Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 108
Filtrar
1.
Adv Biol (Weinh) ; 8(7): e2300480, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38831745

RESUMO

Xenohormesis proposes that phytochemicals produced to combat stressors in the host plant exert biochemical effects in animal cells lacking cognate receptors. Xenohormetic phytochemicals such as flavonoids and phytoalexins modulate a range of human cell signaling mechanisms but functional correlations with human pathophysiology are lacking. Here, potent inhibitory effects of grapefruit-derived Naringenin (Nar) and soybean-derived Glyceollins (Gly) in human microphysiological models of bulk tissue vasculogenesis and tumor angiogenesis are reported. Despite this interference of vascular morphogenesis, Nar and Gly are not cytotoxic to endothelial cells and do not prevent cell cycle entry. The anti-vasculogenic effects of Glyceollin are significantly more potent in sex-matched female (XX) models. Nar and Gly do not decrease viability or expression of proangiogenic genes in triple negative breast cancer (TNBC) cell spheroids, suggesting that inhibition of sprouting angiogenesis by Nar and Gly in a MPS model of the (TNBC) microenvironment are mediated via direct effects in endothelial cells. The study supports further research of Naringenin and Glyceollin as health-promoting agents with special attention to mechanisms of action in vascular endothelial cells and the role of biological sex, which can improve the understanding of dietary nutrition and the pharmacology of phytochemical preparations.


Assuntos
Flavanonas , Neovascularização Patológica , Compostos Fitoquímicos , Neoplasias de Mama Triplo Negativas , Humanos , Flavanonas/farmacologia , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/metabolismo , Neovascularização Patológica/prevenção & controle , Compostos Fitoquímicos/farmacologia , Feminino , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/patologia , Neoplasias de Mama Triplo Negativas/metabolismo , Pterocarpanos/farmacologia , Inibidores da Angiogênese/farmacologia , Linhagem Celular Tumoral , Glycine max/química , Citrus paradisi/química , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Angiogênese
2.
Nat Prod Res ; 37(5): 829-834, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35722767

RESUMO

Chemical analysis of the methanol extract of the root bark of Millettia aboensis led to the isolation of homopterocarpin (1), secundiflorol I (2), and maackain (3). The structures of these compounds were elucidated based on their MS and NMR spectra. The crude methanol root extract was screened for its cytotoxic activity on mouse lymphoma cell line (L5178Y), and the isolated compounds were tested for their antioxidant activity using a 2, 2-diphenylhydrazyl (DPPH) radical scavenging model. The crude methanol root extract gave a percentage growth inhibition of 87.5% on the mouse lymphoma cell line (L5178Y). Compound 3 gave the highest antioxidant activity with an IC50 of 83 µg/ml. These compounds can serve as leads for anticancer agents.


Assuntos
Antineoplásicos , Millettia , Pterocarpanos , Animais , Camundongos , Antioxidantes/farmacologia , Antioxidantes/química , Pterocarpanos/farmacologia , Pterocarpanos/química , Millettia/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Metanol
3.
J Cell Biochem ; 123(11): 1762-1779, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35959633

RESUMO

Osteoporosis is a metabolic bone disorder associated with impaired bone microarchitecture leading to fragility fractures. Long-term usage of parathyroid hormone (PTH) enhances bone resorption and leads to osteosarcoma in rats which limits its exposure to maximum 2 years in human. Notably, the anabolic effects of PTH do not endure in the absence of sustained administration. Studies in our lab identified osteogenic and antiresorptive activity in medicarpin, a phytoestrogen belonging to the pterocarpan class. Considering dual-acting property of medicarpin and limitations of PTH therapy, we envisaged that medicarpin sequential treatment after PTH withdrawal could serve as promising therapeutic approach for osteoporosis treatment. As PTH exerts its bone anabolic effect by increasing osteoblast survival, our study aims to determine whether medicarpin amplifies this effect of PTH. Our results show that PTH withdrawal led to reduced bone mineral density and bone parameters, while sequential treatment of medicarpin after PTH withdrawal significantly enhanced these parameters. Remarkably, these effects were more pronounced than 8-week PTH treatment. Sequential therapy also significantly increased P1NP levels and decreased CTX levels and TRAP positive cells compared to PTH 8W group where CTX levels were quite high due to bone resorptive action of PTH. Protein expression studies revealed that medicarpin along with PTH betters the antiapoptotic potential compared to PTH alone, through augmentation of cyclic adenosine monophosphate-PKA-CREB pathway. These results proclaim that medicarpin sequential treatment prevented the reduction in bone accrual and strength accompanying PTH withdrawal and also aided in antiapoptotic role of PTH. The study points toward the potential use of medicarpin as a replacement therapeutic option postdiscontinuation of PTH.


Assuntos
Anabolizantes , Reabsorção Óssea , Osteoporose , Pterocarpanos , Ratos , Humanos , Animais , Hormônio Paratireóideo/farmacologia , Hormônio Paratireóideo/metabolismo , Pterocarpanos/farmacologia , Pterocarpanos/uso terapêutico , Osteoporose/metabolismo , Osso e Ossos/metabolismo , Reabsorção Óssea/tratamento farmacológico , Anabolizantes/farmacologia , Densidade Óssea
4.
Biomed Pharmacother ; 145: 112474, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34864308

RESUMO

Cristacarpin is a novel prenylated pterocarpan that reportedly exhibits broad anti-cancer activity by enhancing endoplasmic reticulum stress. However, whether and how cristacarpin affects in-flammatory processes remain largely unknown. In the present study, the anti-inflammatory effect of cristacarpin on lipopolysaccharide (LPS)-induced inflammation was investigated using zebrafish embryos, RAW 264.7 macrophages, and mouse uveitis models. In the non-toxic concentration range (from 20 to 100 µM), cristacarpin suppressed pro-inflammatory mediators such as interleukin (IL)-6 and tumor necrosis factor (TNF)-α, while stimulating anti-inflammatory mediators such as IL-4 and IL-10 in LPS-stimulated RAW 264.7 cells and uveitis mouse models. Cristacarpin decreased cell adhesion of macrophages through downregulation of the expression of Ninjurin1 and matrix metalloproteinases. Furthermore, cristacarpin reduced macrophage migration in zebrafish embryos in vivo. Cristacarpin also increased cytosolic levels of inhibitor of nuclear factor-κB and suppressed the nuclear translocation of nuclear factor κ-light-chain-enhancer of activated B cells. Collectively, our results suggest that cristacarpin is a potential therapeutic candidate for developing ocular anti-inflammatory drugs.


Assuntos
Mediadores da Inflamação/metabolismo , Macrófagos/imunologia , Pterocarpanos/farmacologia , Uveíte , Animais , Anti-Inflamatórios/farmacologia , Moléculas de Adesão Celular Neuronais/metabolismo , Modelos Animais de Doenças , Interleucinas/metabolismo , Camundongos , Inibidor de NF-kappaB alfa/metabolismo , NF-kappa B/metabolismo , Fatores de Crescimento Neural/metabolismo , Extratos Vegetais/farmacologia , Células RAW 264.7 , Fator de Necrose Tumoral alfa/metabolismo , Uveíte/tratamento farmacológico , Uveíte/metabolismo , Peixe-Zebra , Proteínas de Peixe-Zebra/metabolismo
5.
Neurochem Res ; 47(2): 347-357, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34523056

RESUMO

Medicarpin, a pterocarpan class of naturally occurring phytoestrogen possesses various biological functions. However, the effect of medicarpin on oxygen-glucose deprivation-reoxygenation (OGD/R)-induced injury in human cerebral microvascular endothelial cells (HCMECs) remains largely unknown. Target genes of medicarpin were predicted from PharmMapper. Target genes of ischemic stroke were predicted from public databases GeneCards and DisGeNET. Kyoto Encyclopedia of Genes and Genomes pathway enrichment of the intersecting targets was analyzed via DAVID 6.8. Cell viability was evaluated using CCK-8 assay. Malondialdehyde content, superoxide dismutase activity, and glutathione level were detected using corresponding commercially available kits. Cell death was assessed by TUNEL assays. Expression of protein kinase B (Akt), phosphorylated-Akt, forkhead box protein O1, phosphorylated-FoxO1, FoxO3a, and phosphorylated-FoxO3a (p-FoxO3a) was detected by western blot analysis. The intersecting targets of medicarpin and ischemic stroke were significantly enriched in phosphatidylinositol 3-kinase (PI3K)/Akt and FoxO pathways. Medicarpina attenuated OGD/R-evoked viability inhibition, oxidative stress, and cell death in HCMECs. Additionally, medicarpin activated the PI3K/Akt and FoxO pathways in OGD/R-induced HCMECs. Inhibition of PI3K/Akt pathway abrogated the neuroprotective effect of medicarpin on OGD/R-induced injury and activation of FoxO pathway in HCMECs. In conclusion, medicarpin suppressed OGD/R-induced injury in HCMECs by activating PI3K/Akt/FoxO pathway.


Assuntos
Pterocarpanos , Traumatismo por Reperfusão , Apoptose , Células Endoteliais/metabolismo , Glucose/metabolismo , Humanos , Farmacologia em Rede , Oxigênio/metabolismo , Fosfatidilinositol 3-Quinase/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Pterocarpanos/metabolismo , Pterocarpanos/farmacologia , Traumatismo por Reperfusão/metabolismo
6.
Zhongguo Zhong Yao Za Zhi ; 46(17): 4323-4333, 2021 Sep.
Artigo em Chinês | MEDLINE | ID: mdl-34581035

RESUMO

Pterocarpans, ubiquitous in Fabaceae, are protective active substances produced by the chemical defense system of plants. A total of 144 pterocarpans had been discovered before 2006. For the first time, we reported the 89 pterocarpans identified in 2006-2020. These pterocarpans not only demonstrate novel complex diversified genus-specific stereostructures but also display strong anti-microbial, anti-tumor, antioxidant, insecticidal, and anti-inflammatory activities. Through the projection of their biogenetic pathways and study of the pharmacological activities, the structure-activity correlation was further confirmed. The distribution of Leguminosae plants rich in pterocarpans has obvious regional characteristics. Therefore, the research and utilization of Leguminosae plant resources in China should be strengthened, and the popularity and application value of the geographical indicator plant resources should be improved. This paper serves as a reference for further research, development, and utilization of pterocarpans and their plant sources.


Assuntos
Fabaceae , Pterocarpanos , Anti-Inflamatórios , Antioxidantes , Extratos Vegetais/farmacologia , Pterocarpanos/farmacologia
7.
Int J Oncol ; 58(6)2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33786613

RESUMO

Acute myeloid leukemia (AML) is a complex hematological disorder characterized by blockage of differentiation and high proliferation rates of myeloid progenitors. Anthracycline and cytarabine­based therapy has remained the standard treatment for AML over the last four decades. Although this treatment strategy has increased survival rates, patients often develop resistance to these drugs. Despite efforts to understand the mechanisms underlying cytarabine resistance, there have been few advances in the field. The present study developed an in vitro AML cell line model resistant to cytarabine (HL­60R), and identified chromosomal aberrations by karyotype evaluation and potential molecular mechanisms underlying chemoresistance. Cytarabine decreased cell viability, as determined by MTT assay, and induced cell death and cell cycle arrest in the parental HL­60 cell line, as revealed by Annexin V/propidium iodide (PI) staining and PI DNA incorporation, respectively, whereas no change was observed in the HL­60R cell line. In addition, the HL­60R cell line exhibited a higher tumorigenic capacity in vivo compared with the parental cell line. Notably, no reduction in tumor volume was detected in mice treated with cytarabine and inoculated with HL­60R cells. In addition, western blotting revealed that the protein expression levels of Bcl­2, X­linked inhibitor of apoptosis protein (XIAP) and c­Myc were upregulated in HL­60R cells compared with those in HL­60 cells, along with predominant nuclear localization of the p50 and p65 subunits of NF­κB in HL­60R cells. Furthermore, the antitumor effect of LQB­118 pterocarpanquinone was investigated; this compound induced apoptosis, a reduction in cell viability and a decrease in XIAP expression in cytarabine­resistant cells. Taken together, these data indicated that acquired cytarabine resistance in AML was a multifactorial process, involving chromosomal aberrations, and differential expression of apoptosis and cell proliferation signaling pathways. Furthermore, LQB­118 could be a potential alternative therapeutic approach to treat cytarabine­resistant leukemia cells.


Assuntos
Aberrações Cromossômicas , Leucemia Mieloide Aguda/tratamento farmacológico , Naftoquinonas/farmacologia , Pterocarpanos/farmacologia , Animais , Apoptose/efeitos dos fármacos , Apoptose/genética , Citarabina/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células HL-60 , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Masculino , Camundongos , Naftoquinonas/uso terapêutico , Pterocarpanos/uso terapêutico , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/genética , Ensaios Antitumorais Modelo de Xenoenxerto
8.
Bioorg Chem ; 107: 104584, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33453646

RESUMO

Natural pterocarpans and synthetic 5-carba-pterocarpans are isosteres in which the oxygen atom at position 5 in the pyran-ring of pterocarpans is replaced by a methylene group. These 5-carba-analogues were obtained in good yields through the palladium-catalyzed oxyarylation of alcoxy-1,2-dihydronaphthalens with o-iodophenols in PEG-400. They were evaluated on human cancer cell lineages derived respectively from prostate tumor (PC3, IC50 = 11.84 µmol L-1, SI > 12)) and acute myeloid leukemia (HL-60, IC50 = 8.81 µmol L-1, SI > 16), highly incident cancer types presenting resistance against traditional chemotherapeutics. Compound 6c (LQB-492) was the most potent (IC50 = 3.85 µmol L-1, SI > 37) in SF-295 cell lineage (glioblastoma). Such findings suggest that 5-carba-pterocarpan can potentially be new hit compounds for further development of novel antiproliferative agents.


Assuntos
Antineoplásicos/farmacologia , Pterocarpanos/farmacologia , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Camundongos , Estrutura Molecular , Pterocarpanos/síntese química , Pterocarpanos/química , Relação Estrutura-Atividade
9.
Nat Prod Res ; 35(21): 3925-3930, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32249600

RESUMO

A new pterocarpan, named velucarpin D (1), along with nine known pterocarpans (2-10) were isolated from the stems of Dalbergia velutina. Their structures were determined by spectroscopic analysis. All isolated compounds were evaluated for their cytotoxicity against five human cancer cell lines (KB, HeLa S-3, MCF-7, Hep G2, and HT-29). Compound 2 showed potent cytotoxicity against all the five human cancer cell lines with IC50 values in the range of 4.74-8.46 µM. In addition, compounds 1, 3, 4, 5 and 9 showed moderate cytotoxicity against both KB and HeLa S-3 cells with IC50 values in the range of 14.23-29.35 µM.


Assuntos
Antineoplásicos Fitogênicos , Dalbergia , Pterocarpanos , Antineoplásicos Fitogênicos/farmacologia , Linhagem Celular Tumoral , Células HeLa , Humanos , Estrutura Molecular , Pterocarpanos/farmacologia
10.
Molecules ; 25(24)2020 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-33327391

RESUMO

A stable intense resistance called "nonhost resistance" generates a complete multiple-gene resistance against plant pathogenic species that are not pathogens of pea such as the bean pathogen, Fusarium solani f. sp. phaseoli (Fsph). Chitosan is a natural nonhost resistance response gene activator of defense responses in peas. Chitosan may share with cancer-treatment compounds, netropsin and some anti-cancer drugs, a DNA minor groove target in plant host tissue. The chitosan heptamer and netropsin have the appropriate size and charge to reside in the DNA minor groove. The localization of a percentage of administered radio-labeled chitosan in the nucleus of plant tissue in vivo indicates its potential to transport to site(s) within the nuclear chromatin (1,2). Other minor groove-localizing compounds administered to pea tissue activate the same secondary plant pathway that terminates in the production of the anti-fungal isoflavonoid, pisatin an indicator of the generated resistance response. Some DNA minor groove compounds also induce defense genes designated as "pathogenesis-related" (PR) genes. Hypothetically, DNA targeting components alter host DNA in a manner enabling the transcription of defense genes previously silenced or minimally expressed. Defense-response-elicitors can directly (a) target host DNA at the site of transcription or (b) act by a series of cascading events beginning at the cell membrane and indirectly influence transcription. A single defense response, pisatin induction, induced by chitosan and compounds with known DNA minor groove attachment potential was followed herein. A hypothesis is formulated suggesting that this DNA target may be accountable for a portion of the defense response generated in nonhost resistance.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Quitosana/farmacologia , Substâncias Intercalantes/farmacologia , Netropsina/farmacologia , Pisum sativum/genética , Doenças das Plantas/genética , Pterocarpanos/farmacologia , Antineoplásicos Fitogênicos/química , Benzimidazóis/química , Benzimidazóis/farmacologia , Quitosana/química , Cromatina/química , Cromatina/efeitos dos fármacos , Cromatina/metabolismo , Cromomicinas/química , Cromomicinas/farmacologia , DNA de Plantas/genética , DNA de Plantas/metabolismo , Resistência à Doença/genética , Fusarium/crescimento & desenvolvimento , Fusarium/patogenicidade , Regulação da Expressão Gênica de Plantas , Proteínas HMGA/genética , Proteínas HMGA/metabolismo , Substâncias Intercalantes/química , Netropsina/química , Pisum sativum/imunologia , Pisum sativum/metabolismo , Pisum sativum/microbiologia , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Pterocarpanos/química , Transcrição Gênica
11.
J Cell Mol Med ; 24(21): 12308-12317, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32939977

RESUMO

Osteolytic diseases are typified by over-enhanced formation and resorbing function of osteoclasts and have a major impact on human health. Inhibition of osteoclastic differentiation and function is a key strategy for clinical therapy of osteolytic conditions. Maackiain is a natural compound extracted from Sophora flavescens, which has been applied to anti-allergic and anti-tumour treatments. The present results showed that Maackiain could restrain receptor activator of nuclear factor-κB ligand (RANKL)-stimulated osteoclast formation and hydroxyapatite resorption dose-dependently, and interrupt the structures of F-actin belts in the mature osteoclasts. It also repressed the expressions of osteoclast-specific genes and proteins. Furthermore, Maackiain could inhibit RANKL-stimulated NF-κB and calcium signalling pathways, and dampen Nuclear factor of activated T cell cytoplasmic 1 activity, protein expression and translocation into the nucleus. These results revealed that Maackiain may have a potential therapeutic effect on osteoclast-related disorders.


Assuntos
NF-kappa B/metabolismo , Fatores de Transcrição NFATC/metabolismo , Osteoclastos/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Pterocarpanos/farmacologia , Ligante RANK/metabolismo , Transporte Ativo do Núcleo Celular , Animais , Células da Medula Óssea/citologia , Reabsorção Óssea/patologia , Cálcio/metabolismo , Diferenciação Celular/efeitos dos fármacos , Sobrevivência Celular , Feminino , Regulação da Expressão Gênica , Macrófagos/metabolismo , Camundongos , Osteoblastos/citologia , Osteoclastos/citologia , Transdução de Sinais/efeitos dos fármacos
12.
Int J Mol Sci ; 21(12)2020 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-32585871

RESUMO

The movement disorder Parkinson's disease (PD) is the second most frequently diagnosed neurodegenerative disease, and is associated with aging, the environment, and genetic factors. The intracellular aggregation of α-synuclein and the loss of dopaminergic neurons in the substantia nigra pars compacta are the pathological hallmark of PD. At present, there is no successful treatment for PD. Maackiain (MK) is a flavonoid extracted from dried roots of Sophora flavescens Aiton. MK has emerged as a novel agent for PD treatment that acts by inhibiting monoamine oxidase B. In this study, we assessed the neuroprotective potential of MK in Caenorhabditis elegans and investigated possible mechanism of this neuroprotection in the human SH-SY5Y cell line. We found that MK significantly reduced dopaminergic neuron damage in 6-hydroxydopamine (6-OHDA)-exposed worms of the BZ555 strain, with corresponding improvements in food-sensing behavior and life-span. In transgenic worms of strain NL5901 treated with 0.25 mM MK, the accumulation of α-synuclein was diminished by 27% (p < 0.01) compared with that in untreated worms. Moreover, in worms and the SH-SY5Y cell line, we confirmed that the mechanism of MK-mediated protection against PD pathology may include blocking apoptosis, enhancing the ubiquitin-proteasome system, and augmenting autophagy by increasing PINK1/parkin expression. The use of small interfering RNA to downregulate parkin expression in vivo and in vitro could reverse the benefits of MK in PD models. MK may have considerable therapeutic applications in PD.


Assuntos
Caenorhabditis elegans/efeitos dos fármacos , Neuroblastoma/tratamento farmacológico , Oxidopamina/toxicidade , Doença de Parkinson/tratamento farmacológico , Proteínas Quinases/metabolismo , Pterocarpanos/farmacologia , Ubiquitina-Proteína Ligases/metabolismo , alfa-Sinucleína/toxicidade , Adrenérgicos/toxicidade , Animais , Apoptose , Autofagia , Caenorhabditis elegans/crescimento & desenvolvimento , Modelos Animais de Doenças , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Neuroblastoma/etiologia , Neuroblastoma/patologia , Doença de Parkinson/etiologia , Doença de Parkinson/patologia , Proteínas Quinases/genética , Ubiquitina-Proteína Ligases/genética
13.
FEBS Open Bio ; 10(8): 1482-1491, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32428336

RESUMO

Sophora flavescens is used as a traditional herbal medicine to modulate inflammatory responses. However, little is known about the impact of (-)-maackiain, a compound derived from S. flavescens, on the activation of inflammasome/caspase-1, a key factor in interleukin-1ß (IL-1ß) processing. Here, we report that (-)-maackiain potently amplified caspase-1 cleavage in macrophages in response to nigericin (Nig). In macrophages primed with either lipopolysaccharide or monophosphoryl lipid A, Nig-mediated caspase-1 cleavage was also markedly promoted by (-)-maackiain. Notably, (-)-maackiain induced the production of vimentin, an essential mediator for the activation of the NOD-, LRR-, and pyrin domain-containing protein 3 inflammasome, thereby contributing to promotion of the formation of the inflammasome complex to activate caspase-1. Taken together, our data suggest that (-)-maackiain exerts an immunostimulatory effect by promoting IL-1ß production via activation of the inflammasome/caspase-1 pathway. Thus, the potent inflammasome-activating effect of (-)-maackiain may be clinically useful as an acute immune-stimulating agent.


Assuntos
Inflamassomos/efeitos dos fármacos , Interleucina-1beta/biossíntese , Extratos Vegetais/farmacologia , Pterocarpanos/farmacologia , Sophora/química , Animais , Células Cultivadas , Inflamassomos/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Nigericina/farmacologia , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Pterocarpanos/química , Pterocarpanos/isolamento & purificação
14.
Int J Mol Sci ; 21(4)2020 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-32085612

RESUMO

Recent studies strongly support the use of the aryl hydrocarbon receptor (AhR) as a therapeutic target in breast cancer. Glyceollins, a group of soybean phytoalexins, are known to exert therapeutic effects in chronic human diseases and also in cancer. To investigate the interaction between glyceollin I (GI), glyceollin II (GII) and AhR, a computational docking analysis, luciferase assays, immunofluorescence and transcriptome analyses were performed with different cancer cell lines. The docking experiments predicted that GI and GII can enter into the AhR binding pocket, but their interactions with the amino acids of the binding site differ, in part, from those interacting with 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Both GI and GII were able to weakly and partially activate AhR, with GII being more potent. The results from the transcriptome assays showed that approximately 10% of the genes regulated by TCDD were also modified by both GI and GII, which could have either antagonistic or synergistic effects upon TCDD activation. In addition, we report here, on the basis of phenotype, that GI and GII inhibit the migration of triple-negative (ER-, PgR-, HER2NEU-) MDA-MB-231 breast cancer cells, and that they inhibit the expression of genes which code for important regulators of cell migration and invasion in cancer tissues. In conclusion, GI and GII are AhR ligands that should be further investigated to determine their usefulness in cancer treatments.


Assuntos
Movimento Celular/efeitos dos fármacos , Pterocarpanos/farmacologia , Receptores de Hidrocarboneto Arílico/metabolismo , Sítios de Ligação , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Ligantes , Simulação de Acoplamento Molecular , Pterocarpanos/química , Receptores de Hidrocarboneto Arílico/agonistas , Receptores de Hidrocarboneto Arílico/antagonistas & inibidores , Receptores de Estrogênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transcriptoma/genética
15.
Oncol Rep ; 43(1): 346-357, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31746438

RESUMO

Glioblastoma (GBM) is the most frequent malignant brain tumor. It represents the most aggressive astrocytoma with an overall survival of 14 months. Despite improvements in surgery techniques, radio­ and chemotherapy, most patients present treatment resistance, recurrence and disease progression. Therefore, development of effective alternative therapies is essential to overcome treatment failure. The purpose of the study was to evaluate the antitumoral activity of the synthetic compound LQB­118, in vitro. Monolayer and three­dimensional (3D) cell culture systems of human­derived GBM cell lines were used to evaluate the effect of LQB­118 on cell viability, cell death and migration. LQB­118 reduced cell viability as determined by MTT and trypan blue exclusion assays and promoted apoptosis in monolayer cell lines with an intrinsic temozolomide (TMZ)­resistance profile. In 3D culture models, LQB­118 reduced cell viability as evaluated by APH assay and inhibited cell migration while the TMZ resistance profile was maintained. Moreover, LQB­118 reduced p38 and AKT expression and phosphorylation, whereas it reduced only the phosphorylated ERK1/2 form. LQB­118 reduced p38 and NRF2 expression, an axis that is associated with TMZ resistance, revealing a mechanism to overcome resistance. LQB­118 also demonstrated an additional effect when combined with ionizing radiation and cisplatin. In conclusion, the present data demonstrated that LQB­118 maintained its effectiveness in a 3D cell conformation, which shares more similarities with the tumor mass. LQB­118 is a promising agent for GBM treatment as monotherapy and associated with radiotherapy or cisplatin. Its effect is associated with inhibition of GBM­related survival signaling pathways.


Assuntos
Neoplasias Encefálicas/metabolismo , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Glioblastoma/metabolismo , Naftoquinonas/farmacologia , Proteínas Quinases/metabolismo , Pterocarpanos/farmacologia , Neoplasias Encefálicas/tratamento farmacológico , Técnicas de Cultura de Células , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Sinergismo Farmacológico , Glioblastoma/tratamento farmacológico , Humanos , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Temozolomida , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
16.
Biomolecules ; 9(12)2019 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-31817312

RESUMO

To determine the mechanism of action of the effects of phytoalexins in soybeans, we analyzed α-glucosidase inhibition kinetics using Michaelis-Menten plots and Lineweaver-Burk plots. The results showed that the type of inhibition with glyceollin was competitive, that of genistein was noncompetitive, that of daidzein was uncompetitive, and luteolin showed a mixed mode of action. The Ki values were determined using a Dixon plot as glyceollin, 18.99 µM; genistein, 15.42 µM; luteolin, 16.81 µM; and daidzein, 9.99 µM. Furthermore, potential synergistic effects between glyceollin and the three polyphenols were investigated. A combination of glyceollin and luteolin at a ratio of 3:7 exhibited synergistic effects on α-glucosidase inhibition, having a combination index (CI) of 0.64244, according to the CI-isobologram equation. Collectively, these results showed that a combination of glyceollin and luteolin has the potential to inhibit α-glucosidase activity via a synergistic mode of inhibition.


Assuntos
Glycine max/enzimologia , Inibidores de Glicosídeo Hidrolases/farmacologia , Sesquiterpenos/farmacologia , Sinergismo Farmacológico , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genisteína/farmacologia , Isoflavonas/farmacologia , Luteolina/farmacologia , Proteínas de Plantas/farmacologia , Pterocarpanos/farmacologia , alfa-Glucosidases/metabolismo , Fitoalexinas
17.
J Nat Prod ; 82(11): 3025-3032, 2019 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-31675225

RESUMO

Chromatographic purification of a methanol extract of the roots of Lespedeza bicolor led to the isolation of four new pterocarpans (1-4), two new coumestans (6 and 7), two new arylbenzofurans (8 and 9), and the known pterocarpan 1-methoxyerythrabyssin II (5). Their structures were identified using NMR spectroscopy, UV spectroscopy, and mass spectrometry. Cytotoxicity assays showed that compounds 1-9 exerted antiproliferative effects on blood cancer cells. Of these compounds, 1 and 6 induced mitochondrial depolarization and induced apoptosis in Jurkat cells. These compounds promoted cell death by inducing cell-cycle arrest at the G1 stage, reducing levels of BCL2, and increasing cleavage of PARP-1. These findings indicate that 1 and 6 are possible lead compounds for the treatment of human leukemia cells via intracellular signaling.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Cumarínicos/farmacologia , Lespedeza/química , Pterocarpanos/farmacologia , Antineoplásicos Fitogênicos/isolamento & purificação , Apoptose/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Cumarínicos/isolamento & purificação , Neoplasias Hematológicas/sangue , Neoplasias Hematológicas/tratamento farmacológico , Humanos , Células Jurkat , Espectroscopia de Ressonância Magnética , Mitocôndrias/efeitos dos fármacos , Estrutura Molecular , Pterocarpanos/isolamento & purificação , Espectrofotometria Ultravioleta
18.
Int J Mol Sci ; 20(20)2019 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-31614718

RESUMO

Drug resistance represents a major issue in treating breast cancer, despite the identification of novel therapeutic strategies, biomarkers, and subgroups. We have previously identified the LQB-223, 11a-N-Tosyl-5-deoxi-pterocarpan, as a promising compound in sensitizing doxorubicin-resistant breast cancer cells, with little toxicity to non-neoplastic cells. Here, we investigated the mechanisms underlying LQB-223 antitumor effects in 2D and 3D models of breast cancer. MCF-7 and MDA-MB-231 cells had migration and motility profile assessed by wound-healing and phagokinetic track motility assays, respectively. Cytotoxicity in 3D conformation was evaluated by measuring spheroid size and performing acid phosphatase and gelatin migration assays. Protein expression was analyzed by immunoblotting. Our results show that LQB-223, but not doxorubicin treatment, suppressed the migratory and motility capacity of breast cancer cells. In 3D conformation, LQB-223 remarkably decreased cell viability, as well as reduced 3D culture size and migration. Mechanistically, LQB-223-mediated anticancer effects involved decreased proteins levels of XIAP, c-IAP1, and Mcl-1 chemoresistance-related proteins, but not survivin. Survivin knockdown partially potentiated LQB-223-induced cytotoxicity. Additionally, cell treatment with LQB-223 resulted in changes in the mRNA levels of epithelial-mesenchymal transition markers, suggesting that it might modulate cell plasticity. Our data demonstrate that LQB-223 impairs 3D culture growth and migration in 2D and 3D models of breast cancer exhibiting different phenotypes.


Assuntos
Antineoplásicos/farmacologia , Apoptose , Neoplasias da Mama/metabolismo , Resistencia a Medicamentos Antineoplásicos , Pterocarpanos/farmacologia , Antineoplásicos/toxicidade , Movimento Celular , Proliferação de Células , Feminino , Humanos , Proteínas Inibidoras de Apoptose/metabolismo , Células MCF-7 , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Pterocarpanos/toxicidade , Esferoides Celulares/efeitos dos fármacos , Survivina/genética , Survivina/metabolismo , Células Tumorais Cultivadas , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/metabolismo
19.
Fitoterapia ; 135: 64-72, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31004693

RESUMO

Four new pterocarpans (6aR,11aR)-6a,11a-dihydrolespedezol A2 (2), (6aR,11aR)-2-isoprenyl-6a,11a-dihydrolespedezol A2 (3), (6aR,11aR,3'R)-6a,11a-dihydrolespedezol A3 (4), (6aR,11aR,3'S)-6a,11a-dihydrolespedezol A3 (5) and one new stilbenoid with 1,2-diketone fragment named bicoloketone (6) along with one previously known pterocarpen lespedezol A2 (1) have been isolated from Lespedeza bicolor stem bark using multistage column chromatography on polyamide and silica gel. The structures of the isolated polyphenolic compounds were determined by spectroscopic methods. The absolute configurations of 4 and 5 were determined by comparison of their electronic circular dichroism (ECD) spectra obtained experimentally and the spectra calculated using time-dependent density functional theory (TDDFT). The isolated compounds exhibited a moderate DPPH scavenging effect and ferric reducing power compared to the reference antioxidant quercetin. The cytotoxicity of compounds against three human cancer cell lines, HTB-19, Kyse-30, and HEPG-2, and two normal cell lines, RPE-1 and HEK-293, was tested using the MTT assay. Compound 3 showed the strongest cytotoxic activity against all cell lines (IC50 6.0-19.1 µM) compared with the positive control cisplatin. The other tested compounds possessed moderate cytotoxic activity against cancer cells.


Assuntos
Antioxidantes/farmacologia , Lespedeza/química , Polifenóis/farmacologia , Pterocarpanos/farmacologia , Antioxidantes/química , Antioxidantes/isolamento & purificação , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Humanos , Estrutura Molecular , Polifenóis/química , Polifenóis/isolamento & purificação , Pterocarpanos/química , Pterocarpanos/isolamento & purificação
20.
BMC Genomics ; 20(1): 149, 2019 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-30786857

RESUMO

BACKGROUND: Glyceollins are isoflavonoid-derived pathogen-inducible defense metabolites (phytoalexins) from soybean (Glycine max L. Merr) that have important roles in providing defense against pathogens. They also have impressive anticancer and neuroprotective activities in mammals. Despite their potential usefulness as therapeutics, glyceollins are not economical to synthesize and are biosynthesized only transiently and in low amounts in response to specific stresses. Engineering the regulation of glyceollin biosynthesis may be a promising approach to enhance their bioproduction, yet the transcription factors (TFs) that regulate their biosynthesis have remained elusive. To address this, we first aimed to identify novel abiotic stresses that enhance or suppress the elicitation of glyceollins and then used a comparative transcriptomics approach to search for TF gene candidates that may positively regulate glyceollin biosynthesis. RESULTS: Acidity stress (pH 3.0 medium) and dehydration exerted prolonged (week-long) inductive or suppressive effects on glyceollin biosynthesis, respectively. RNA-seq found that all known biosynthetic genes were oppositely regulated by acidity stress and dehydration, but known isoflavonoid TFs were not. Systemic acquired resistance (SAR) genes were highly enriched in the geneset. We chose to functionally characterize the NAC (NAM/ATAF1/2/CUC2)-family TF GmNAC42-1 that was annotated as an SAR gene and a homolog of the Arabidopsis thaliana (Arabidopsis) indole alkaloid phytoalexin regulator ANAC042. Overexpressing and silencing GmNAC42-1 in elicited soybean hairy roots dramatically enhanced and suppressed the amounts of glyceollin metabolites and biosynthesis gene mRNAs, respectively. Yet, overexpressing GmNAC42-1 in non-elicited hairy roots failed to stimulate the expressions of all biosynthesis genes. Thus, GmNAC42-1 was necessary but not sufficient to activate all biosynthesis genes on its own, suggesting an important role in the glyceollin gene regulatory network (GRN). The GmNAC42-1 protein directly bound the promoters of biosynthesis genes IFS2 and G4DT in the yeast one-hybrid (Y1H) system. CONCLUSIONS: Acidity stress is a novel elicitor and dehydration is a suppressor of glyceollin biosynthesis. The TF gene GmNAC42-1 is an essential positive regulator of glyceollin biosynthesis. Overexpressing GmNAC42-1 in hairy roots can be used to increase glyceollin yields > 10-fold upon elicitation. Thus, manipulating the expressions of glyceollin TFs is an effective strategy for enhancing the bioproduction of glyceollins in soybean.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Glycine max/metabolismo , Fármacos Neuroprotetores/farmacologia , Pterocarpanos/biossíntese , Pterocarpanos/farmacologia , Fatores de Transcrição/metabolismo , Transporte Biológico , Regulação da Expressão Gênica de Plantas , Isoflavonas/biossíntese , Raízes de Plantas/metabolismo , Regiões Promotoras Genéticas , Glycine max/genética , Estresse Fisiológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA