Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Microb Pathog ; 119: 60-64, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29608932

RESUMO

Purine nucleoside phosphorylase from Mycobacterium tuberculosis (MtPNP), encoded by deoD gene (Rv3307), is an enzyme from the purine salvage pathway, which has been widely studied as a molecular target for the development of inhibitors with potential antimycobacterial activity. However, the role of MtPNP in tuberculosis pathogenesis and dormancy is still unknown. The present work aims to construct a deoD knockout strain from M. tuberculosis, to evaluate the role of MtPNP in the growth of M. tuberculosis under oxygenated condition and in a dormancy model, and to assess whether deoD gene is important for M. tuberculosis invasion and growth in macrophages. The construction of a knockout strain for deoD gene was confirmed at DNA level by PCR and protein level by Western blot and LC-MS/MS. The deoD gene is not required for M. tuberculosis growth and survival under oxygenated and hypoxic conditions. The disruption of deoD gene did not affect mycobacterial ability to invade and grow in RAW 264.7 cells under the experimental conditions employed here.


Assuntos
Macrófagos/microbiologia , Mycobacterium tuberculosis/enzimologia , Mycobacterium tuberculosis/crescimento & desenvolvimento , Mycobacterium tuberculosis/genética , Purina-Núcleosídeo Fosforilase/genética , Purina-Núcleosídeo Fosforilase/fisiologia , Animais , Sequência de Bases , Cromatografia Líquida , DNA Bacteriano/genética , Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica , Técnicas de Silenciamento de Genes , Genes Bacterianos/genética , Camundongos , Mycobacterium tuberculosis/patogenicidade , Oxigênio/metabolismo , Células RAW 264.7 , Espectrometria de Massas em Tandem , Tuberculose/microbiologia
2.
Biochem J ; 458(2): 225-37, 2014 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-24325449

RESUMO

StCKP1 (Solanum tuberosum cytokinin riboside phosphorylase) catalyses the interconversion of the N9-riboside form of the plant hormone CK (cytokinin), a subset of purines, with its most active free base form. StCKP1 prefers CK to unsubstituted aminopurines. The protein was discovered as a CK-binding activity in extracts of tuberizing potato stolon tips, from which it was isolated by affinity chromatography. The N-terminal amino acid sequence matched the translation product of a set of ESTs, enabling a complete mRNA sequence to be obtained by RACE-PCR. The predicted polypeptide includes a cleavable signal peptide and motifs for purine nucleoside phosphorylase activity. The expressed protein was assayed for purine nucleoside phosphorylase activity against CKs and adenine/adenosine. Isopentenyladenine, trans-zeatin, dihydrozeatin and adenine were converted into ribosides in the presence of ribose 1-phosphate. In the opposite direction, isopentenyladenosine, trans-zeatin riboside, dihydrozeatin riboside and adenosine were converted into their free bases in the presence of Pi. StCKP1 had no detectable ribohydrolase activity. Evidence is presented that StCKP1 is active in tubers as a negative regulator of CKs, prolonging endodormancy by a chill-reversible mechanism.


Assuntos
Citocininas/fisiologia , Dormência de Plantas/fisiologia , Proteínas de Vegetais Comestíveis/metabolismo , Tubérculos/metabolismo , Purina-Núcleosídeo Fosforilase/fisiologia , Solanum tuberosum/enzimologia , Sequência de Aminoácidos , Citocininas/genética , Dados de Sequência Molecular , Extratos Vegetais/genética , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/metabolismo , Proteínas de Vegetais Comestíveis/genética , Proteínas de Vegetais Comestíveis/isolamento & purificação , Tubérculos/genética , Ligação Proteica , Purina-Núcleosídeo Fosforilase/genética , Purina-Núcleosídeo Fosforilase/isolamento & purificação , Solanum tuberosum/genética , Fatores de Tempo
3.
PLoS One ; 7(12): e52877, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23285211

RESUMO

The methionine salvage pathway is widely distributed among some eubacteria, yeast, plants and animals and recycles the sulfur-containing metabolite 5-methylthioadenosine (MTA) to methionine. In eukaryotic cells, the methionine salvage pathway takes place in the cytosol and usually involves six enzymatic activities: MTA phosphorylase (MTAP, EC 2.4.2.28), 5'-methylthioribose-1-phosphate isomerase (mtnA, EC 5.3.1.23), 5'-methylthioribulose-1-phosphate dehydratase (mtnB, EC: 4.2.1.109), 2,3-dioxomethiopentane-1-phosphate enolase/phosphatase (mtnC, EC 3.1.3.77), aci-reductone dioxygenase (mtnD, EC 1.13.11.54) and 4-methylthio-2-oxo-butanoate (MTOB) transaminase (EC 2.6.1.-). The aim of this study was to complete the available information on the methionine salvage pathway in human by identifying the enzyme responsible for the dehydratase step. Using a bioinformatics approach, we propose that a protein called APIP could perform this role. The involvement of this protein in the methionine salvage pathway was investigated directly in HeLa cells by transient and stable short hairpin RNA interference. We show that APIP depletion specifically impaired the capacity of cells to grow in media where methionine is replaced by MTA. Using a Shigella mutant auxotroph for methionine, we confirm that the knockdown of APIP specifically affects the recycling of methionine. We also show that mutation of three potential phosphorylation sites does not affect APIP activity whereas mutation of the potential zinc binding site completely abrogates it. Finally, we show that the N-terminal region of APIP that is missing in the short isoform is required for activity. Together, these results confirm the involvement of APIP in the methionine salvage pathway, which plays a key role in many biological functions like cancer, apoptosis, microbial proliferation and inflammation.


Assuntos
Proteínas Reguladoras de Apoptose/fisiologia , Inativação Metabólica/genética , Redes e Vias Metabólicas/genética , Metionina/metabolismo , Sequência de Aminoácidos , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Células Cultivadas , Células HEK293 , Células HeLa , Humanos , Modelos Biológicos , Dados de Sequência Molecular , Purina-Núcleosídeo Fosforilase/genética , Purina-Núcleosídeo Fosforilase/metabolismo , Purina-Núcleosídeo Fosforilase/fisiologia , Homologia de Sequência de Aminoácidos , Tionucleosídeos/metabolismo , Células U937
4.
Cancer Gene Ther ; 16(7): 541-50, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19343063

RESUMO

The clinical use of cytotoxic deoxynucleoside analogues is often limited by resistance mechanisms due to enzymatic deficiency, or high toxicity in nontumor tissues. To improve the use of these drugs, gene therapy approaches have been proposed and studied, associating clinically used deoxynucleoside analogues such as araC and gemcitabine and suicide genes or myeloprotective genes. In this review, we provide an update of recent results in this area, with particular emphasis on human deoxycytidine kinase, the deoxyribonucleoside kinase from Drosophila melanogaster, purine nucleoside phosphorylase from Escherichia coli, and human cytidine deaminase. Data from literature clearly show the feasibility of these systems, and clinical trials are warranted to conclude on their use in the treatment of cancer patients.


Assuntos
Antineoplásicos/uso terapêutico , Desoxicitidina/análogos & derivados , Desoxicitidina/uso terapêutico , Terapia Genética/métodos , Animais , Citidina Desaminase/genética , Citidina Desaminase/fisiologia , Desoxicitidina Quinase/genética , Desoxicitidina Quinase/fisiologia , Drosophila melanogaster/enzimologia , Humanos , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Fosfotransferases (Aceptor do Grupo Álcool)/fisiologia , Purina-Núcleosídeo Fosforilase/genética , Purina-Núcleosídeo Fosforilase/fisiologia
5.
Ukr Biokhim Zh (1999) ; 80(5): 95-104, 2008.
Artigo em Ucraniano | MEDLINE | ID: mdl-19248622

RESUMO

PNP catalyzes a reversible phosphorolysis of purine deoxy- and ribonucleosides with formation of (d)Rib-1-P and appropriate bases. PNP plays a leading role in the cell metabolism of nucleosides and nucleotides, as well as in maintaining the immune status of an organism. The major purpose of the majority of studies on the PNP is the detection of high-performance enzyme inhibitors, derivatives of the purine nucleosides, which are used in medicine as immunosuppressors. It is well known that the latter are necessary for creating a selective T-cell immunodeficiency in a human body under organs and tissue transplantation. The review discusses the issues related to deliberate synthesis of effective, metabolically inert, and low-toxic PNP inhibitors. It also analyzes the available studies on substrate and inhibitory properties of the analogues of purine nucleosides, as well as research on the structural factors which reinforce the inhibitor activity of those analogues. The inhibitors which are either used in medical practice or are currently at a stage of preclinical testing are described. The inhibitors which are more efficient in their influence on the PNF from tumorous tissues are of special interest. Using PNP inhibitors in case of a number of pathologies denotes the importance and promise of research on both the enzyme and the compounds affecting its activity.


Assuntos
Inibidores Enzimáticos/uso terapêutico , Imunossupressores/uso terapêutico , Purina-Núcleosídeo Fosforilase/antagonistas & inibidores , Animais , Biomarcadores/sangue , Inibidores Enzimáticos/farmacologia , Humanos , Síndromes de Imunodeficiência/tratamento farmacológico , Síndromes de Imunodeficiência/imunologia , Imunossupressores/farmacologia , Purina-Núcleosídeo Fosforilase/sangue , Purina-Núcleosídeo Fosforilase/deficiência , Purina-Núcleosídeo Fosforilase/fisiologia , Purinas/metabolismo , Especificidade por Substrato , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia
6.
Res Microbiol ; 158(8-9): 659-65, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17935948

RESUMO

The pbuE (ydhL) gene from Bacillus subtilis is known to encode the purine base efflux pump, and its expression is controlled by an adenine-dependent riboswitch. We cloned the pbuE gene from Bacillus amyloliquefaciens and examined gene expression by its own cis-acting regulatory elements in Escherichia coli. Regulation of pbuE expression, previously found in B. subtilis, was retained in this heterologous expression: it was induced by adenine and activated by a mutation in the 5' untranslated region, which disrupted transcription termination. This observation supports the model that the adenine-dependent riboswitch directly regulates pbuE expression, without requiring additional factors. Overexpression of the PbuE pump conferred upon the E. coli strain resistance to higher concentrations of inosine, adenosine and guanosine, and increased exogenous inosine accumulation by E. coli cells deficient in purine nucleoside phosphorylase. Overexpression of the PbuE pump also enhanced hypoxanthine excretion by the E. coli hypoxanthine-producing strain and inosine excretion both by the E. coli and B. amyloliquefaciens nucleoside-producing strains. Thus, for the first time, we obtained direct evidence for the involvement of PbuE in efflux of not only purine bases, but also purine ribonucleosides. A possible new role for the pump in cell physiology is discussed.


Assuntos
Bacillus subtilis/metabolismo , Proteínas de Bactérias/fisiologia , Nucleosídeos de Purina/metabolismo , Purinas/metabolismo , Proteínas de Bactérias/genética , Clonagem Molecular , Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , Purina-Núcleosídeo Fosforilase/fisiologia
7.
Proc Natl Acad Sci U S A ; 102(45): 16158-63, 2005 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-16260735

RESUMO

Methylthioadenosine is formed during the biosynthesis of spermidine and of spermine and is metabolized by methylthioadenosine phosphorylase, an enzyme missing in several tumor cell lines. In Saccharomyces cerevisiae, this enzyme is coded by the MEU1 gene. We have now studied the effect of the meu1 deletion on polyamine metabolism in yeast. We found that the effects of the meu1Delta mutation mostly depend on the stage of cell growth. As the cell density increases, there is a marked fall in the level of ornithine decarboxylase (ODC) in the MEU1(+) cells, which we show is caused by an antizyme-requiring degradation system. In contrast, there is only a small decrease in the ODC level in the meu1Delta cells. The meu1Delta cells have a higher putrescine and a lower spermidine level than MEU1(+) cells, suggesting that the decreased spermidine level in the meu1Delta cultures is responsible for the greater apparent stability of ODC in the meu1Delta cells. The lower spermidine level in the meu1Delta cells probably results from an inhibition of spermidine synthase by the methylthioadenosine that presumably accumulates in these mutants. In both MEU1(+) and the meu1Delta cultures, the ODC levels were markedly decreased by the addition of spermidine to the media, and thus our results contradict the postulation of Subhi et al. [Subhi, A. L., et al. (2003) J. Biol. Chem. 278, 49868-49873] of a novel regulatory pathway in meu1Delta cells in which ODC is not responsive to spermidine.


Assuntos
Ornitina Descarboxilase/metabolismo , Purina-Núcleosídeo Fosforilase/fisiologia , Saccharomyces cerevisiae/enzimologia , Metionina/análogos & derivados , Metionina/metabolismo , Metionina/farmacologia , Purina-Núcleosídeo Fosforilase/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Espermidina/análise , Espermidina/farmacologia
8.
Biochem J ; 387(Pt 1): 175-83, 2005 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-15535799

RESUMO

hMTAP (human 5'-deoxy-5'-methylthioadenosine phosphorylase) is a key enzyme in the methionine salvage pathway and is frequently inactivated in human tumour cells. To understand the mechanism of the transcriptional regulation of the MTAP gene, we have cloned the 1.29 kb fragment of the hMTAP promoter and identified cis-acting regulatory sequences using a luciferase reporter gene assay. Maximal promoter activity was associated with sequences between -446 and -152, where two CCAAT elements were located. Electrophoretic mobility-shift assay reveals binding of specific complexes at both CCAAT motifs within the MTAP promoter, although more prominent bands were associated with the distal motif (-372 to -368). Supershift experiments and chromatin immunoprecipitation assays indicate that both the proximal and distal complexes bind CBF (CCAAT-binding factor; also known as nuclear factor-Y), and that the distal CCAAT motif has increased levels of CBF binding. We have mapped seven different transcriptional start sites between -135 and -58. Our results show that the hMTAP expression is regulated by a CBF and that the distal one of two CCAAT motifs plays a major role in the transcriptional activation of hMTAP gene.


Assuntos
Fator de Ligação a CCAAT/fisiologia , Regulação Enzimológica da Expressão Gênica/fisiologia , Purina-Núcleosídeo Fosforilase/fisiologia , Sequência de Bases/genética , Imunoprecipitação da Cromatina/métodos , Humanos , Dados de Sequência Molecular , Placenta/química , Placenta/metabolismo , Regiões Promotoras Genéticas/genética , Ligação Proteica , Purina-Núcleosídeo Fosforilase/genética , Elementos de Resposta/genética , Sítio de Iniciação de Transcrição
9.
Clin Cancer Res ; 10(21): 7290-6, 2004 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-15534104

RESUMO

PURPOSE: Loss of the methylthioadenosine phosphorylase (MTAP) gene at 9p21 is observed frequently in a variety of human cancers. We have shown previously that MTAP can act as a tumor suppressor gene and that its tumor suppressor function is related to its effect on polyamine homeostasis. Ornithine decarboxylase is a key enzyme in the regulation of polyamine metabolism. The aim of this study is to analyze MTAP and ornithine decarboxylase (ODC) expression in primary pancreatic tumor specimens. EXPERIMENTAL DESIGN: We measured MTAP and ODC activity in protein extracts derived from 30 surgically resected tumor samples and eight normal pancreas samples. In a subset of six samples, we also examined MTAP DNA using interphase fluorescence in situ hybridization. In addition, we examined the effect of the ODC inhibitor difluoromethylornithine on two pancreatic adenocarcinoma-derived cell lines. RESULT: MTAP activity was 2.8-fold reduced in adenocarcinomas and 6.3-fold reduced in neuroendocrine tumors compared with control pancreas. Conversely, ODC activity was 3.6-fold elevated in adenocarcinomas and 3.9-fold elevated in neuroendocrine tumors compared with control pancreas. Using interphase fluorescence in situ hybridization, we found in tumor samples that 43 to 75% of the nuclei had lost at least one copy of MTAP locus, indicating that loss of MTAP activity was at least partially because of deletion of the MTAP locus. We also show that inhibition of ODC by difluoromethylornithine caused decreased cell growth and increased apoptosis in two MTAP-deleted pancreatic adenocarcinoma-derived cell lines. CONCLUSIONS: MTAP activity is frequently lost, and ODC activity is frequently elevated in both pancreatic adenocarcinoma and neuroendocrine tumors. Inhibition of ODC activity caused decreased cell growth and increased apoptosis in pancreatic tumor-derived cell lines. These findings suggest that MTAP and polyamine metabolism could be potential therapeutic targets in the treatment of pancreatic cancer.


Assuntos
Tumores Neuroendócrinos/enzimologia , Ornitina Descarboxilase/biossíntese , Ornitina Descarboxilase/fisiologia , Neoplasias Pancreáticas/enzimologia , Purina-Núcleosídeo Fosforilase/genética , Purina-Núcleosídeo Fosforilase/fisiologia , Adenocarcinoma/enzimologia , Adenocarcinoma/patologia , Apoptose , Western Blotting , Linhagem Celular Tumoral , Cromossomos Humanos Par 9 , Inibidor p16 de Quinase Dependente de Ciclina/biossíntese , DNA/metabolismo , Humanos , Hibridização in Situ Fluorescente , Modelos Biológicos , Tumores Neuroendócrinos/metabolismo , Neoplasias Pancreáticas/metabolismo , Poliaminas/química
10.
J Biol Chem ; 278(50): 49868-73, 2003 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-14506228

RESUMO

The gene encoding methylthioadenosine phosphorylase (MTAP), the initial enzyme in the methionine salvage pathway, is deleted in a variety of human tumors and acts as a tumor suppressor gene in cell culture (Christopher, S. A., Diegelman, P., Porter, C. W., and Kruger, W. D. (2002) Cancer Res. 62, 6639-6644). Overexpression of the polyamine biosynthetic enzyme ornithine decarboxylase (ODC) is frequently observed in tumors and has been shown to be tumorigenic in vitro and in vivo. In this paper, we demonstrate a novel regulatory pathway in which the methionine salvage pathway products inhibit ODC activity. We show that in Saccharomyces cerevisiae the MEU1 gene encodes MTAP and that Meu1delta cells have an 8-fold increase in ODC activity, resulting in large elevations in polyamine pools. Mutations in putative salvage pathway genes downstream of MTAP also cause elevated ODC activity and elevated polyamines. The addition of the penultimate salvage pathway compound 4-methylthio-2-oxobutanoic acid represses ODC levels in both MTAP-deleted yeast and human tumor cell lines, indicating that 4-methylthio-2-oxobutanoic acid acts as a negative regulator of polyamine biosynthesis. Expression of MTAP in MTAP-deleted MCF-7 breast adenocarcinoma cells results in a significant reduction of ODC activity and reduction in polyamine levels. Taken together, our results show that products of the methionine salvage pathway regulate polyamine biosynthesis and suggest that MTAP deletion may lead to ODC activation in human tumors.


Assuntos
Regulação Enzimológica da Expressão Gênica , Metionina/análogos & derivados , Ornitina Descarboxilase/biossíntese , Ornitina Descarboxilase/genética , Purina-Núcleosídeo Fosforilase/metabolismo , Purina-Núcleosídeo Fosforilase/fisiologia , Divisão Celular , Linhagem Celular Tumoral , Cromatografia Líquida de Alta Pressão , Deleção de Genes , Humanos , Immunoblotting , Metionina/metabolismo , Modelos Biológicos , Mutação , Ornitina Descarboxilase/metabolismo , Plasmídeos/metabolismo , Poliaminas/química , Saccharomyces cerevisiae/metabolismo , Espermidina/química
11.
Blood Cells Mol Dis ; 28(1): 47-56, 2002.
Artigo em Inglês | MEDLINE | ID: mdl-11987241

RESUMO

We analyzed the role of methylthioadenosine phosphorylase (MTAP) for chemoselective treatment of T-cell acute lymphoblastic leukemia (T-ALL). MTAP converts methylthioadenosine into adenine which serves as an alternative purine source, if de novo purine biosynthesis is inhibited by antimetabolites (i.e., methotrexate). The idea of the chemoselectivity concept is that tumors with MTAP deletion at chromosome 9p21 are more susceptible to antimetabolites than normal cells without such a deletion. First, we screened 13 T-ALL lines for 9p21 deletions by comparative genomic hybridization. Five cell lines revealed deletions at the short arm of chromosome 9, dim(9p21pter). Further analyses were performed with CEM cells in which the 9p21 deletion was corroborated by fluorescence in situ hybridization. CEM cells were transfected with an MTAP expression vector. A green fluorescent protein (GFP) plasmid was cotransfected, to monitor the transfection efficacy by flow cytometry. The response of MTAP-transfected cells to the antimetabolites methotrexate (MTX), trimetrexate (TMX), and L-alanosine (ALA) was decreased compared to mock control transfectants using growth inhibition assays. The activity of doxorubicin (DOX) which is not involved in DNA biosynthesis was not changed in MTAP transfectants. As the p16(INK4a) tumor suppressor gene resides also at 9p21, we transfected CEM cells with a p16(INK4a) expression vector. These transfectant cells were more resistant to all four drugs indicating that p16(INK4a) did not specifically affect antimetabolites. The chemoselective effect of antimetabolites in MTAP-deleted tumor cells may, however, be compensated by the development of drug resistance. To prove this possibility, we analyzed an MTX-resistant subline, CEM/MTX1500LV, in which the MTX-resistance conferring dihydrofolate reductase (DHFR) gene was amplified. While TMX exhibited considerable cross-resistance in CEM/MTX1500LV cells, ALA did not. Thus, ALA could exhibit chemoselectivity in 9p21/MTAP-deleted cells, even if DHFR amplification occurs. We conclude that ALA may be more suitable than MTX or TMX for MTAP-mediated chemoselective treatment of T-ALL. Pretherapeutical detection of 9p21 and MTAP deletion may be helpful in developing a predictive molecular chemosensitivity test for T-ALL.


Assuntos
Antimetabólitos Antineoplásicos/farmacologia , Leucemia-Linfoma de Células T do Adulto/tratamento farmacológico , Purina-Núcleosídeo Fosforilase/genética , Alanina/análogos & derivados , Alanina/farmacologia , Divisão Celular/efeitos dos fármacos , Deleção Cromossômica , Cromossomos Humanos Par 9 , Inibidor p16 de Quinase Dependente de Ciclina/genética , Inibidor p16 de Quinase Dependente de Ciclina/fisiologia , Resistencia a Medicamentos Antineoplásicos , Humanos , Leucemia-Linfoma de Células T do Adulto/enzimologia , Leucemia-Linfoma de Células T do Adulto/patologia , Proteínas de Neoplasias/genética , Purina-Núcleosídeo Fosforilase/fisiologia , Transfecção , Trimetrexato/farmacologia , Células Tumorais Cultivadas
12.
Biosci Biotechnol Biochem ; 65(3): 570-8, 2001 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-11330670

RESUMO

For the derivation of an inosine-overproducing strain from the wild type microorganism, it is known that the addition of an adenine requirement, removal of purine nucleoside hydrolyzing activity, removal of the feedback inhibition, and repression of key enzymes in the purine nucleotides biosynthetic pathway are essential. Thus, the disruption of purA (adenine requirement), deoD (removal of purine nucleosides phosphorylase activity), purR (derepression of the regulation of purine nucleotides biosynthetic pathway), and the insensitivity of the feedback inhibition of phosphoribosylpyrophosphate (PRPP) amidotransferase by adenosine 5'-monophosphate (AMP) and guanosine 5'-monophosphate (GMP) were done in the Escherichia coli strain W3110, and then the inosine productivity was estimated. In the case of using a plasmid harboring the PRPP amidotransferase gene (purF) that encoded a desensitized PRPP amidotransferase, purF disrupted mutants were used as the host strains. It was found that the innovation of the four genotypes brought about a small amount of inosine accumulation. Furthermore, an adenine auxotrophic mutant of E. coli showed inappropriate adenine use because its growth could not respond efficiently to the concentration of adenine added. As the presence of adenosine deaminase is well known in E. coli and it is thought to be involved in adenine use, a mutant disrupted adenosine deaminase gene (add) was constructed and tested. The mutant, which is deficient in purF, purA, deoD, purR, and add genes, and harboring the desensitized purF as a plasmid, accumulated about 1 g of inosine per liter. Although we investigated the effects of purR disruption and purF gene improvement, unexpectedly an increase in the inosine productivity could not be found with this mutant.


Assuntos
Adenosina Desaminase/fisiologia , Adenilossuccinato Sintase/fisiologia , Amidofosforribosiltransferase/fisiologia , Proteínas de Bactérias/fisiologia , Proteínas de Escherichia coli , Inosina/biossíntese , Purina-Núcleosídeo Fosforilase/fisiologia , Proteínas Repressoras/fisiologia , Adenosina Desaminase/genética , Adenilossuccinato Sintase/genética , Amidofosforribosiltransferase/genética , Proteínas de Bactérias/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Genótipo , Mutagênese Sítio-Dirigida , Purina-Núcleosídeo Fosforilase/genética , Proteínas Repressoras/genética
13.
Curr Pharm Des ; 6(9): 943-59, 2000 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-10828318

RESUMO

Purine nucleoside phosphorylase (PNP) is one of the enzymes comprising the purine salvage pathway , and is responsible for the catalysis of the reversible phosphorolytic cleavage of purine ribonucleosides and 2'-deoxyribonucleosides. The pivotal role of PNP in T-cell proliferation has been demonstrated in patients with inherited PNP deficiency, where T-cell levels may be 1-3% of normal. This observation helped establish the critical role of PNP in T-cells and provided a rationale for developing inhibitors of PNP. Inhibitors of PNP may be useful for treating a variety of T-cell related autoimmune diseases including psoriasis, rheumatoid arthritis and Crohn s disease and T-cell cancers. In this manuscript, the x-ray crystal structure of the PNP enzyme is described. Results of a structure-based drug design program aimed at designing small-molecule inhibitors of PNP are also described. Of the many classes of compounds synthesized, studied and reviewed, only one, the 3-pyridinylmethyl-9-deazaguanine (BCX-34, 39) analog has been used in clinical trials. Both topical and oral formulations of BCX-34 were studied in psoriatic patients and the results of these clinical trials are described.


Assuntos
Inibidores Enzimáticos/uso terapêutico , Guanina/análogos & derivados , Psoríase/tratamento farmacológico , Purina-Núcleosídeo Fosforilase/antagonistas & inibidores , Desenho de Fármacos , Inibidores Enzimáticos/farmacologia , Guanina/farmacologia , Guanina/uso terapêutico , Humanos , Modelos Moleculares , Psoríase/enzimologia , Purina-Núcleosídeo Fosforilase/fisiologia , Relação Estrutura-Atividade
15.
Hum Gene Ther ; 8(14): 1637-44, 1997 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-9322865

RESUMO

We have developed a new strategy for the gene therapy of cancer based on the activation of purine nucleoside analogs by transduced E. coli purine nucleoside phosphorylase (PNP, E.C. 2.4.2.1). The approach is designed to generate antimetabolites intracellularly that would be too toxic for systemic administration. To determine whether this strategy could be used to kill tumor cells without host toxicity, nude mice bearing human malignant D54MG glioma tumors expressing E. coli PNP (D54-PNP) were treated with either 6-methylpurine-2'-deoxyriboside (MeP-dR) or arabinofuranosyl-2-fluoroadenine monophosphate (F-araAMP, fludarabine, a precursor of F-araA). Both prodrugs exhibited significant antitumor activity against established D54-PNP tumors at doses that produced no discernible systemic toxicity. Significantly, MeP-dR was curative against this slow growing solid tumor after only 3 doses. The antitumor effects showed a dose dependence on both the amount of prodrug given and the level of E. coli PNP expression within tumor xenografts. These results indicated that a strategy using E. coli PNP to create highly toxic, membrane permeant compounds that kill both replicating and nonreplicating cells is feasible in vivo, further supporting development of this cancer gene therapy approach.


Assuntos
Antimetabólitos Antineoplásicos/uso terapêutico , Terapia Genética/métodos , Glioma/tratamento farmacológico , Pró-Fármacos/farmacologia , Purina-Núcleosídeo Fosforilase/fisiologia , Animais , Antimetabólitos Antineoplásicos/toxicidade , Escherichia coli/enzimologia , Escherichia coli/genética , Vetores Genéticos/genética , Humanos , Camundongos , Camundongos Nus , Transplante de Neoplasias , Nucleosídeos de Purina/uso terapêutico , Nucleosídeos de Purina/toxicidade , Purina-Núcleosídeo Fosforilase/genética , Retroviridae/genética , Fosfato de Vidarabina/análogos & derivados , Fosfato de Vidarabina/uso terapêutico , Fosfato de Vidarabina/toxicidade
16.
Exp Cell Res ; 168(1): 79-88, 1987 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-3096753

RESUMO

DNA precursor synthesis can be blocked specifically by the drug hydroxyurea (HU) which has therefore been used for anticancer therapy. High concentrations of HU, however, affect other processes than DNA synthesis; nevertheless, most studies on the biological action of HU have been made with concentrations at least one order of magnitude higher than those needed for cell-growth inhibition. In this study we characterized the effects of low concentrations of HU (i.e. concentrations leading to 50% inhibition of cell growth in 72 h) on cell cycle kinetics and nucleotide pools in mouse S49 cells with various defined alterations in DNA precursor synthesis. The effect of 50 microM HU on deoxyribonucleoside triphosphate pools was a 2-3-fold decrease in the dATP and dGTP pools, with no change in the dCTP pool and a certain increase in the dTTP pool. Addition of deoxycytidine or thymidine led to a partial reversal of the growth inhibition and cell-cycle perturbation caused by HU, and was accompanied by an increased level of the deoxyribonucleoside triphosphates. Addition of purine deoxyribonucleoside gave no protection, indicating that salvage of these nucleosides could not supply precursors for DNA synthesis in T-lymphoma cells. We observed a higher sensitivity to HU of cells lacking purine nucleoside phosphorylase or with a ribonucleotide reductase with altered allosteric regulation. Cells lacking thymidine kinase or deoxycytidine kinase were just as sensitive as wild-type cells.


Assuntos
Ciclo Celular/efeitos dos fármacos , Desoxirribonucleotídeos/metabolismo , Hidroxiureia/farmacologia , Linfoma/metabolismo , Animais , Linhagem Celular , Nucleotídeos de Desoxiadenina/metabolismo , Desoxicitidina Quinase/genética , Desoxicitidina Quinase/fisiologia , Nucleotídeos de Desoxicitosina/metabolismo , Nucleotídeos de Desoxiguanina/metabolismo , Linfoma/patologia , Camundongos , Mutação , Purina-Núcleosídeo Fosforilase/genética , Purina-Núcleosídeo Fosforilase/fisiologia , Ribonucleotídeo Redutases/genética , Ribonucleotídeo Redutases/fisiologia , Linfócitos T/efeitos dos fármacos , Linfócitos T/metabolismo , Timidina Quinase/genética , Timidina Quinase/fisiologia , Nucleotídeos de Timina/metabolismo
18.
Biochem Pharmacol ; 32(12): 1907-16, 1983 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-6411095

RESUMO

The biological activities of several previously synthesized [J. A. Montgomery et al., J. med. Chem. 17, 1197 (1974)] adenine-substituted analogs of 5'-deoxy-5'-methylthio- or 5'-deoxy-5'-ethyl-thioadenosine, including the 2-fluoroadenine, 2-chloroadenine, 2,6-diaminopurine, 8-azaadenine, and 4-aminopyrazolo [3,4-d]pyrimidine-containing derivatives, have been reexamined. It is demonstrated that many of these analogs are cleaved to their respective free base analogs by 5'-deoxy-5'-methyl-thioadenosine phosphorylase (MTAPase), an enzyme associated with polyamine biosynthesis, and that this reaction is necessary for the cytotoxic action of these MTA analogs to be fully expressed. Evidence to support this includes: (1) the growth of two MTAPase-containing human colon carcinoma cell lines (the HCT-15 and DLD-1 lines) was inhibited by these analogs, whereas an MTAPase-deficient cell line, the CCRF-CEM human T-cell leukemia, was relatively insensitive to their cytotoxic action; (2) extracts of the MTAPase-containing colon carcinoma cell lines were able to cleave these analogs to their respective free base analogs; in contrast, extracts of MTAPase-deficient CCRF-CEM cells were unable to cleave these analogs; (3) intact colon carcinoma cells converted these MTA analogs to their corresponding 5'-phosphorylated analog nucleotides, whereas CCRF-CEM cells did not, at least to detectable levels; and (4) the MTA analog, 5'-deoxy-5'-ethylthio-4-aminopyrazolo [3,4-d]pyrimidine ribonucleoside, which is not a substrate of MTAPase, did not form analog nucleotides and was essentially noncytotoxic to all cell lines tested, whereas the corresponding adenine analog, 4-aminopyrazolo [3,4-d]pyrimidine, readily formed analog nucleotides and was highly cytotoxic to all the lines. It is postulated that the corresponding adenine analog 5'-phosphorylated nucleotides are the primary active metabolites of these MTA analogs, having been formed by the cleavage of these nucleosides to free adenine analogs by MTAPase, followed by the conversion of these base analogs to analog nucleotides by adenine phosphoribosyltransferase and the enzymes of adenine nucleotide phosphorylation. This pathway represents a novel drug-activation system for the synthesis of analog nucleotides and has the potential to be exploited chemotherapeutically.


Assuntos
Adenosina/análogos & derivados , Antineoplásicos , Desoxiadenosinas , Pentosiltransferases/fisiologia , Purina-Núcleosídeo Fosforilase/fisiologia , Tionucleosídeos/metabolismo , Adenosina/metabolismo , Adenosina/farmacologia , Divisão Celular/efeitos dos fármacos , Linhagem Celular , Cromatografia Líquida de Alta Pressão , Neoplasias do Colo/enzimologia , Humanos , Leucemia/enzimologia , Purina-Núcleosídeo Fosforilase/deficiência , Especificidade por Substrato , Tionucleosídeos/farmacologia
20.
Biochim Biophys Acta ; 640(2): 448-62, 1981 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-6783140

RESUMO

The zero-trans uptake of uniformly and base-labeled inosine and uridine was measured a 25 degrees C in suspensions of Novikoff rat hepatoma cells, Chinese hamster ovary cells, mouse L cells, mouse S49 lymphoma cells and a purine-nucleoside phosphorylase-deficient subline thereof (NSU-1), and in monolayer culture of mouse 3T3 and L cells. The initial velocities of uptake of both nucleosides were about the same in all cell lines investigated, regardless of the position of the label or of the substrate concentration between 3 and 300 microM or whether or not the cells possessed uridine or purine-nucleoside phosphorylase activity. The kinetic parameters for the facilitated transport of uridine and inosine were also similar in phosphorylase positive and negative cell lines (K = 120--260 microM and V = 6--40 pmol/microliters cell water per s) and the transport activities of the cells exceeded their total phosphorylase activities by at least 10-fold for uridine and 1--2-fold for inosine. Chromatographic fractionation of the intracellular contents and of the culture fluid showed that the free nucleosides appeared intracellularly prior to and more rapidly than their phosphorolysis products. During the initial 20--60 s of uptake of U-14C-labeled nucleosides the rates of intracellular appearance of ribose-1-P and base were about the same. After several minutes of incubation, on the other hand, the main intracellular component was ribose-1-P whereas the base attained a low intracellular steady-state concentration and accumulated in the medium due to exit transport. Other nucleosides, dipyridamole and nitrobenzylthioinosine, specifically inhibited the transport of uridine and inosine, and depressed the intracellular accumulation of ribose-1-P and the formation of base commensurate with that inhibition. The data indicate that the metabolism of inosine and uridine by the various cell lines can be entirely accounted for by the facilitated transport of unmodified nucleoside into the cell followed by intracellular phosphorolysis.


Assuntos
Inosina/metabolismo , Pentosiltransferases/fisiologia , Purina-Núcleosídeo Fosforilase/fisiologia , Uridina Fosforilase/fisiologia , Uridina/metabolismo , Animais , Transporte Biológico Ativo , Células Cultivadas , Cricetinae , Cricetulus , Cinética , Células L/metabolismo , Neoplasias Hepáticas Experimentais/metabolismo , Linfoma/metabolismo , Camundongos , Ratos , Uridina Quinase/deficiência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA