Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 210
Filtrar
1.
Exp Eye Res ; 243: 109900, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38636803

RESUMO

A pterygium is a wedge-shaped fibrovascular growth of the conjunctiva membrane that extends onto the cornea, which is the outer layer of the eye. It is also known as surfer's eye. Growth of a pterygium can also occur on the either side of the eye, attaching firmly to the sclera. Pterygia are one of the world's most common ocular diseases. However, the pathogenesis remains unsolved to date. As the pathogenesis of pterygium is closely related to finding the ideal treatment, a clear understanding of the pathogenesis will lead to better treatment and lower the recurrence rate, which is notably high and more difficult to treat than a primary pterygium. Massive studies have recently been conducted to determine the exact causes and mechanism of pterygia. We evaluated the pathogenetic factors ultraviolet radiation, viral infection, tumor suppressor genes p53, growth factors, oxidative stress, apoptosis and neuropeptides in the progression of the disease. The heightened expression of TRPV1 suggests its potential contribution in the occurrence of pterygium, promoting its inflammation and modulating sensory responses in ocular tissues. Subsequently, the developmental mechanism of pterygium, along with its correlation with dry eye disease is proposed to facilitate the identification of pathogenetic factors for pterygia, contributing to the advancement of understanding in this area and may lead to improved surgical outcomes.


Assuntos
Pterígio , Pterígio/etiologia , Pterígio/metabolismo , Humanos , Fatores de Risco , Estresse Oxidativo , Raios Ultravioleta/efeitos adversos , Apoptose , Túnica Conjuntiva/patologia
2.
Turk J Ophthalmol ; 53(6): 343-348, 2023 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-38014881

RESUMO

Objectives: To determine the roles of small GTP-binding proteins Rac1, Rac2, and Rac3 expression in pterygial tissue and to compare these expressions with normal conjunctival tissue. Materials and Methods: Seventy-eight patients with primary pterygium were enrolled. Healthy conjunctival graft specimens obtained during pterygium surgery were used as control tissue. The real-time polymerase chain reaction method on the BioMark HD dynamic array system was utilized in genomic mRNA for the gene expression analysis. Protein expressions were analyzed using western blot and immunohistochemical methods. Results: RAC1, RAC2, and RAC3 gene expressions in pterygial tissues were not markedly elevated when compared to the control specimens (p>0.05). As a very low level of RAC1 gene expression was observed, further protein expression analysis was performed for the Rac2 and Rac3 proteins. Western blot and immunohistochemical analysis of Rac2 and Rac3 protein expression revealed no significant differences between pterygial and healthy tissues (p>0.05). Conclusion: This is the first study to identify the contribution of Rac proteins in pterygium. Our results indicate that the small GTP-binding protein Rac may not be involved in pterygium pathogenesis.


Assuntos
Pterígio , Humanos , Pterígio/cirurgia , Pterígio/genética , Pterígio/metabolismo , Túnica Conjuntiva/metabolismo , Proteínas rac de Ligação ao GTP/genética , Proteínas rac de Ligação ao GTP/metabolismo , Western Blotting
3.
Exp Eye Res ; 233: 109522, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37271310

RESUMO

Pterygium is a common degenerative disease characterized by fibrovascular outgrowth towards cornea. Around 200 million people have been reported to be affected by the pterygium in the world. Although the risk factors for pterygium are well documented, the molecular pathogenesis of pterygium seems to be very complex and remains highly elusive. However, the common sense for the development of pterygium appears to be deregulation of growth hemostasis due to aberrant apoptosis. In addition, pterygium shares many features with human cancers, including dysregulation of apoptosis, persistent proliferation, inflammation, invasion, and relapse following resection. Cytochrome P450 (CYP) monooxygenases are a superfamily of heme-containing enzymes with a wide range of structural and functional diversity. In the present study, we aimed to identify significant expression signatures of CYP gene in pterygium. For the study, a total number of 45 patients (30 primary and 15 recurrent pterygium) were included. For the high-throughput screening of CYP gene expression, Fluidigm 96.96 Dynamic Array Expression Chip was used and analyzed with BioMark™ HD System Real-Time PCR system. Remarkably, CYP genes were identified to be significantly overexpressed in both primary and recurrent pterygium samples. Most prominent overexpression was observed in CYP1A1, CYP11B2 and CYP4F2 in primary pterygium and CYP11A1 and CYP11B2 in recurrent pterygium. Consequently, present findings suggest the significant involvement of CYP genes in the development and progression of pterygium.


Assuntos
Pterígio , Humanos , Pterígio/metabolismo , Ensaios de Triagem em Larga Escala , Citocromo P-450 CYP11B2 , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo
4.
Drug Discov Today ; 28(1): 103416, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36280041

RESUMO

Pterygium is a fibrovascular tissue growth invading the cornea. Adjunctive treatment post-surgery includes conventional immunosuppressants as well as antiviral drugs. The use of large- and small-molecule antivascular endothelial growth factor (VEGF) agents remains an integral part of pterygium treatment as well as other neovascular conditions of the eye. Naturally occurring polyphenolic compounds have favorable characteristics for treating neovascular and inflammatory eye conditions, including good efficacy, stability, cost-effectiveness, and the versatility of their chemical synthesis. In this review, we discuss pharmacological treatments of pterygium. Natural products, such curcumin, ellagic acid, and chalcones, are reviewed, with emphasis on their potential as future pterygium treatments.


Assuntos
Produtos Biológicos , Pterígio , Humanos , Pterígio/tratamento farmacológico , Pterígio/metabolismo , Pterígio/cirurgia , Produtos Biológicos/farmacologia , Produtos Biológicos/uso terapêutico , Produtos Biológicos/metabolismo , Túnica Conjuntiva/metabolismo , Córnea/metabolismo
5.
Stem Cell Res ; 64: 102936, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36242878

RESUMO

Pterygium pathogenesis is often attributed to a population of altered limbal stem cells, which initiate corneal invasion and drive the hyperproliferation and fibrosis associated with the disease. These cells are thought to undergo epithelial to mesenchymal transition (EMT) and to contribute to subepithelial stromal fibrosis. In this study, the presence of the novel limbal stem cell marker ABCB5 in clusters of basal epithelial pterygium cells co-expressing with P63α and P40 is reported. ABCB5-positive pterygium cells also express EMT-associated fibrosis markers including vimentin and α-SMA while their ß-catenin expression is reduced. By using a novel in vitro model of two-dose UV-induced EMT activation on limbal epithelial cells, we could observe the dysregulation of EMT-related proteins including an increase of vimentin and α-SMA as well as downregulation of ß-catenin in epithelial cells correlating to downregulation of ABCB5. The sequential irradiation of limbal fibroblasts also induced an increase in vimentin and α-SMA. Taken together, these data demonstrate for the first time the expression of ABCB5 in pterygium stem cell activity and EMT-related events while the involvement of limbal stem cells in pterygium pathogenesis is exhibited via sequential irradiation of limbal epithelial cells. The later in vitro approach can be used to further study the involvement of limbal epithelium UV-induced EMT in pterygium pathogenesis and help identify novel treatments against pterygium growth and recurrence.


Assuntos
Subfamília B de Transportador de Cassetes de Ligação de ATP , Limbo da Córnea , Pterígio , Raios Ultravioleta , Humanos , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , beta Catenina/metabolismo , Células Epiteliais/metabolismo , Transição Epitelial-Mesenquimal/efeitos da radiação , Epitélio , Fibrose/genética , Fibrose/metabolismo , Limbo da Córnea/metabolismo , Pterígio/etiologia , Pterígio/metabolismo , Pterígio/patologia , Vimentina/genética , Vimentina/metabolismo , Raios Ultravioleta/efeitos adversos
6.
Curr Eye Res ; 47(7): 1003-1008, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35322737

RESUMO

PURPOSE: The role of angiogenic factors -such as vascular endothelial growth factor (VEGF) - in the development and progression of pterygia lesions remains under investigation. In the current study, we analyzed VEGF protein expression in a series of pterygia and normal conjunctiva epithelia. METHODS: Using a liquid-based cytology assay, thirty (n = 30) cell specimens were obtained by applying a smooth scraping on conjunctiva epithelia and fixed accordingly. None of them had a history of Human Papillomavirus (HPV) infection. Similarly, the same process was applied also in normal conjunctiva epithelia (n = 10; control group). We constructed five (n = 5) slides each containing eight (n = 8) cell spots. An immunocytochemistry (ICC) assay was implemented. Digital image analysis was also performed for evaluating objectively the corresponding immunostaining intensity levels. RESULTS: All the examined pterygia cell samples over-expressed the marker. High staining intensity levels were detected in 15/30 (50%), whereas the rest 15/30 (50%) demonstrated moderate expression. Overall VEGF expression was statistically significantly higher in pterygia compared to normal conjunctiva epithelia (p=.0001). Concerning the other parameters, VEGF protein expression did not associate with the gender of the patients (p = 0.518), the presence of a recurrent lesion (p = 0.311), the anatomical location (p = 0.191) or with their morphology (p = 0.316). Interestingly, the recurrent lesions demonstrated the highest levels of VEGF expression. CONCLUSIONS: VEGF overexpression is a frequent event in pterygia playing a potentially central molecular role in the progression of the lesion. Cell spot array analysis -based on liquid cytology- seems to be an innovative, easy-to-use technique for analyzing a broad variety of molecules in multiple specimens on the same slide by applying different ICC assays.


Assuntos
Túnica Conjuntiva , Pterígio , Fator A de Crescimento do Endotélio Vascular , Alphapapillomavirus , Túnica Conjuntiva/anormalidades , Túnica Conjuntiva/metabolismo , Túnica Conjuntiva/patologia , Túnica Conjuntiva/virologia , Humanos , Papillomaviridae/metabolismo , Pterígio/diagnóstico , Pterígio/metabolismo , Pterígio/virologia , Fator A de Crescimento do Endotélio Vascular/biossíntese
7.
Molecules ; 27(1)2022 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-35011514

RESUMO

Pterygium is a progressive disease of the human eye arising from sub-conjunctival tissue and extending onto the cornea. Due to its invasive growth, pterygium can reach the pupil compromising visual function. Currently available medical treatments have limited success in suppressing efficiently the disease. Previous studies have demonstrated that curcumin, polyphenol isolated from the rhizome of Curcuma longa, induces apoptosis of human pterygium fibroblasts in a dose- and time-dependent manner showing promising activity in the treatment of this ophthalmic disease. However, this molecule is not very soluble in water in either neutral or acidic pH and is only slightly more soluble in alkaline conditions, while its dissolving in organic solvents drastically reduces its potential use for biomedical applications. A nanoformulation of curcumin stabilized silver nanoparticles (Cur-AgNPs) seems an effective strategy to increase the bioavailability of curcumin without inducing toxic effects. In fact, silver nitrates have been used safely for the treatment of many ophthalmic conditions and diseases for a long time and the concentration of AgNPs in this formulation is quite low. The synthesis of this new compound was achieved through a modified Bettini's method adapted to improve the quality of the product intended for human use. Indeed, the pH of the reaction was changed to 9, the temperature of the reaction was increased from 90 °C to 100 °C and after the synthesis the Cur-AgNPs were dispersed in Borax buffer using a dialysis step to improve the biocompatibility of the formulation. This new compound will be able to deliver both components (curcumin and silver) at the same time to the affected tissue, representing an alternative and a more sophisticated strategy for the treatment of human pterygium. Further in vitro and in vivo assays will be required to validate this formulation.


Assuntos
Curcumina , Queratinócitos/metabolismo , Nanopartículas Metálicas , Pterígio , Prata , Curcumina/química , Curcumina/farmacologia , Humanos , Nanopartículas Metálicas/química , Nanopartículas Metálicas/uso terapêutico , Pterígio/tratamento farmacológico , Pterígio/metabolismo , Prata/química , Prata/farmacologia
8.
Curr Eye Res ; 47(2): 196-205, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34323621

RESUMO

PURPOSE: The overexpression of transforming growth factor-beta1 (TGF-ß1) after surgical excision often leads to excessive fibrosis, indicating the recurrence of pterygium. The aims of the present in vitro study were to investigate the role of RhoA/ROCK signaling in regulating fibrotic effects of primary human pterygium fibroblasts (HPFs), as well as to explore the possible mechanisms of these effects. METHODS: Pterygium samples were obtained from surgery, and profibrotic activation was induced by TGF-ß1. Cell proliferation was detected by CCK-8 assay; cell migration was detected by wound healing assay; quantitative real-time PCR and Western blot were used to detect the effects of TGF-ß1 and the role of RhoA/ROCK signaling in the synthesis of alpha-smooth muscle actin (a-SMA), type I and III collagen (COL1 and COL3), and matrix metalloproteinase-9 (MMP9) in HPFs. The changes of signaling pathways were detected by Western blot; and pharmaceutical inhibition of RhoA/ROCK signaling and its downstream MRFT-A/SRF transcription pathway were used to assess their possible mechanism in HPFs fibrosis. RESULTS: ROCK inhibitor Y-27632 decreased TGF-ß1-induced cell proliferation and migration, reduced the TGF-ß1-induced expression of profibrotic markers in HPFs, and suppressed TGF-ß1-induced nuclear accumulation of Myocardin-related transcription factor A (MRTF-A) as well as accompanied elevation of F/G-actin ratio in HPFs. MRTF-A/Serum response factor (SRF) inhibitor CCG-100602 attenuated the TGF-ß1-induced α-SMA expression and reduced myofibroblast activation in HPFs. CONCLUSIONS: RhoA/ROCK signaling played a pivotal role in TGF-ß1-induced fibrosis and myofibroblast activation in HPFs at least in part by inactivating the downstream MRTF-A/SRF transcriptional pathway.


Assuntos
Pterígio , Fator de Crescimento Transformador beta1 , Células Cultivadas , Túnica Conjuntiva/anormalidades , Fibroblastos/metabolismo , Fibrose , Humanos , Proteínas Nucleares , Pterígio/genética , Pterígio/metabolismo , Transativadores , Fator de Crescimento Transformador beta1/metabolismo , Fator de Crescimento Transformador beta1/farmacologia , Proteína rhoA de Ligação ao GTP/genética , Proteína rhoA de Ligação ao GTP/metabolismo
9.
Curr Eye Res ; 47(1): 32-40, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34225531

RESUMO

PURPOSE: To compare the expression levels of miR-15a between pterygium and normal conjunctiva, and further investigate the potential role of miR-15a in the progression of pterygium. METHODS: 21 cases of primary pterygium were enrolled in our study. The length of the pterygium invaded into the cornea and the total thickness of the pterygium were measured with anterior segment optical coherence tomography (AS-OCT). The pterygial and adjacent normal conjunctival samples of the 21 patients were collected. Expressions of miR-15a, BCL-2, Bax in both pterygium and normal conjunctiva were measured, and correlations between miR-15a and BCL-2, miR-15a and Bax, miR-15a and clinical parameters were made. Pterygium epithelial cells (PECs) were isolated, cultured and transfected with miR-15a mimic or miR-15a inhibitor to interfere the miR-15a expression levels. The regulation of BCL-2 expression by miR-15a was examined with Real-Time PCR (RT-PCR), Western blot and immunofluorescence. The regulation of Bax expression by miR-15a was also examined with Real-Time PCR (RT-PCR) and Western blot. The cell viability of the transfected PECs was measured with the CCK-8 assay and the apoptosis in these cells was detected using the TUNEL assay. RESULTS: The expression of miR-15a, Bax were significantly decreased while the BCL-2 was significantly increased in pterygium (p < .05). There was a negative correlation in expression between miR-15a and BCL-2 in pterygium tissues (r = -0.516, p < .05). We also found that relative miR-15a level was positively correlated with the length of pterygium invaded into the cornea (r = -0.570, p < .05). In cultured PECs, miR-15a could downregulate the expression of BCL-2 and upregulate the expression of Bax. Promotion of miR-15a could suppress cell proliferation and promote cell apoptosis in cultured PECs. CONCLUSIONS: Our study demonstrated that decreased expression of miR-15a in pterygium might be associated with the apoptosis and proliferation of abnormal cell via regulating BCL-2, which could subsequently contribute to the development of pterygium. Downregulation of miR-15a might also contribute to the pathogenesis of pterygium by other mechanisms including abnormal proliferation and neovascularization, which remain to be investigated.


Assuntos
Apoptose , Regulação da Expressão Gênica , MicroRNAs/genética , Proteínas Proto-Oncogênicas c-bcl-2/genética , Pterígio/genética , Idoso , Proliferação de Células , Células Cultivadas , Progressão da Doença , Feminino , Humanos , Masculino , MicroRNAs/biossíntese , Pessoa de Meia-Idade , Proteínas Proto-Oncogênicas c-bcl-2/biossíntese , Pterígio/metabolismo , Pterígio/patologia
10.
J Cell Mol Med ; 24(24): 14139-14151, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33098266

RESUMO

LncRNA FOXD2-AS1 is abnormally expressed in many diseases. However, the molecular mechanisms whereby FOXD2-AS1 is involved in recurrent pterygium remain unknown. Here, qRT-PCR was performed to quantify FOXD2-AS1 expression, while CCK-8, flow cytometer and neoplasm xenograft assays were used to investigate its function. Dual-luciferase reporter, RIP and RNA pull-down assays were conducted to address the relationship between FOXD2-AS1, miR-205-5p and VEGF-A, while ChIP assays were used to detect H3K27 acetylation at the FOXD2-AS1 promoter. FOXD2-AS1 expression was up-regulated in recurrent pterygium tissues. Moreover, a high FOXD2-AS1 expression was associated with advanced stages, increased microvessel density and shorter recurrent-free survival. In addition, ROC analysis showed that FOXD2-AS1 is a valid predictor of recurrent pterygium. Furthermore, we show that FOXD2-AS1 induced proliferation and inhibited apoptosis in a cell line derived from recurrent pterygia (HPF-R) at least partially through the regulation of the miR-205-VEGF pathway. In addition, the up-regulation of FOXD2-AS1 was attributed to the H3K27 acetylation at the promoter region. In conclusion, FOXD2-AS1 is activated via its H3K27 acetylation and regulates VEGF-A expression by sponging miR-205-5p in recurrent pterygium. Our results may provide a basis for the development of new therapeutic targets and biomarkers for recurrent pterygium.


Assuntos
Histonas/metabolismo , MicroRNAs/genética , Pterígio/genética , Pterígio/metabolismo , RNA Longo não Codificante/genética , Ativação Transcricional , Fator A de Crescimento do Endotélio Vascular/genética , Acetilação , Adulto , Animais , Apoptose/genética , Linhagem Celular , Movimento Celular/genética , Proliferação de Células/genética , Modelos Animais de Doenças , Feminino , Regulação da Expressão Gênica , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Prognóstico , Pterígio/patologia , Pterígio/terapia , Interferência de RNA , Recidiva , Fator A de Crescimento do Endotélio Vascular/metabolismo
11.
Mol Vis ; 26: 510-516, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32753832

RESUMO

Purpose: Signal transducer and activator of transcription 3 (STAT3) is a DNA-binding protein that regulates various biologic processes, including cell growth, apoptosis, and malignant transformation. Abnormal activation of STAT3 is associated with many diseases, and there is currently no relevant study on the pathogenesis of pterygium. The purpose of this study was to investigate the expression and clinical significance of STAT3, HIF-1α, and VEGF in pterygium at different stages. Methods: Immunohistochemistry was used to study the expression levels of STAT3, HIF-1α, and VEGF in 50 cases of pterygium and 20 cases of control conjunctival tissue. The expression intensity of the three proteins was evaluated with Image-Pro Plus 6.0 image analysis software. Results: In the pterygium group, the positive rates for STAT3, HIF-1α, and VEGF were 82.0%, 86.0%, and 84.0%, respectively, while those in the normal conjunctiva group were 40.0%, 25.0%, and 15.0%. The expression of STAT3, HIF-1α, and VEGF in pterygium was higher than that in control conjunctiva, and the expression in advanced pterygium was statistically significantly higher than that in stationary pterygium (p < 0.01). The expression levels of STAT3 and HIF-1α in pterygium were related to the length and depth of the corneal invasion of pterygium. The expression level of VEGF in pterygium was related to the length of pterygium, but not to the depth. In addition, there was a significant positive correlation between the expression of STAT3, HIF-1α, and VEGF (p < 0.01). Conclusions: For the first time, the expression levels of the STAT3, HIF-1α, and VEGF proteins were detected simultaneously in pterygium tissue. Compared with normal conjunctiva, STAT3, HIF-1α, and VEGF were highly expressed in pterygium, and the expression in advanced pterygium tissue was more significant than in the stationary pterygium tissue. It is suggested that STAT3 may directly or through HIF-1α promote VEGF expression and participate in the growth and angiogenesis of pterygium. Targeting STAT3 may provide a new direction for the treatment of pterygium.


Assuntos
Túnica Conjuntiva/anormalidades , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Neovascularização Patológica/genética , Pterígio/genética , Fator de Transcrição STAT3/genética , Fator A de Crescimento do Endotélio Vascular/genética , Adulto , Idoso , Estudos de Casos e Controles , Túnica Conjuntiva/metabolismo , Túnica Conjuntiva/patologia , Córnea/metabolismo , Córnea/patologia , Feminino , Regulação da Expressão Gênica , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Masculino , Pessoa de Meia-Idade , Neovascularização Patológica/metabolismo , Neovascularização Patológica/patologia , Pterígio/metabolismo , Pterígio/patologia , Fator de Transcrição STAT3/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
12.
Mol Biol Rep ; 47(8): 6105-6110, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32780252

RESUMO

The etiology of pterygium remains unclear, but ultraviolet (UV) radiation is generally considered to be major risk factor. Pterygium has similarity features with many cancers, including inflammation, invasion, cell proliferation, anti-apoptosis, angiogenesis and recurrence after resection. Retinoic acid via cellular retinoic acid binding protein 2 (CRABP2) is involved in cell cycle arrest, apoptosis and differentiation, while it via fatty acid binding protein 5 (FABP5) is involved in survival, cell proliferation and angiogenesis, which pathway gets activated depends on the CRABP2/FABP5 ratio. Alterations of retinoid signaling were found in many cancer types. The deregulated retinoid signaling may also contribute to the development and/or recurrence of pterygium. The aim of our study was to determine mRNA and protein expressions of CRABP2 and FABP5 and ratio of CRABP2/FABP5 in primer and recurrent pterygium tissues. Pterygia tissues were collected from 30 eyes of 30 patients undergoing pterygium excision. CRABP2 and FABP5 mRNA and protein expression were assessed using Real-time PCR and Western blotting through examination of excised specimens from pterygium and conjunctiva tissues. The ratio of CRABP2/FABP5 gene expression was not altered when primary pterygium tissues compared normal conjunctival tissues (1.00-fold change). Whereas the ratio of CRABP2/ FABP5 gene expression was decreased when recurrent pterygium tissues compared normal conjunctival tissues (0.81-fold change). Understanding etiopathogenesis of pterygium may aid in the find of more promising treatments to prevent pterygium in earlier stages.


Assuntos
Proteínas do Olho/genética , Proteínas de Ligação a Ácido Graxo/genética , Pterígio/genética , Receptores do Ácido Retinoico/genética , Idoso , Túnica Conjuntiva/metabolismo , Proteínas do Olho/metabolismo , Proteínas de Ligação a Ácido Graxo/biossíntese , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Pterígio/metabolismo , RNA Mensageiro/biossíntese , Reação em Cadeia da Polimerase em Tempo Real , Receptores do Ácido Retinoico/biossíntese , Recidiva
13.
Exp Eye Res ; 199: 108194, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32822701

RESUMO

A sight threatening, pterygium is a common ocular surface disorders identified by fibrovascular growth of the cornea and induced by variety of stress factors, like ultraviolet (UV) exposure. However, the genes involved in the etiopathogenesis of this disease is not well studied. Herein, we identified the gene expression pattern of pterygium and examined the expression of pterygium-related genes in UV-B-induced human primary cultured corneal epithelial cells (HCEpCs), telomerase immortalized human corneal epithelial (hTCEpi), primary conjunctival fibroblast (HConFs) and primary pterygium fibroblast cells (HPFCs). A careful analysis revealed that the expression of 10 genes was significantly modulated (by > 10-fold). Keratin 24 (KRT24) and matrix metalloproteinase 9 (MMP-9) were dramatically upregulated by 49.446- and 24.214-fold, respectively. Intriguingly, UV-B exposure (50 J/m2) induced the upregulation of the expressions of MMP-9 in corneal epithelial cells such as HCEpCs and hTCEpi. Furthermore, UV-B exposure (100 and/or 200 J/m2) induced the upregulation of the expressions of MMP-9 in fibroblast such as HConFs and HPFCs. The exposure of HCEpCs to 100 and 200 J/m2 UV-B induced significant expressions of KRT24 mRNA. Nevertheless, no expression of KRT24 mRNA was detected in HConFs and HPFCs. The findings provide evidence that the progression of pterygium may involve the modulation of extracellular matrix-related genes and vasculature development and the up-regulation of KRT24 and MMP-9 by UV stress. UV radiation may promote the modulation of these pterygium-related genes and induce the initiation and progression of human pterygium.


Assuntos
Túnica Conjuntiva/metabolismo , Córnea/metabolismo , Regulação da Expressão Gênica/efeitos da radiação , Queratinas Tipo I/genética , Metaloproteinase 9 da Matriz/genética , Pterígio/metabolismo , Raios Ultravioleta , Idoso , Western Blotting , Células Cultivadas , Túnica Conjuntiva/patologia , Córnea/patologia , Ensaio de Imunoadsorção Enzimática , Feminino , Fibroblastos/metabolismo , Fibroblastos/patologia , Humanos , Queratinas Tipo I/biossíntese , Masculino , Metaloproteinase 9 da Matriz/biossíntese , Pterígio/patologia , RNA/genética
14.
Eur J Ophthalmol ; 30(6): 1232-1237, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32703006

RESUMO

PURPOSE: Pterygium is a common lesion of the ocular surface, and its etiology and pathogenesis are still uncertain. This study aimed to investigate the role of apoptosis and proliferation in pterygium formation and recurrence. MATERIALS AND METHODS: In this study, p53, Bcl-2, and Ki-67 expression levels were evaluated in primary pterygium (n = 35) and recurrent pterygium (n = 32) tissue samples and compared with normal conjunctiva (n = 30) tissue samples. In addition, recurrent pterygiums were divided into three groups based on recurrence time, and their p53, Bcl-2, and Ki-67 expression levels were compared. RESULTS: The results show that p53, Bcl-2, and Ki-67 expression levels were significantly higher in the pterygium tissue samples as compared to the control group (p < 0.001, p < 0.001, and p < 0.001, respectively). When primary and recurrent pterygium tissues were compared, bcl-2 expression was higher in recurrent pterygium tissue samples (p = 0.003). However, when Ki-67 and p53 expression levels were evaluated, no significant difference was found between primary and recurrent pterygium (p = 0.215, p = 0.321, respectively). Also, p53 and Ki-67 expression were correlated in pterygium tissue samples, and Bcl-2 expression was significantly higher in pterygium that recurrence in the first 6 months after surgery. There was no difference between groups 1, 2, and 3 in terms of p53 and Ki-67 expression. CONCLUSION: Antiapoptotic mechanisms and proliferation play an important role in the etiopathogenesis of pterygium. Furthermore, Bcl-2 expression may be important in pterygium recurrence.


Assuntos
Túnica Conjuntiva/metabolismo , Antígeno Ki-67/biossíntese , Proteínas Proto-Oncogênicas c-bcl-2/biossíntese , Pterígio/metabolismo , Proteína Supressora de Tumor p53/biossíntese , Adulto , Idoso , Idoso de 80 Anos ou mais , Apoptose , Biomarcadores/metabolismo , Túnica Conjuntiva/patologia , Feminino , Humanos , Imuno-Histoquímica , Masculino , Pessoa de Meia-Idade , Pterígio/diagnóstico , Recidiva , Estudos Retrospectivos
15.
Exp Eye Res ; 197: 108124, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32598971

RESUMO

Pterygium is a degenerative disease that characterized by excessive fibrovascular proliferation. To reduce the recurrence rate, surgery is the main strategy, in combination with adjacent procedures or adjunctive therapy. One of the most common adjunctive agents, mitomycin C (MMC), is known as an alkylating agent that inhibits fibroblast proliferation but is limitedly applied in pterygium due to various complications. A previous study demonstrated that activated pterygium subconjunctival fibroblasts overexpressed low-density lipoprotein (LDL) receptors. In this study, we designed and synthesized MMC-loaded mesoporous silica nanoparticles conjugated with LDL (MMC@MSNs-LDL) to deliver MMC into activated pterygium fibroblasts in a targeted manner. The MMC loading efficiency was approximately 6%. The cell viability test (CCK-8 assay) revealed no cytotoxicity for the empty carrier MSNs at a concentration of ≤1 mg/ml after administration for 48 h in subconjunctival fibroblasts. Primary pterygium and normal human subconjunctival fibroblasts with or without stimulation by vascular endothelial growth factor (VEGF) were treated as follows: 1) 10 µg/ml MMC@MSNs-LDL for 24 h (MMC concentration: 0.6 µg/ml); 2) 0.2 mg/ml MMC for 5 min then cultured for 24 h after MMC removal; and 3) normal culture without any drug treatment. At 24 h, the anti-proliferative effect of MMC@MSNs-LDL in activated pterygium fibroblasts was similar to that of MMC (cell viability: 46.2 ± 5.5% vs 40.5 ± 1.1%, respectively, P = 0.349). Furthermore, the cytotoxicity of MMC@MSNs-LDL to normal fibroblasts with or without VEGF stimulation was significantly lower than that of traditional MMC (cell viability: 75.6 ± 4.4% vs 36.0 ± 1.5%, respectively, P < 0.001; 84.7 ± 5.5% vs 35.7 ± 1.3%, P < 0.001). The binding of fluorescently labeled MMC@MSNs-LDL in fibroblasts was assessed using confocal fluorescence microscopy. The uptake of targeted nanoparticles in fibroblasts was time dependent and saturated at 6 h. VEGF-activated pterygium fibroblasts showed more uptake of MMC@MSNs-LDL than normal fibroblasts with or without VEGF activation (both P < 0.001). Our data strongly suggest that MMC@MSNs-LDL had an effective antiproliferative role in activated pterygium fibroblasts, with reduced toxicity to normal fibroblasts compared to traditional application of MMC. LDL-mediated drug delivery might have great potential in the management of pterygium recurrence.


Assuntos
Túnica Conjuntiva/patologia , Lipoproteínas LDL , Mitomicina/administração & dosagem , Pterígio/tratamento farmacológico , Dióxido de Silício , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Túnica Conjuntiva/efeitos dos fármacos , Reagentes de Ligações Cruzadas/administração & dosagem , Sistemas de Liberação de Medicamentos , Feminino , Fibroblastos/efeitos dos fármacos , Fibroblastos/patologia , Humanos , Masculino , Pessoa de Meia-Idade , Nanopartículas , Pterígio/diagnóstico , Pterígio/metabolismo
16.
Eye (Lond) ; 34(7): 1212-1219, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32382146

RESUMO

PURPOSE: To determine the expressions of SARS-CoV-2 receptor angiotensin-converting enzyme 2 (ACE2) and type II transmembrane serine protease (TMPRSS2) genes in human and mouse ocular cells and comparison to other tissue cells. METHODS: Human conjunctiva and primary pterygium tissues were collected from pterygium patients who underwent surgery. The expression of ACE2 and TMPRSS2 genes was determined in human primary conjunctival and pterygium cells, human ocular and other tissue cell lines, mesenchymal stem cells as well as mouse ocular and other tissues by reverse transcription-polymerase chain reaction (RT-PCR) and SYBR green PCR. RESULTS: RT-PCR analysis showed consistent expression by 2 ACE2 gene primers in 2 out of 3 human conjunctival cells and pterygium cell lines. Expression by 2 TMPRSS2 gene primers could only be found in 1 out of 3 pterygium cell lines, but not in any conjunctival cells. Compared with the lung A549 cells, similar expression was noted in conjunctival and pterygium cells. In addition, mouse cornea had comparable expression of Tmprss2 gene and lower but prominent Ace2 gene expression compared with the lung tissue. CONCLUSION: Considering the necessity of both ACE2 and TMPRSS2 for SARS-CoV-2 infection, our results suggest that conjunctiva would be less likely to be infected by SARS-CoV-2, whereas pterygium possesses some possibility of SARS-CoV-2 infection. With high and consistent expression of Ace2 and Tmprss2 in cornea, cornea rather than conjunctiva has higher potential to be infected by SARS-CoV-2. Precaution is necessary to prevent possible SARS-CoV-2 infection through ocular surface in clinical practice.


Assuntos
Betacoronavirus/metabolismo , Túnica Conjuntiva/anormalidades , Túnica Conjuntiva/metabolismo , Infecções por Coronavirus , Pandemias , Peptidil Dipeptidase A/metabolismo , Pneumonia Viral , Pterígio/metabolismo , Serina Endopeptidases/metabolismo , Enzima de Conversão de Angiotensina 2 , Animais , Betacoronavirus/enzimologia , Betacoronavirus/genética , COVID-19 , Linhagem Celular , Córnea , Humanos , Pulmão/metabolismo , Camundongos , SARS-CoV-2
17.
Int J Mol Med ; 45(4): 1103-1111, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32124942

RESUMO

A pterygium is an inflammatory, invasive and proliferative lesion on the ocular surface, which can decrease visual acuity, damage the ocular surface and affect the appearance of the eye. However, the underlying molecular mechanisms of the pathogenesis remain unclear. In the present study, the role of apoptosis­associated protein Livin in the occurrence and development of pterygium was investigated. Primary samples from quiescent or advanced clinical stages of pterygium and normal human conjunctival tissues were used to assess mRNA and protein expression levels of Livin using reverse transcription­quantitative PCR and immunohistochemistry, respectively. Livin was knocked down in pterygium epithelial cells (PECs) using small interfering RNA (siRNA), to investigate the role of Livin in PEC viability, migration, invasion ability and apoptosis. The cell viability, invasion ability and apoptosis of PECs following ultraviolet B (UVB) radiation alone or in combination with Livin silencing were also analyzed. Expression levels of Livin increased in the pterygium tissues compared with those in the normal conjunctiva at both the mRNA and protein levels. Livin expression levels in advanced pterygium were significantly higher compared with those in quiescent pterygium samples. Knockdown of Livin expression levels significantly reduced cell migration, invasion ability and cell viability, and induced apoptosis of PECs. Inhibition of Livin expression in PECs increased the expression levels of caspase­7, caspase­3 and E­cadherin, whereas expression levels of Snail were downregulated. Cell viability and invasion ability in PECs was enhanced following UVB radiation and Livin expression upregulated. UVB irradiation induced cell invasion ability of PECs and this was attenuated by Livin­silencing. Transfection with Livin siRNA also partially recovered the apoptosis rate of PECs, which was reduced by UVB irradiation. In conclusion, Livin was upregulated in pterygium, and UVB radiation functions in the development of pterygium by inducing Livin expression.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/biossíntese , Túnica Conjuntiva/metabolismo , Células Epiteliais/metabolismo , Proteínas Inibidoras de Apoptose/biossíntese , Proteínas de Neoplasias/biossíntese , Pterígio/metabolismo , Raios Ultravioleta/efeitos adversos , Regulação para Cima/efeitos da radiação , Proteínas Adaptadoras de Transdução de Sinal/genética , Adulto , Idoso , Linhagem Celular , Túnica Conjuntiva/patologia , Células Epiteliais/patologia , Feminino , Humanos , Proteínas Inibidoras de Apoptose/genética , Masculino , Pessoa de Meia-Idade , Proteínas de Neoplasias/genética , Pterígio/genética , Pterígio/patologia , Regulação para Cima/genética
18.
Arq. bras. oftalmol ; 83(1): 5-10, Jan.-Feb. 2020. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1088955

RESUMO

ABSTRACT Purpose: The aim of the present study was to measure the free carnitine and acylcarnitine levels in pterygium tissue and normal conjunctival tissue at the metabolomics level using tandem mass spectrometry. Methods: In this prospective, clinical randomized study, pterygium tissues and normal conjunctival tissues taken during pterygium excision with autograft were compared regarding their free carnitine and acylcarnitine profiles. After tissue homogenization, carnitine levels were measured using tandem mass spectrometry. The data were statistically analyzed with the Wilcoxon signed-rank test. Results: Pterygium and normal conjunctival tissue samples from a single eye of 29 patients (16 females, 13 males; mean age, 54.75 ± 11.25 years [range, 21-78 years]) were evaluated. While the free carnitine (C0) level was significantly high in the pterygium tissue (p<0.001), acylcarnitine levels were significantly high in some esterized derivatives (C2, C5, C5:1, C5DC, C16:1, C18, methylglutarylcarnitine) (p<0.05). No statistically significant difference was determined for the other esterized derivatives (p>0.05). Conclusion: That the carnitine levels in pterygium tissue were higher suggests that acceleration of cell metabolism developed secondary to chronic inflammation and the premalignant characteristics of pterygium tissue. High carnitine levels may also effectively suppress the apoptosis process. The data reported in our study indicate that further, more extensive studies of the carnitine profile could help clarify the pathogenesis of pterygium.


RESUMO Objetivo: O objetivo deste estudo foi medir os níveis de carnitina livre e acil-carnitina a nível metabolómico com espectrometria de massa em tandem no tecido do pterígio e no tecido conjuntivo normal. Método: Neste estudo prospetivo, clínico e aleatório, os tecidos de pterígio e os tecidos normais de conjuntiva, retirados durante a cirurgia de pterígio com autoenxerto, foram comparados em relação ao perfil de carnitina livre e de acil-carnitina. Após a homogeneização dos tecidos, os níveis de carnitina foram medidos por espectrometria de massa em tandem. A análise estatística dos dados foi realizada com o teste dos postos sinalizados de Wilcoxon. Resultados: A avaliação foi feita através de amostras de tecido pterígio e de conjuntiva normal de um único olho de 29 pacientes (16 mulheres, 13 homens). A média de idade dos pacientes foi de 54,75 ± 11,25 anos (faixa dos 21 aos 78 anos). Enquanto o nível de carnitina livre (C0) foi significativamente elevado no tecido pterígio (p<0,001), os níveis de acil-carnitina foram significativamente elevados em alguns derivados esterificados (C2, C5, C5: 1, C5DC, C16:1, C18, metilglutaril carnitina) (p<0,05). Não foi determinada uma diferença estatisticamen te significante noutros derivados esterificados (p>0,05). Conclusão: Os níveis mais elevados de carnitina no tecido do pterígio sugerem que a aceleração do metabolismo celular se tenha tornado secundária com o efeito da inflamação crónica e o caráter pré-maligno do tecido do pterígio. Os níveis elevados de carnitina também podem ser eficazes na supressão do processo de apoptose. Os dados obtidos no estudo indicam que estudos mais extensivos do perfil da carnitina contribuiriam para o esclarecimento da patogénese do pterígio.


Assuntos
Humanos , Masculino , Feminino , Adulto , Pessoa de Meia-Idade , Idoso , Adulto Jovem , Pterígio/metabolismo , Carnitina/análise , Carnitina/análogos & derivados , Túnica Conjuntiva/anormalidades , Pterígio/cirurgia , Carnitina/metabolismo , Estudos Prospectivos , Túnica Conjuntiva/cirurgia , Túnica Conjuntiva/metabolismo , Espectrometria de Massas em Tandem , Metabolômica
19.
Ophthalmic Res ; 63(3): 320-331, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31927552

RESUMO

PURPOSE: To examine whether dry eye severity is a risk factor for pterygium activity and whether vascular endothelial growth factor (VEGF) is crucial in the cross talk between pterygium and dry eye. METHODS: A total of 103 patients with primary pterygium (Pteg) were included in the study group; they were divided into 2 groups according to the complication of dry eye (DE) (Pteg + DE group, Pteg - DE group). Further, 60 patients with just dry eye (DE group) and 60 normal individuals (normal) were included as 2 control groups. DE severity and pterygium activity were measured, and unstimulated tear samples and pterygium tissues were collected for cytokine detection. RESULTS: (1) Tear detection: VEGF expression increased in the Pteg + DE group compared to the Pteg - DE, DE, and normal control groups; VEGF was especially increased in the active Pteg + DE group. VEGF concentration was positively correlated with pterygium activity. (2) Tissue detection: the mRNA expression of VEGF was upregulated in the active pterygium group. CONCLUSIONS: Inflammation played an important role in the development of dry eye and pterygium. VEGF was the core molecule in the cross talk, which might explain the high incidence of the coexistence of these 2 diseases.


Assuntos
Síndromes do Olho Seco/genética , Regulação da Expressão Gênica , Pterígio/genética , RNA/genética , Fator A de Crescimento do Endotélio Vascular/genética , Adulto , Idoso , Síndromes do Olho Seco/diagnóstico , Síndromes do Olho Seco/metabolismo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Pterígio/diagnóstico , Pterígio/metabolismo , Estudos Retrospectivos , Fator A de Crescimento do Endotélio Vascular/biossíntese
20.
Arq Bras Oftalmol ; 83(1): 5-10, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31531547

RESUMO

PURPOSE: The aim of the present study was to measure the free carnitine and acylcarnitine levels in pterygium tissue and normal conjunctival tissue at the metabolomics level using tandem mass spectrometry. METHODS: In this prospective, clinical randomized study, pterygium tissues and normal conjunctival tissues taken during pterygium excision with autograft were compared regarding their free carnitine and acylcarnitine profiles. After tissue homogenization, carnitine levels were measured using tandem mass spectrometry. The data were statistically analyzed with the Wilcoxon signed-rank test. RESULTS: Pterygium and normal conjunctival tissue samples from a single eye of 29 patients (16 females, 13 males; mean age, 54.75 ± 11.25 years [range, 21-78 years]) were evaluated. While the free carnitine (C0) level was significantly high in the pterygium tissue (p<0.001), acylcarnitine levels were significantly high in some esterized derivatives (C2, C5, C5:1, C5DC, C16:1, C18, methylglutarylcarnitine) (p<0.05). No statistically significant difference was determined for the other esterized derivatives (p>0.05). CONCLUSION: That the carnitine levels in pterygium tissue were higher suggests that acceleration of cell metabolism developed secondary to chronic inflammation and the premalignant characteristics of pterygium tissue. High carnitine levels may also effectively suppress the apoptosis process. The data reported in our study indicate that further, more extensive studies of the carnitine profile could help clarify the pathogenesis of pterygium.


Assuntos
Carnitina/análogos & derivados , Carnitina/análise , Túnica Conjuntiva/anormalidades , Pterígio/metabolismo , Adulto , Idoso , Carnitina/metabolismo , Túnica Conjuntiva/metabolismo , Túnica Conjuntiva/cirurgia , Feminino , Humanos , Masculino , Metabolômica , Pessoa de Meia-Idade , Estudos Prospectivos , Pterígio/cirurgia , Espectrometria de Massas em Tandem , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA