Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.127
Filtrar
1.
Am J Physiol Lung Cell Mol Physiol ; 326(5): L604-L617, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38442187

RESUMO

Postnatal lung development results in an increasingly functional organ prepared for gas exchange and pathogenic challenges. It is achieved through cellular differentiation and migration. Changes in the tissue architecture during this development process are well-documented and increasing cellular diversity associated with it are reported in recent years. Despite recent progress, transcriptomic and molecular pathways associated with human postnatal lung development are yet to be fully understood. In this study, we investigated gene expression patterns associated with healthy pediatric lung development in four major enriched cell populations (epithelial, endothelial, and nonendothelial mesenchymal cells, along with lung leukocytes) from 1-day-old to 8-yr-old organ donors with no known lung disease. For analysis, we considered the donors in four age groups [less than 30 days old neonates, 30 days to < 1 yr old infants, toddlers (1 to < 2 yr), and children 2 yr and older] and assessed differentially expressed genes (DEG). We found increasing age-associated transcriptional changes in all four major cell types in pediatric lung. Transition from neonate to infant stage showed highest number of DEG compared with the number of DEG found during infant to toddler- or toddler to older children-transitions. Profiles of differential gene expression and further pathway enrichment analyses indicate functional epithelial cell maturation and increased capability of antigen presentation and chemokine-mediated communication. Our study provides a comprehensive reference of gene expression patterns during healthy pediatric lung development that will be useful in identifying and understanding aberrant gene expression patterns associated with early life respiratory diseases.NEW & NOTEWORTHY This study presents postnatal transcriptomic changes in major cell populations in human lung, namely endothelial, epithelial, mesenchymal cells, and leukocytes. Although human postnatal lung development continues through early adulthood, our results demonstrate that greatest transcriptional changes occur in first few months of life during neonate to infant transition. These early transcriptional changes in lung parenchyma are particularly notable for functional maturation and activation of alveolar type II cell genes.


Assuntos
Pulmão , Transcriptoma , Humanos , Pulmão/crescimento & desenvolvimento , Pulmão/metabolismo , Recém-Nascido , Lactente , Criança , Pré-Escolar , Masculino , Feminino , Análise de Sequência de RNA/métodos , Células Epiteliais/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Perfilação da Expressão Gênica
2.
Funct Integr Genomics ; 23(2): 135, 2023 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-37085733

RESUMO

The precise molecular events initiating human lung disease are often poorly characterized. Investigating prenatal events that may underlie lung disease in later life is challenging in man, but insights from the well-characterized sheep model of lung development are valuable. Here, we determine the transcriptomic signature of lung development in wild-type sheep (WT) and use a sheep model of cystic fibrosis (CF) to characterize disease associated changes in gene expression through the pseudoglandular, canalicular, saccular, and alveolar stages of lung growth and differentiation. Using gene ontology process enrichment analysis of differentially expressed genes at each developmental time point, we define changes in biological processes (BP) in proximal and distal lung from WT or CF animals. We also compare divergent BP in WT and CF animals at each time point. Next, we establish the developmental profile of key genes encoding components of ion transport and innate immunity that are pivotal in CF lung disease and validate transcriptomic data by RT-qPCR. Consistent with the known pro-inflammatory phenotype of the CF lung after birth, we observe upregulation of inflammatory response processes in the CF sheep distal lung during the saccular stage of prenatal development. These data suggest early commencement of therapeutic regimens may be beneficial.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística , Fibrose Cística , Pulmão , Animais , Fibrose Cística/genética , Fibrose Cística/patologia , Fibrose Cística/veterinária , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/uso terapêutico , Perfilação da Expressão Gênica , Pulmão/crescimento & desenvolvimento , Pulmão/metabolismo , Ovinos/genética , Transcriptoma , Inflamação/genética , Inflamação/patologia
3.
Int. j. morphol ; 41(1): 45-50, feb. 2023.
Artigo em Inglês | LILACS | ID: biblio-1430521

RESUMO

SUMMARY: Neuropeptide calcitonin gene-related peptide (CGRP) is a neurotransmitter related to vasculogenesis during organ development. The vascular endothelial growth factor A (VEGF-A) is also required for vascular patterning during lung morphogenesis. CGRP is primarily found in organs and initially appears in pulmonary neuroendocrine cells during the early embryonic stage of lung development. However, the relationship between CGRP and VEGF-A during lung formation remains unclear. This study investigates CGRP and VEGF-A mRNA expressions in the embryonic, pseudoglandular, canalicular, saccular, and alveolar stages of lung development from embryonic day 12.5 (E12.5) to postnatal day 5 (P5) through quantitative real-time polymerase chain reaction (qRT-PCR) and in situ hybridization. Further, we analyzed the expression of CGRP via immunohistochemistry. The VEGF-A mRNA was mainly scattered across the whole lung body from E12.5. CGRP was found to be expressed in a few epithelial cells of the canalicular and the respiratory bronchiole of the lung from E12.5 to P5. An antisense probe for CGRP mRNA was strongly detected in the lung from E14.5 to E17.5. Endogenous CGRP may regulate the development of the embryonic alveoli from E14.5 to E17.5 in a temporal manner.


El péptido relacionado con el gen de la calcitonina (CGRP) es un neurotransmisor vinculado con la vasculogénesis durante el desarrollo de órganos. El factor de crecimiento endotelial vascular A (VEGF-A) también se requiere para el patrón vascular durante la morfogénesis pulmonar. El CGRP se encuentra principalmente en los órganos y aparece inicialmente en las células neuroendocrinas pulmonares durante la etapa embrionaria temprana del desarrollo pulmonar. Sin embargo, la relación entre CGRP y VEGF-A durante la formación de los pulmones sigue sin estar clara. Este estudio investiga las expresiones de ARNm de CGRP y VEGF-A en las etapas embrionaria, pseudoglandular, canalicular, sacular y alveolar del desarrollo pulmonar desde el día embrionario 12,5 (E12,5) hasta el día postnatal 5 (P5) a través de la reacción en cadena de la polimerasa cuantitativa en tiempo real. (qRT-PCR) e hibridación in situ. Además, analizamos la expresión de CGRP mediante inmunohistoquímica. El ARNm de VEGF-A se dispersó principalmente por todo parénquima pulmonar desde E12,5. Se encontró que CGRP se expresaba en unas pocas células epiteliales de los bronquiolos canaliculares y respiratorios del pulmón desde E12,5 a P5. Se detectó fuertemente una sonda antisentido para ARNm de CGRP en el pulmón de E14,5 a E17,5. El CGRP endógeno puede regular el desarrollo de los alvéolos embrionarios de E14,5 a E17,5 de manera temporal.


Assuntos
Animais , Camundongos , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Pulmão/crescimento & desenvolvimento , Pulmão/embriologia , Imuno-Histoquímica , Hibridização In Situ , Neurotransmissores , Neovascularização Fisiológica
4.
Oxid Med Cell Longev ; 2022: 9714669, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35242281

RESUMO

During gestation, the most drastic change in oxygen supply occurs with the onset of ventilation after birth. As the too early exposure of premature infants to high arterial oxygen pressure leads to characteristic diseases, we studied the adaptation of the oxygen sensing system and its targets, the hypoxia-inducible factor- (HIF-) regulated genes (HRGs) in the developing lung. We draw a detailed picture of the oxygen sensing system by integrating information from qPCR, immunoblotting, in situ hybridization, and single-cell RNA sequencing data in ex vivo and in vivo models. HIF1α protein was completely destabilized with the onset of pulmonary ventilation, but did not coincide with expression changes in bona fide HRGs. We observed a modified composition of the HIF-PHD system from intrauterine to neonatal phases: Phd3 was significantly decreased, while Hif2a showed a strong increase and the Hif3a isoform Ipas exclusively peaked at P0. Colocalization studies point to the Hif1a-Phd1 axis as the main regulator of the HIF-PHD system in mouse lung development, complemented by the Hif3a-Phd3 axis during gestation. Hif3a isoform expression showed a stepwise adaptation during the periods of saccular and alveolar differentiation. With a strong hypoxic stimulus, lung ex vivo organ cultures displayed a functioning HIF system at every developmental stage. Approaches with systemic hypoxia or roxadustat treatment revealed only a limited in vivo response of HRGs. Understanding the interplay of the oxygen sensing system components during the transition from saccular to alveolar phases of lung development might help to counteract prematurity-associated diseases like bronchopulmonary dysplasia.


Assuntos
Adaptação Fisiológica/genética , Desenvolvimento Embrionário/genética , Hipóxia/genética , Hipóxia/metabolismo , Pulmão/embriologia , Pulmão/crescimento & desenvolvimento , Organogênese/genética , Oxigênio/metabolismo , Transdução de Sinais/genética , Animais , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Idade Gestacional , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Pulmão/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Gravidez , RNA-Seq/métodos , Ratos Wistar , Análise de Célula Única/métodos
5.
Development ; 149(3)2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35112129

RESUMO

The tracheal epithelium is a primary target for pulmonary diseases as it provides a conduit for air flow between the environment and the lung lobes. The cellular and molecular mechanisms underlying airway epithelial cell proliferation and differentiation remain poorly understood. Hedgehog (HH) signaling orchestrates communication between epithelial and mesenchymal cells in the lung, where it modulates stromal cell proliferation, differentiation and signaling back to the epithelium. Here, we reveal a previously unreported autocrine function of HH signaling in airway epithelial cells. Epithelial cell depletion of the ligand sonic hedgehog (SHH) or its effector smoothened (SMO) causes defects in both epithelial cell proliferation and differentiation. In cultured primary human airway epithelial cells, HH signaling inhibition also hampers cell proliferation and differentiation. Epithelial HH function is mediated, at least in part, through transcriptional activation, as HH signaling inhibition leads to downregulation of cell type-specific transcription factor genes in both the mouse trachea and human airway epithelial cells. These results provide new insights into the role of HH signaling in epithelial cell proliferation and differentiation during airway development.


Assuntos
Comunicação Autócrina/fisiologia , Diferenciação Celular , Proliferação de Células , Proteínas Hedgehog/metabolismo , Transdução de Sinais/genética , Animais , Células Cultivadas , Regulação para Baixo , Embrião de Mamíferos/citologia , Embrião de Mamíferos/metabolismo , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Proteínas Hedgehog/deficiência , Proteínas Hedgehog/genética , Humanos , Pulmão/crescimento & desenvolvimento , Pulmão/metabolismo , Pulmão/patologia , Camundongos , Camundongos Knockout , Receptor Smoothened/deficiência , Receptor Smoothened/genética , Receptor Smoothened/metabolismo , Traqueia/citologia , Traqueia/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
6.
Ann Surg ; 275(3): e586-e595, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33055583

RESUMO

OBJECTIVE: To evaluate the effect of combining antenatal sildenafil with fetal tracheal occlusion (TO) in fetal rabbits with surgically induced congenital diaphragmatic hernia (CDH). BACKGROUND: Although antenatal sildenafil administration rescues vascular abnormalities in lungs of fetal rabbits with CDH, it only partially improves airway morphometry. We hypothesized that we could additionally stimulate lung growth by combining this medical treatment with fetal TO. METHODS: CDH was created on gestational day (GD)23 (n=54). Does were randomized to receive either sildenafil 10 mg/kg/d or placebo by subcutaneous injection from GD24 to GD30. On GD28, fetuses were randomly assigned to TO or sham neck dissection. At term (GD30) fetuses were delivered, ventilated, and finally harvested for histological and molecular analyses. Unoperated littermates served as controls. RESULTS: The lung-to-body-weight ratio was significantly reduced in sham-CDH fetuses either (1.2 ±â€Š0.3% vs 2.3 ±â€Š0.3% in controls, P=0.0003). Sildenafil had no effect on this parameter, while CDH fetuses undergoing TO had a lung-to-body-weight ratio comparable to that of controls (2.5 ±â€Š0.8%, P<0.0001). Sildenafil alone induced an improvement in the mean terminal bronchiolar density (2.5 ±â€Š0.8 br/mm2 vs 3.5 ±â€Š0.9 br/mm2, P=0.043) and lung mechanics (static elastance 61 ±â€Š36 cmH2O /mL vs 113 ±â€Š40 cmH2O/mL, P=0.008), but both effects were more pronounced in fetuses undergoing additional TO (2.1 ±â€Š0.8 br/mm2, P=0.001 and 31 ±â€Š9 cmH2O/mL, P<0.0001 respectively). Both CDH-sham and CDH-TO fetuses treated with placebo had an increased medial wall thickness of peripheral pulmonary vessels (41.9 ±â€Š2.9% and 41.8 ±â€Š3.2%, vs 24.0 ±â€Š2.9% in controls, P<0.0001). CDH fetuses treated with sildenafil, either with or without TO, had a medial thickness in the normal range (29.4% ±â€Š2.6%). Finally, TO reduced gene expression of vascular endothelial growth factor and surfactant protein A and B, but this effect was counteracted by sildenafil. CONCLUSION: In the rabbit model for CDH, the combination of maternal sildenafil and TO has a complementary effect on vascular and parenchymal lung development.


Assuntos
Hérnias Diafragmáticas Congênitas , Pulmão/crescimento & desenvolvimento , Citrato de Sildenafila/administração & dosagem , Traqueia/cirurgia , Animais , Terapia Combinada , Modelos Animais de Doenças , Feminino , Feto , Gravidez , Coelhos , Distribuição Aleatória
7.
Am J Physiol Lung Cell Mol Physiol ; 322(2): L179-L190, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34878940

RESUMO

Antenatal stressors such as chorioamnionitis (CA) increase the risk for bronchopulmonary dysplasia (BPD). Studies have shown that experimental BPD can be ameliorated by postnatal treatment with mesenchymal stromal cell-derived extracellular vesicles (MEx). However, the antenatal efficacy of MEx to prevent BPD is unknown. To determine whether antenatal MEx therapy attenuates intrauterine inflammation and preserves lung growth in a rat model of CA-induced BPD. At embryonic day (E)20, rat litters were treated with intra-amniotic injections of saline, endotoxin (ETX) to model chorioamnionitis, MEx, or ETX plus MEx followed by cesarean section delivery with placental harvest at E22. Placental and lung evaluations were conducted at day 0 and day 14, respectively. To assess the effects of ETX and MEx on lung growth in vitro, E15 lung explants were imaged for distal branching. Placental tissues from ETX-exposed pregnancies showed increased expression of inflammatory markers NLRP-3 and IL-1ß and altered spiral artery morphology. In addition, infant rats exposed to intrauterine ETX had reduced alveolarization and pulmonary vessel density (PVD), increased right ventricular hypertrophy (RVH), and decreased lung mechanics. Intrauterine MEx therapy of ETX-exposed pups reduced inflammatory cytokines, normalized spiral artery architecture, and preserved distal lung growth and mechanics. In vitro studies showed that MEx treatment enhanced distal lung branching and increased VEGF and SPC gene expression. Antenatal MEx treatment preserved distal lung growth and reduced intrauterine inflammation in a model of CA-induced BPD. We speculate that MEx may provide a novel therapeutic strategy to prevent BPD due to antenatal inflammation.


Assuntos
Displasia Broncopulmonar/etiologia , Corioamnionite/patologia , Vesículas Extracelulares/metabolismo , Pulmão/crescimento & desenvolvimento , Células-Tronco Mesenquimais/metabolismo , Animais , Modelos Animais de Doenças , Endotoxinas , Feminino , Inflamação/patologia , Pulmão/irrigação sanguínea , Pulmão/patologia , Placenta/patologia , Gravidez , Ratos Sprague-Dawley , Transdução de Sinais
8.
Cells ; 10(12)2021 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-34943975

RESUMO

Mesenchymal cells are an essential cell type because of their role in tissue support, their multilineage differentiation capacities and their potential clinical applications. They play a crucial role during lung development by interacting with airway epithelium, and also during lung regeneration and remodeling after injury. However, much less is known about their function in lung disease. In this review, we discuss the origins of mesenchymal cells during lung development, their crosstalk with the epithelium, and their role in lung diseases, particularly in chronic obstructive pulmonary disease.


Assuntos
Pulmão/crescimento & desenvolvimento , Células-Tronco Mesenquimais/metabolismo , Organogênese/genética , Doença Pulmonar Obstrutiva Crônica/genética , Remodelação das Vias Aéreas/genética , Diferenciação Celular/genética , Transição Epitelial-Mesenquimal/genética , Epitélio/crescimento & desenvolvimento , Epitélio/metabolismo , Epitélio/patologia , Humanos , Pulmão/metabolismo , Pulmão/patologia , Células-Tronco Mesenquimais/citologia , Doença Pulmonar Obstrutiva Crônica/patologia , Mucosa Respiratória/crescimento & desenvolvimento , Mucosa Respiratória/metabolismo
9.
Development ; 148(24)2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34927678

RESUMO

Lung organogenesis requires precise timing and coordination to effect spatial organization and function of the parenchymal cells. To provide a systematic broad-based view of the mechanisms governing the dynamic alterations in parenchymal cells over crucial periods of development, we performed a single-cell RNA-sequencing time-series yielding 102,571 epithelial, endothelial and mesenchymal cells across nine time points from embryonic day 12 to postnatal day 14 in mice. Combining computational fate-likelihood prediction with RNA in situ hybridization and immunofluorescence, we explore lineage relationships during the saccular to alveolar stage transition. The utility of this publicly searchable atlas resource (www.sucrelab.org/lungcells) is exemplified by discoveries of the complexity of type 1 pneumocyte function and characterization of mesenchymal Wnt expression patterns during the saccular and alveolar stages - wherein major expansion of the gas-exchange surface occurs. We provide an integrated view of cellular dynamics in epithelial, endothelial and mesenchymal cell populations during lung organogenesis.


Assuntos
Desenvolvimento Embrionário/genética , Pulmão/crescimento & desenvolvimento , Células-Tronco Mesenquimais/citologia , Organogênese/genética , Animais , Diferenciação Celular/genética , Linhagem da Célula/genética , Embrião de Mamíferos/ultraestrutura , Células Epiteliais/citologia , Células Epiteliais/ultraestrutura , Regulação da Expressão Gênica no Desenvolvimento/genética , Pulmão/ultraestrutura , Células-Tronco Mesenquimais/ultraestrutura , Camundongos , RNA-Seq , Análise de Célula Única , Transcriptoma/genética
10.
Nutrients ; 13(12)2021 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-34959966

RESUMO

Poor linear growth is common in children with cystic fibrosis (CF) and predicts pulmonary status and mortality. Growth impairment develops in infancy, prior to pulmonary decline and despite aggressive nutritional measures. We hypothesized that growth restriction during early childhood in CF is associated with reduced adult height. We used the Cystic Fibrosis Foundation (CFF) patient registry to identify CF adults between 2011 and 2015 (ages 18-19 y, n = 3655) and had height for age (HFA) records between ages 2 and 4 y. We found that only 26% CF adults were ≥median HFA and 25% were <10th percentile. Between 2 and 4 years, those with height < 10th percentile had increased odds of being <10th percentile in adulthood compared to children ≥ 10th percentile (OR = 7.7). Of HFA measured between the 10th and 25th percentiles at ages 2-4, 58% were <25th percentile as adults. Only 13% between the 10th and 25th percentile HFA at age 2-4 years were >50th percentile as adults. Maximum height between ages 2 and 4 highly correlated with adult height. These results demonstrate that low early childhood CF height correlates with height in adulthood. Since linear growth correlates with lung growth, identifying both risk factors and interventions for growth failure (nutritional support, confounders of clinical care, and potential endocrine involvement) could lead to improved overall health.


Assuntos
Estatura , Fibrose Cística/fisiopatologia , Transtornos do Crescimento/fisiopatologia , Adolescente , Estudos de Casos e Controles , Pré-Escolar , Fibrose Cística/complicações , Feminino , Gráficos de Crescimento , Transtornos do Crescimento/etiologia , Humanos , Pulmão/crescimento & desenvolvimento , Masculino , Sistema de Registros , Estudos Retrospectivos , Adulto Jovem
11.
Nutrients ; 13(12)2021 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-34960012

RESUMO

Maternal iron deficiency occurs in 40-50% of all pregnancies and is associated with an increased risk of respiratory disease and asthma in children. We used murine models to examine the effects of lower iron status during pregnancy on lung function, inflammation and structure, as well as its contribution to increased severity of asthma in the offspring. A low iron diet during pregnancy impairs lung function, increases airway inflammation, and alters lung structure in the absence and presence of experimental asthma. A low iron diet during pregnancy further increases these major disease features in offspring with experimental asthma. Importantly, a low iron diet increases neutrophilic inflammation, which is indicative of more severe disease, in asthma. Together, our data demonstrate that lower dietary iron and systemic deficiency during pregnancy can lead to physiological, immunological and anatomical changes in the lungs and airways of offspring that predispose to greater susceptibility to respiratory disease. These findings suggest that correcting iron deficiency in pregnancy using iron supplements may play an important role in preventing or reducing the severity of respiratory disease in offspring. They also highlight the utility of experimental models for understanding how iron status in pregnancy affects disease outcomes in offspring and provide a means for testing the efficacy of different iron supplements for preventing disease.


Assuntos
Deficiências de Ferro/complicações , Ferro/administração & dosagem , Doenças Respiratórias/etiologia , Animais , Colágeno/metabolismo , Proteínas Dietéticas do Ovo , Feminino , Inflamação/etiologia , Pulmão/crescimento & desenvolvimento , Pulmão/patologia , Fenômenos Fisiológicos da Nutrição Materna , Camundongos , Camundongos Endogâmicos BALB C , Gravidez , Efeitos Tardios da Exposição Pré-Natal , Fenômenos Fisiológicos da Nutrição Pré-Natal
12.
Int J Mol Sci ; 22(22)2021 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-34829987

RESUMO

The simplification of alveoli leads to various lung pathologies such as bronchopulmonary dysplasia and emphysema. Deep insight into the process of emergence of the secondary septa during development and regeneration after pneumonectomy, and into the contribution of the drivers of alveologenesis and neo-alveolarization is required in an efficient search for therapeutic approaches. In this review, we describe the formation of the gas exchange units of the lung as a multifactorial process, which includes changes in the actomyosin cytoskeleton of alveocytes and myofibroblasts, elastogenesis, retinoic acid signaling, and the contribution of alveolar mesenchymal cells in secondary septation. Knowledge of the mechanistic context of alveologenesis remains incomplete. The characterization of the mechanisms that govern the emergence and depletion of αSMA will allow for an understanding of how the niche of fibroblasts is changing. Taking into account the intense studies that have been performed on the pool of lung mesenchymal cells, we present data on the typing of interstitial fibroblasts and their role in the formation and maintenance of alveoli. On the whole, when identifying cell subpopulations in lung mesenchyme, one has to consider the developmental context, the changing cellular functions, and the lability of gene signatures.


Assuntos
Actomiosina/genética , Pulmão/crescimento & desenvolvimento , Organogênese/genética , Alvéolos Pulmonares/crescimento & desenvolvimento , Displasia Broncopulmonar/genética , Displasia Broncopulmonar/patologia , Linhagem da Célula/genética , Citoesqueleto/genética , Enfisema/genética , Enfisema/patologia , Gases/metabolismo , Humanos , Pulmão/patologia , Mesoderma/citologia , Mesoderma/metabolismo , Miofibroblastos/metabolismo , Miofibroblastos/patologia , Tretinoína/metabolismo
13.
Cell Tissue Res ; 386(3): 617-636, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34606000

RESUMO

Dipeptidyl-peptidase IV (CD26), a multifactorial integral type II protein, is expressed in the lungs during development and is involved in inflammation processes. We tested whether daily LPS administration influences the CD26-dependent retardation in morphological lung development and induces alterations in the immune status. Newborn Fischer rats with and without CD26 deficiency were nebulized with 1 µg LPS/2 ml NaCl for 10 min from days postpartum (dpp) 3 to 9. We used stereological methods and fluorescence activated cell sorting (FACS) to determine morphological lung maturation and alterations in the pulmonary leukocyte content on dpp 7, 10, and 14. Daily LPS application did not change the lung volume but resulted in a significant retardation of alveolarization in both substrains proved by significantly lower values of septal surface and volume as well as higher mean free distances in airspaces. Looking at the immune status after LPS exposure compared to controls, a significantly higher percentage of B lymphocytes and decrease of CD4+CD25+ T cells were found in both subtypes, on dpp7 a significantly higher percentage of CD4 T+ cells in CD26+ pups, and a significantly higher percentage of monocytes in CD26- pups. The percentage of T cells was significantly higher in the CD26-deficient group on each dpp. Thus, daily postnatal exposition to low doses of LPS for 1 week resulted in a delay in formation of secondary septa, which remained up to dpp 14 in CD26- pups. The retardation was accompanied by moderate parenchymal inflammation and CD26-dependent changes in the pulmonary immune cell composition.


Assuntos
Dipeptidil Peptidase 4/deficiência , Lipopolissacarídeos/efeitos adversos , Pulmão/crescimento & desenvolvimento , Animais , Estudos de Casos e Controles , Dipeptidil Peptidase 4/metabolismo , Modelos Animais de Doenças , Feminino , Pulmão/imunologia , Ratos
14.
Sci Rep ; 11(1): 18265, 2021 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34521949

RESUMO

Yaks are typical plateau-adapted animals, however the microvascular changes and characteristics in their lungs after birth are still unclear. Pulmonary microvasculature characteristics and changes across age groups were analysed using morphological observation and molecular biology detection in yaks aged 1, 30 and 180 days old in addition to adults. Results: Our experiments demonstrated that yaks have fully developed pulmonary alveolar at birth but that interalveolar thickness increased with age. Immunofluorescence observations showed that microvessel density within the interalveolar septum in the yak gradually increased with age. In addition, transmission electron microscopy (TEM) results showed that the blood-air barrier of 1-day old and 30-days old yaks was significantly thicker than that observed at 180-days old and in adults (P < 0.05), which was caused by the thinning of the membrane of alveolar epithelial cells. Furthermore, Vegfa and Epas1 expression levels in 30-day old yaks were the highest in comparison to the other age groups (P < 0.05), whilst levels in adult yaks were the lowest (P < 0.05). The gradual increase in lung microvessel density can effectively satisfy the oxygen requirements of ageing yaks. In addition, these results suggest that the key period of yak lung development is from 30 to 180 days.


Assuntos
Bovinos/anatomia & histologia , Pulmão/irrigação sanguínea , Animais , Animais Recém-Nascidos/anatomia & histologia , Animais Recém-Nascidos/crescimento & desenvolvimento , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Western Blotting , Bovinos/crescimento & desenvolvimento , Pulmão/anatomia & histologia , Pulmão/crescimento & desenvolvimento , Pulmão/ultraestrutura , Microcirculação , Microscopia Eletrônica de Transmissão , Densidade Microvascular , Microvasos/anatomia & histologia , Microvasos/ultraestrutura , Alvéolos Pulmonares/anatomia & histologia , Alvéolos Pulmonares/irrigação sanguínea , Alvéolos Pulmonares/ultraestrutura , Reação em Cadeia da Polimerase em Tempo Real , Fator A de Crescimento do Endotélio Vascular/metabolismo
15.
FASEB J ; 35(10): e21850, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34569654

RESUMO

Children with hypoplastic lung disease associated with congenital diaphragmatic hernia (CDH) continue to suffer significant morbidity and mortality secondary to progressive pulmonary disease. Recently published work from our lab demonstrated the potential of Roxadustat (FG-4592), a prolyl hydroxylase inhibitor, as a treatment for CDH-associated pulmonary hypoplasia. Treatment with Roxadustat led to significantly accelerated compensatory lung growth (CLG) through downregulation of pigment epithelium-derived factor (PEDF), an anti-angiogenic factor, rather than upregulation of vascular endothelial growth factor (VEGF). PEDF and its role in pulmonary development is a largely unexplored field. In this study, we sought to further evaluate the role of PEDF in accelerating CLG. PEDF-deficient mice demonstrated significantly increased lung volume, total lung capacity, and alveolarization compared to wild type controls following left pneumonectomy without increased VEGF expression. Furthermore, Roxadustat administration in PEDF-deficient mice did not further accelerate CLG. Human microvascular endothelial lung cells (HMVEC-L) and human pulmonary alveolar epithelial cells (HPAEC) similarly demonstrated decreased PEDF expression with Roxadustat administration. Additionally, downregulation of PEDF in Roxadustat-treated HMVEC-L and HPAEC, a previously unreported finding, speaks to the potential translatability of Roxadustat from small animal studies. Taken together, these findings further suggest that PEDF downregulation is the primary mechanism by which Roxadustat accelerates CLG. More importantly, these data highlight the critical role PEDF may have in pulmonary growth and development, a previously unexplored field.


Assuntos
Células Endoteliais/citologia , Células Epiteliais/citologia , Proteínas do Olho/fisiologia , Glicina/análogos & derivados , Isoquinolinas/farmacologia , Pulmão/crescimento & desenvolvimento , Fatores de Crescimento Neural/fisiologia , Serpinas/fisiologia , Animais , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Glicina/farmacologia , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
16.
Exp Mol Pathol ; 122: 104678, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34450114

RESUMO

Stem cell factor (SCF) is an essential cytokine during development and is necessary for gametogenesis, hematopoiesis, mast cell development, stem cell function, and melanogenesis. Here, we measure SCF concentration and distribution in adult humans and mice using gene expression analysis, tissue staining, and organ protein lysates. We demonstrate continued SCF expression in many cell types and tissues into adulthood. Tissues with high expression in adult humans included stomach, spleen, kidney, lung, and pancreas. In mice, we found high SCF expression in the esophagus, ovary, uterus, kidney, and small intestine. Future studies may correlate our findings of increased, organ-specific SCF concentrations within adult tissues with increased risk of SCF/CD117-related disease.


Assuntos
Diferenciação Celular/genética , Proteínas Proto-Oncogênicas c-kit/genética , Fator de Células-Tronco/genética , Distribuição Tecidual/genética , Adulto , Animais , Gametogênese/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Hematopoese/genética , Humanos , Rim/crescimento & desenvolvimento , Rim/metabolismo , Pulmão/crescimento & desenvolvimento , Pulmão/metabolismo , Mastócitos/metabolismo , Camundongos , Pâncreas/crescimento & desenvolvimento , Pâncreas/metabolismo , Baço/crescimento & desenvolvimento , Baço/metabolismo , Células-Tronco/metabolismo , Estômago/crescimento & desenvolvimento , Estômago/metabolismo
17.
Interact Cardiovasc Thorac Surg ; 33(6): 928-934, 2021 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-34423359

RESUMO

OBJECTIVES: This study investigates whether the surgical correction of chest deformity is associated with the growth of the lung parenchyma after surgery for pectus excavatum. METHODS: Ten patients with pectus excavatum who were treated by the Nuss procedure were examined. The preoperative and postoperative computed tomography (2.5 ± 1.2 years after surgery) scans were performed, and the Haller index, lung volume and lung density were analyzed using a three-dimensional image analysis system (SYNAPSE VINCENT, Fujifilm, Japan). The radiological lung weight was calculated as follows: lung volume (ml) × lung density (g/ml). RESULTS: The average age of the 10 patients (men 8; women 2) was 13.8 years (range: 6-26 years). The Haller index was significantly improved from the preoperative value of 5.18 ± 2.20 to the postoperative value of 3.68 ± 1.38 (P = 0.0025). Both the lung volume and weight had significantly increased by 107.1 ± 19.6% and 121.6 ± 11.3%, respectively, after surgery. CONCLUSIONS: A significant increase in the weight of the lung after surgical correction suggests that the growth of the lung parenchyma is associated with the correction of chest deformity in younger patients with pectus excavatum.


Assuntos
Tórax em Funil , Adolescente , Adulto , Criança , Feminino , Tórax em Funil/complicações , Tórax em Funil/diagnóstico por imagem , Tórax em Funil/cirurgia , Humanos , Imageamento Tridimensional , Pulmão/diagnóstico por imagem , Pulmão/crescimento & desenvolvimento , Pulmão/cirurgia , Masculino , Tamanho do Órgão , Período Pós-Operatório , Tomografia Computadorizada por Raios X , Adulto Jovem
18.
Aging (Albany NY) ; 13(13): 16922-16937, 2021 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-34238764

RESUMO

Idiopathic pulmonary fibrosis (IPF) is an age-related disorder that carries a universally poor prognosis and is thought to arise from repetitive micro injuries to the alveolar epithelium. To date, a major factor limiting our understanding of IPF is a deficiency of disease models, particularly in vitro models that can recapitulate the full complement of molecular attributes in the human condition. In this study, we aimed to develop a model that more closely resembles the aberrant IPF lung epithelium. By exposing mouse alveolar epithelial cells to repeated, low doses of bleomycin, instead of usual one-time exposures, we uncovered changes strikingly similar to those in the IPF lung epithelium. This included the acquisition of multiple phenotypic and functional characteristics of senescent cells and the adoption of previously described changes in mitochondrial homeostasis, including alterations in redox balance, energy production and activity of the mitochondrial unfolded protein response. We also uncovered dramatic changes in cellular metabolism and detected a profound loss of proteostasis, as characterized by the accumulation of cytoplasmic protein aggregates, dysregulated expression of chaperone proteins and decreased activity of the ubiquitin proteasome system. In summary, we describe an in vitro model that closely resembles the aberrant lung epithelium in IPF. We propose that this simple yet powerful tool could help uncover new biological mechanisms and assist in developing new pharmacological tools to treat the disease.


Assuntos
Fibrose Pulmonar Idiopática/patologia , Pulmão/crescimento & desenvolvimento , Pulmão/patologia , Mucosa Respiratória/crescimento & desenvolvimento , Mucosa Respiratória/patologia , Animais , Antibióticos Antineoplásicos/toxicidade , Bleomicina/toxicidade , Linhagem Celular , Senescência Celular , Modelos Animais de Doenças , Metabolismo Energético , Homeostase , Humanos , Camundongos , Mitocôndrias/metabolismo , Oxirredução , Complexo de Endopeptidases do Proteassoma , Proteínas/metabolismo , Alvéolos Pulmonares/efeitos dos fármacos , Alvéolos Pulmonares/patologia , Resposta a Proteínas não Dobradas
19.
BMC Vet Res ; 17(1): 236, 2021 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-34225699

RESUMO

BACKGROUND: Respiratory diseases are a major cause of morbidity and mortality in the horses of all ages including foals. There is limited understanding of the expression of immune molecules such as tetraspanins and surfactant proteins (SP) and the regulation of the immune responses in the lungs of the foals. Therefore, the expression of CD9, SP-A and SP-D in foal lungs was examined. RESULTS: Lungs from one day old (n = 6) and 30 days old (n = 5) foals were examined for the expression of CD9, SP-A, and SP-D with immunohistology and Western blots. Western blot data showed significant increase in the amount of CD9 protein (p = 0.0397) but not of SP-A and SP-D at 30 days of age compared to one day. Immunohistology detected CD9 in the alveolar septa and vascular endothelium but not the bronchiolar epithelium in the lungs of the foals in both age groups. SP-A and SP-D expression was localized throughout the alveolar septa including type II alveolar epithelial cells and the vascular endothelium of the lungs in all the foals. Compared to one day old foals, the expression of SP-A and SP-D appeared to be increased in the bronchiolar epithelium of 30 day old foals. Pulmonary intravascular macrophages were also positive for SP-A and SP-D in 30 days old foals and these cells are not developed in the day old foals. CONCLUSIONS: This is the first data on the expression of CD9, SP-A and SP-D in the lungs of foals.


Assuntos
Pulmão/metabolismo , Proteína A Associada a Surfactante Pulmonar/metabolismo , Proteína D Associada a Surfactante Pulmonar/metabolismo , Tetraspanina 29/metabolismo , Animais , Animais Recém-Nascidos/metabolismo , Cavalos/crescimento & desenvolvimento , Cavalos/imunologia , Pulmão/crescimento & desenvolvimento , Macrófagos Alveolares , Tensoativos
20.
Development ; 148(13)2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34228796

RESUMO

The trachea delivers inhaled air into the lungs for gas exchange. Anomalies in tracheal development can result in life-threatening malformations, such as tracheoesophageal fistula and tracheomalacia. Given the limitations of current therapeutic approaches, development of technologies for the reconstitution of a three-dimensional trachea from stem cells is urgently required. Recently, single-cell sequencing technologies and quantitative analyses from cell to tissue scale have been employed to decipher the cellular basis of tracheal morphogenesis. In this Review, recent advances in mammalian tracheal development and the generation of tracheal tissues from pluripotent stem cells are summarized.


Assuntos
Pulmão/crescimento & desenvolvimento , Morfogênese/fisiologia , Traqueia/crescimento & desenvolvimento , Fístula Traqueoesofágica/patologia , Animais , Cartilagem/crescimento & desenvolvimento , Diferenciação Celular , Epitélio , Humanos , Mesoderma/crescimento & desenvolvimento , Camundongos , Morfogênese/genética , Sistema Respiratório , Traqueia/anormalidades , Traqueomalácia , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA