeks PII. Meanwhile, the cytokines IL-4 and IFN-γ in sera were tested by enzyme-linked immunosorbent assay (ELISA) in each group. The highest level of IL-4 or IFN-γ was also elicited in the triple-gene deletion plus gC virus group at a dose of 106.0 TCID50. After challenge with PRV-AH, the survival rates of the triple-gene deletion plus gC virus immunized groups were higher than those of other groups. In immunized groups with 105.0 TCID50, the survival rate shows a significant difference between the triple-gene deletion plus gC virus group (75%, 6/8) and the triple-gene deletion virus group (12.5%, 1/8). In general, the immune efficacy of the PRV TK/gI/gE-deleted virus can be increased with additional gC insertion in mice, which has potential for developing an attenuated vaccine candidate for PRV control.


Assuntos
Anticorpos Neutralizantes , Anticorpos Antivirais , Deleção de Genes , Herpesvirus Suídeo 1 , Vacinas contra Pseudorraiva , Pseudorraiva , Animais , Herpesvirus Suídeo 1/genética , Herpesvirus Suídeo 1/imunologia , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Camundongos , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Pseudorraiva/prevenção & controle , Pseudorraiva/imunologia , Pseudorraiva/virologia , Vacinas contra Pseudorraiva/imunologia , Vacinas contra Pseudorraiva/genética , Vacinas contra Pseudorraiva/administração & dosagem , Camundongos Endogâmicos BALB C , Suínos , Feminino , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/imunologia , Recombinação Homóloga , Citocinas/metabolismo , China
9.
Int J Biol Macromol ; 269(Pt 2): 132172, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38719009

RESUMO

Adjuvants including aluminum adjuvant (Alum) and oil-water emulsion have been widely used in inactivated pseudorabies virus (PRV) vaccines to improve their performance, however, they are not sufficient to protect from PRV infection because of the weak immune response and poor Th1-type immune response. Divalent manganese ion (Mn2+) has been reported to increase the cellular immune response significantly. In this work, a xanthan gum and carbomer-dispersed Mn2+-loaded tannic acid-polyethylene glycol (TPMnXC) nanoparticle colloid is developed and used as an adjuvant to improve the performance of the inactivated PRV vaccine. The good in vitro and in vivo biocompatibility of the developed TPMnXC colloid has been confirmed by the cell viability assay, erythrocyte hemolysis, blood routine analysis, and histological analysis of mouse organs and injection site. The TPMnXC-adjuvanted inactivated PRV vaccine (TPMnXC@PRV) significantly promotes higher and more balanced immune responses indicating with an increased specific total IgG antibody and IgG2a/IgG1 ratio, efficient splenocytes proliferation, and elevated Th1- and Th2-type cytokine secretion than those of control groups. Wild PRV challenge experiment is performed using mice as a model animal, achieving a protection rate of up to 86.67 %, which is much higher than those observed from the commercial Alum. This work not only demonstrates the high potentiality of TPMnXC in practical applications but also provides a new way to develop the Mn2+-loaded nanoadjuvant for veterinary vaccines.


Assuntos
Adjuvantes Imunológicos , Herpesvirus Suídeo 1 , Imunidade Celular , Imunidade Humoral , Manganês , Nanopartículas , Polissacarídeos Bacterianos , Taninos , Animais , Camundongos , Adjuvantes Imunológicos/farmacologia , Nanopartículas/química , Imunidade Celular/efeitos dos fármacos , Imunidade Humoral/efeitos dos fármacos , Taninos/química , Taninos/farmacologia , Manganês/química , Polissacarídeos Bacterianos/química , Polissacarídeos Bacterianos/farmacologia , Polissacarídeos Bacterianos/imunologia , Herpesvirus Suídeo 1/imunologia , Vacinas contra Pseudorraiva/imunologia , Vacinas de Produtos Inativados/imunologia , Pseudorraiva/prevenção & controle , Pseudorraiva/imunologia , Feminino , Citocinas/metabolismo , Camundongos Endogâmicos BALB C , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Polifenóis
10.
PLoS Pathog ; 20(4): e1012139, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38578790

RESUMO

Alpha herpesviruses naturally infect the peripheral nervous system, and can spread to the central nervous system, causing severe debilitating or deadly disease. Because alpha herpesviruses spread along synaptic circuits, and infected neurons exhibit altered electrophysiology and increased spontaneous activity, we hypothesized that alpha herpesviruses use activity-dependent synaptic vesicle-like regulated secretory mechanisms for egress and spread from neurons. Using live-cell fluorescence microscopy, we show that Pseudorabies Virus (PRV) particles use the constitutive Rab6 post-Golgi secretory pathway to exit from the cell body of primary neurons, independent of local calcium signaling. Some PRV particles colocalize with Rab6 in the proximal axon, but we did not detect colocalization/co-transport in the distal axon. Thus, the specific secretory mechanisms used for viral egress from axons remains unclear. To address the role of neuronal activity more generally, we used a compartmentalized neuron culture system to measure the egress and spread of PRV from axons, and pharmacological and optogenetics approaches to modulate neuronal activity. Using tetrodotoxin to silence neuronal activity, we observed no inhibition, and using potassium chloride or optogenetics to elevate neuronal activity, we also show no increase in virus spread from axons. We conclude that PRV egress from neurons uses constitutive secretory mechanisms: generally, activity-independent mechanisms in axons, and specifically, the constitutive Rab6 post-Golgi secretory pathway in cell bodies.


Assuntos
Alphaherpesvirinae , Herpesvirus Suídeo 1 , Pseudorraiva , Animais , Corpo Celular/metabolismo , Proteínas do Envelope Viral/metabolismo , Axônios , Alphaherpesvirinae/metabolismo , Neurônios , Herpesvirus Suídeo 1/metabolismo , Pseudorraiva/metabolismo , Exocitose
11.
Vet Microbiol ; 290: 110011, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38310713

RESUMO

Senecavirus A (SVA)-associated porcine idiopathic vesicular disease (PIVD) and Pseudorabies (PR) are highly contagious swine disease that pose a significant threat to the global pig industry. In the absence of an effective commercial vaccine, outbreaks caused by SVA have occurred in many parts of the world. In this study, the PRV variant strain PRV-XJ was used as the parental strain to construct a recombinant PRV strain with the TK/gE/gI proteins deletion and the VP3 protein co-expression, named rPRV-XJ-ΔTK/gE/gI-VP3. The results revealed that PRV is a suitable viral live vector for VP3 protein expressing. As a vaccine, rPRV-XJ-ΔTK/gE/gI-VP3 is safe for mice, vaccination with it did not cause any clinical symptoms of PRV. Intranasal immunization with rPRV-XJ-ΔTK/gE/gI-VP3 induced strong cellular immune response and high levels of specific antibody against VP3 and gB and neutralizing antibodies against both PRV and SVA in mice. It provided 100% protection to mice against the challenge of virulent strain PRV-XJ, and alleviated the pathological lesion of heart and liver tissue in SVA infected mice. rPRV-XJ-ΔTK/gE/gI-VP3 appears to be a promising vaccine candidate against PRV and SVA for the control of the PRV variant and SVA.


Assuntos
Herpesvirus Suídeo 1 , Picornaviridae , Pseudorraiva , Doenças dos Roedores , Doenças dos Suínos , Vacinas Virais , Suínos , Animais , Camundongos , Proteínas do Envelope Viral , Anticorpos Antivirais , Vacinas contra Pseudorraiva
12.
PLoS Pathog ; 20(1): e1011956, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38295116

RESUMO

Viral infection is a significant risk factor for fertility issues. Here, we demonstrated that infection by neurotropic alphaherpesviruses, such as pseudorabies virus (PRV), could impair female fertility by disrupting the hypothalamus-pituitary-ovary axis (HPOA), reducing progesterone (P4) levels, and consequently lowering pregnancy rates. Our study revealed that PRV exploited the transient receptor potential mucolipin 1 (TRPML1) and its lipid activator, phosphatidylinositol 3,5-bisphosphate (PI(3,5)P2), to facilitate viral entry through lysosomal cholesterol and Ca2+. P4 antagonized this process by inducing lysosomal storage disorders and promoting the proteasomal degradation of TRPML1 via murine double minute 2 (MDM2)-mediated polyubiquitination. Overall, the study identifies a novel mechanism by which PRV hijacks the lysosomal pathway to evade P4-mediated antiviral defense and impair female fertility. This mechanism may be common among alphaherpesviruses and could contribute significantly to their impact on female reproductive health, providing new insights for the development of antiviral therapies.


Assuntos
Herpesvirus Suídeo 1 , Pseudorraiva , Feminino , Camundongos , Animais , Herpesvirus Suídeo 1/fisiologia , Progesterona/farmacologia , Progesterona/metabolismo , Internalização do Vírus , Lisossomos/metabolismo , Antivirais/metabolismo , Pseudorraiva/metabolismo
13.
Vet Microbiol ; 290: 109974, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38262115

RESUMO

Pseudorabies virus (PRV) is a neurotropic virus, which infects a wide range of mammals. The activity of PRV is gradually suppressed in hosts that have tolerated the primary infection. Increased glucocorticoid levels resulting from stressful stimuli overcome repression of PRV activity. However, the host cell mechanism involved in the activation processes under stressful conditions remains unclear. In this study, infection of rat PC-12 pheochromocytoma cells with neuronal properties using PRV at a multiplicity of infection (MOI) = 1 for 24 h made the activity of PRV be the relatively repressed state, and then incubation with 0.5 µM of the corticosteroid dexamethasone (DEX) for 4 h overcomes the relative repression of PRV activity. RNA-seq deep sequencing and bioinformatics analyses revealed different microRNA and mRNA profiles of PC-12 cells with/without PRV and/or DEX treatment. qRT-PCR and western blot analyses confirmed the negative regulatory relationship of miRNA-194-5p and its target heparin-binding EGF-like growth factor (Hbegf); a dual-luciferase reporter assay revealed that Hbegf is directly targeted by miRNA-194-5p. Further, miRNA-194-5p mock transfection contributed to PRV activation, Hbegf was downregulated in DEX-treated PRV infection cells, and Hbegf overexpression contributed to returning activated PRV to the repression state. Moreover, miRNA-194-5p overexpression resulted in reduced levels of HBEGF, c-JUN, and p-EGFR, whereas Hbegf overexpression suppressed the reduction caused by miRNA-194-5p overexpression. Overall, this study is the first to report that changes in the miR-194-5p-HBEGF/EGFR pathway in neurons are involved in DEX-induced activation of PRV, laying a foundation for the clinical prevention of stress-induced PRV activation.


Assuntos
Neoplasias das Glândulas Suprarrenais , Herpesvirus Suídeo 1 , MicroRNAs , Feocromocitoma , Pseudorraiva , Doenças dos Roedores , Ratos , Animais , Herpesvirus Suídeo 1/metabolismo , Fator de Crescimento Semelhante a EGF de Ligação à Heparina/metabolismo , Feocromocitoma/veterinária , MicroRNAs/genética , MicroRNAs/metabolismo , Receptores ErbB/metabolismo , Neoplasias das Glândulas Suprarrenais/veterinária , Dexametasona/farmacologia , Mamíferos
14.
Vet Microbiol ; 288: 109931, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38056181

RESUMO

Since late 2011, the PRV variants have emerged in China, characterized by the increased virulence. The traditional attenuated vaccines have proven insufficient in providing complete protection, resulting in substantial economic losses to swine industry. In this study, a vaccine candidate strain, ZJ01-ΔgI/gE/TK/UL21, carrying the quadruple gene deletion was derived from the previously generated three gene-deleted virus ZJ01-ΔgI/gE/TK. As anticipated, piglets inoculated with ZJ01-ΔgI/gE/TK/UL21 exhibited normal body temperatures and showed no viral shedding, consistent with the observations from piglets treated with ZJ01-ΔgI/gE/TK. Importantly, a significant higher level of interferon induction was observed among piglets in the ZJ01-ΔgI/gE/TK/UL21 group compared to those in the ZJ01-ΔgI/gE/TK group. Upon challenge with the PRV variant ZJ01, piglets immunized with ZJ01-ΔgI/gE/TK/UL21 exhibited reduced viral shedding compared to the ZJ01-ΔgI/gE/TK group. Furthermore, piglets vaccinated with ZJ01-ΔgI/gE/TK/UL21 exhibited minimal pathological lesions in brain tissues, similar to those in the ZJ01-ΔgI/gE/TK group. These results underscore the potential of ZJ01-ΔgI/gE/TK/UL21 as a promising vaccine for controlling PRV infection.


Assuntos
Herpesvirus Suídeo 1 , Pseudorraiva , Doenças dos Suínos , Suínos , Animais , Virulência , Proteínas do Envelope Viral/genética , Vacinas Atenuadas , Vacinas contra Pseudorraiva
15.
J Vet Med Sci ; 86(1): 120-127, 2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38030279

RESUMO

An approach to genetically engineered resistance to pseudorabies virus (PRV) infection was examined by using a mouse model with defined point mutation in primary receptor for alphaherpesviruses, nectin-1, by the CRISPR/Cas9 system. It has become clear that phenylalanine at position 129 of nectin-1 is important for binding to viral glycoprotein D (gD), and mutation of phenylalanine 129 to alanine (F129A) prevents nectin-1 binding to gD and virus entry in vitro. Here, to assess the antiviral potential of the single amino acid mutation of nectin-1, F129A, in vivo, we generated genome-edited mutant mouse lines; F129A and 135 knockout (KO). The latter, 135 KO used as a nectin-1 knockout line for comparison, expresses a carboxy-terminal deleted polypeptide consisting of 135 amino acids without phenylalanine 129. In the challenge with 10 LD50 PRV via intranasal route, perfect protection of disease onset was induced by expression of the mutation of nectin-1, F129A (survival rate: 100% in F129A and 135 KO versus 0% in wild type mice). Neither viral DNA/antigens nor pathological changes were detected in F129A, suggesting that viral entry was prevented at the primary site in natural infection. In the challenge with 50 LD50 PRV, lower but still strong protective effect against disease onset was observed (survival rate: 57% in F129A and 75% in 135 KO versus 0% in wild type mice). The present results indicate that single amino acid mutation of nectin-1 F129A provides significant resistance against lethal pseudorabies.


Assuntos
Herpesvirus Suídeo 1 , Pseudorraiva , Animais , Camundongos , Aminoácidos/metabolismo , Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular/metabolismo , Mutação , Nectinas/genética , Nectinas/metabolismo , Fenilalanina/genética , Fenilalanina/metabolismo , Pseudorraiva/prevenção & controle , Proteínas do Envelope Viral/genética
16.
Virol J ; 20(1): 303, 2023 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-38115115

RESUMO

BACKGROUND: Pseudorabies virus (PRV) causes substantial losses in the swine industry worldwide. Attenuated PRV strains with deletions of immunomodulatory genes glycoprotein E (gE), glycoprotein I (gI) and thymidine kinase (TK) are candidate vaccines. However, the effects of gE/gI/TK deletions on PRV-host interactions are not well understood. METHODS: To characterize the impact of gE/gI/TK deletions on host cells, we analyzed and compared the transcriptomes of PK15 cells infected with wild-type PRV (SD2017), PRV with gE/gI/TK deletions (SD2017gE/gI/TK) using RNA-sequencing. RESULTS: The attenuated SD2017gE/gI/TK strain showed increased expression of inflammatory cytokines and pathways related to immunity compared to wild-type PRV. Cell cycle regulation and metabolic pathways were also perturbed. CONCLUSIONS: Deletion of immunomodulatory genes altered PRV interactions with host cells and immune responses. This study provides insights into PRV vaccine design.


Assuntos
Herpesvirus Suídeo 1 , Pseudorraiva , Doenças dos Suínos , Suínos , Animais , Herpesvirus Suídeo 1/genética , Timidina Quinase/genética , Proteínas do Envelope Viral/genética , Glicoproteínas/genética , Perfilação da Expressão Gênica
17.
J Mater Chem B ; 12(1): 122-130, 2023 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-37997769

RESUMO

With the urgent need for antiviral agents, antiviral materials with high biocompatibility and antiviral effects have attracted a lot of attention. In this study, gallic acid, a natural polyphenolic compound, was transformed into biocompatible graphene quantum dots (GAGQDs) which exhibit enhanced antiviral activity against pseudorabies virus (PRV). The as-prepared GAGQDs inhibit PRV proliferation with a 104-fold reduction in viral titers. Investigation of the antiviral mechanism revealed that GAGQDs inhibit the adsorption, invasion and replication of PRV infection. Treatment with GAGQDs regulates the expression levels of interferon-related antiviral proteins, including mitochondrial antiviral-signaling protein (MAVS), signal transducer and activator of transcription 1 (STAT1) and 2',5'-oligoadenylate synthetase 1 (OAS1), suggesting that GAGQDs can stimulate innate antiviral immune responses, resulting in enhanced antiviral effects. More importantly, GAGQD treatments alleviate clinical symptoms and reduce mortality in PRV-infected mice. Our results reveal the enhanced therapeutic effects of GAGQDs against PRV infection in vitro and in vivo, suggesting the potential of GAGQDs as a promising novel antiviral agent.


Assuntos
Grafite , Herpesvirus Suídeo 1 , Pseudorraiva , Pontos Quânticos , Camundongos , Animais , Herpesvirus Suídeo 1/fisiologia , Interferons/uso terapêutico , Antivirais/farmacologia , Antivirais/uso terapêutico , Grafite/farmacologia , Grafite/uso terapêutico , Pseudorraiva/tratamento farmacológico , Imunidade Inata
18.
J Biol Chem ; 299(11): 105347, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37838171

RESUMO

The pseudorabies virus (PRV) TJ strain, a variant of PRV, induces more severe neurological symptoms and higher mortality in piglets and mice than the PRV SC strain isolated in 1980. However, the mechanism underlying responsible for the discrepancy in virulence between these strains remains unclear. Our study investigated the differences in neurotropism between PRV TJ and PRV SC using both in vitro and in vivo models. We discovered that PRV TJ enters neural cells more efficiently than PRV SC. Furthermore, we found that PRV TJ has indistinguishable genomic DNA replication capability and axonal retrograde transport dynamics compared to the PRV SC. To gain deeper insights into the mechanisms underlying these differences, we constructed gene-interchanged chimeric virus constructs and assessed the affinity between envelope glycoprotein B, C, and D (gD) and corresponding receptors. Our findings confirmed that mutations in these envelope proteins, particularly gD, significantly contributed to the heightened attachment and penetration capabilities of PRV TJ. Our study revealed the critical importance of the gDΔR278/P279 and gDV338A in facilitating viral invasion. Furthermore, our observations indicated that mutations in envelope proteins have a more significant impact on viral invasion than on virulence in the mouse model. Our findings provide valuable insights into the roles of natural mutations on the PRV envelope glycoproteins in cell tropism, which sheds light on the relationship between cell tropism and clinical symptoms and offers clues about viral evolution.


Assuntos
Herpesvirus Suídeo 1 , Pseudorraiva , Proteínas do Envelope Viral , Tropismo Viral , Animais , Camundongos , Genômica , Herpesvirus Suídeo 1/genética , Mutagênese , Mutação , Pseudorraiva/genética , Suínos , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/metabolismo
19.
Comp Immunol Microbiol Infect Dis ; 101: 102054, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37651789

RESUMO

Porcine circovirus type 2 (PCV2) plays a key role in the etiology of PCV2-associated disease (PCVAD), and its predominant strain is PCV2d which is not completely controlled by most commercially available vaccines against PCV2a strains. Pseudorabies (PR) caused by pseudorabies virus (PRV) variants re-emerged in Bartha-K61 vaccine-immunized swine herds in late 2011, which brought considerable losses to the global pig husbandry. Therefore, it is significantly important to develop a safe and effective vaccine against both PCV2d and PRV infection. In the present study, the PCV2d ORF2 gene was amplified by PCR, and cloned into the BamHI site of PRV transfer plasmid pG vector to obtain the recombinant transfer plasmid pG-PCV2dCap-EGFP. Subsequently, it was transfected into ST cells infected with the three gene deleted PRV variant strain NY-gE-/gI-/TK- to generate a recombinant virus rPRV NY-gE-/gI-/TK-/PCV2dCap+/EGFP+, and then the EGFP gene was knocked out to harvest the rPRV NY-gE-/gI-/TK-/PCV2dCap+ using gene-editing technology termed CRISPR/Cas9 system. The recombinant virus rPRV NY-gE-/gI-/TK-/PCV2dCap+ had similar genetic stability and proliferation characteristics to the parental PRV as indicated by PCR and one-step growth curve test, and the expression of Cap was validated by Western blot. In animal experiment, higher PCV2-specific ELISA antibodies and detectable PCV2-specific neutralizing antibodies could be elicited in mice immunized with rPRV NY-gE-/gI-/TK-/PCV2dCap+ compared to commercial PCV2 inactivated vaccine. Moreover, the recombinant virus rPRV NY-gE-/gI-/TK-/PCV2dCap+ significantly reduced the viral loads in the hearts, livers, spleens, lungs, and kidneys in mice following a virulent PCV2d challenge. Mice immunized with rPRV NY-gE-/gI-/TK-/PCV2dCap+ developed comparable PRV-specific humoral immune responses and provided complete protection against a lethal PRV challenge. Together, the rPRV NY-gE-/gI-/TK-/PCV2dCap+ recombinant strain has strong immunogenicity.


Assuntos
Circovirus , Herpesvirus Suídeo 1 , Pseudorraiva , Doenças dos Suínos , Vacinas Virais , Suínos , Animais , Camundongos , Herpesvirus Suídeo 1/genética , Circovirus/genética , Pseudorraiva/prevenção & controle , Proteínas do Envelope Viral/genética , Vacinas Virais/genética , Anticorpos Antivirais
20.
Biologicals ; 83: 101692, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37442044

RESUMO

Productivity and stability of Pseudorabies virus (PRV) are critical for the manufacture and storage of live attenuated pseudorabies vaccine. Trehalose is commonly used as a cryoprotectant to stabilize organisms during freezing and lyophilization. Trehalose transporter 1 (Tret1), derived from Polypedilum vanderplanki, can deliver trehalose with a reversible transporting direction. In this study, we demonstrated that productivity and stability of PRV proliferated in recombinant ST cells with stable expression of Tret1 were enhanced. As a result, a five-fold increase of intracellular trehalose amount was observed, and the significant increase of progeny viral titer was achieved in recombinant cells with the addition of 20 mM trehalose. Particularly, after storage for 8 weeks at 20 °C, the loss of viral titer was 0.8 and 1.7 lgTCID50/mL lower than the control group with or without the addition of trehalose. Additionally, the freeze-thaw resistance at -20 °C and -70 °C of PRV was significantly enhanced. Furthermore, according to standard international protocols, a series of tests, including karyotype analysis, tumorigenicity, and the ability of proliferation PRV, were conducted. Our results demonstrated that the recombinant ST cell with Tret1 is a promising cell substrate and has a high potential for producing more stable PRV for the live attenuated vaccine.


Assuntos
Herpesvirus Suídeo 1 , Pseudorraiva , Doenças dos Suínos , Animais , Suínos , Herpesvirus Suídeo 1/metabolismo , Trealose/metabolismo , Pseudorraiva/prevenção & controle , Congelamento , Doenças dos Suínos/prevenção & controle
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA