Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biochemistry ; 63(19): 2477-2492, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39350642

RESUMO

5-Methyluridine (m5U) rRNA modifications frequently occur at U747 and U1939 (Escherichia coli numbering) in domains II and IV of the 23S rRNA in Gram-negative bacteria, with the help of S-adenosyl-l-methionine (SAM)-dependent rRNA methyltransferases (MTases), RlmC and RlmD, respectively. In contrast, Gram-positive bacteria utilize a single SAM-dependent rRNA MTase, RlmCD, to modify both corresponding sites. Notably, certain archaea, specifically within the Thermococcales group, have been found to possess two genes encoding SAM-dependent archaeal (tRNA and rRNA) m5U (Arm5U) MTases. Among these, a tRNA-specific Arm5U MTase (PabTrmU54) has already been characterized. This study focused on the structural and functional characterization of the rRNA-specific Arm5U MTase from the hyperthermophilic archaeon Pyrococcus horikoshii (PhRlmCD). An in-depth structural examination revealed a dynamic hinge movement induced by the replacement of the iron-sulfur cluster with disulfide bonds, obstructing the substrate-binding site. It revealed distinctive characteristics of PhRlmCD, including elongated positively charged loops in the central domain and rotational variations in the TRAM domain, which influence substrate selectivity. Additionally, the results suggested that two potential mini-rRNA fragments interact in a similar manner with PhRlmCD at a positively charged cleft at the interface of domains and facilitate dual MTase activities akin to the protein RlmCD. Altogether, these observations showed that Arm5U MTases originated from horizontal gene transfer events, most likely from Gram-positive bacteria.


Assuntos
Proteínas Arqueais , Metiltransferases , Especificidade por Substrato , Proteínas Arqueais/metabolismo , Proteínas Arqueais/genética , Proteínas Arqueais/química , Metiltransferases/metabolismo , Metiltransferases/química , Metiltransferases/genética , Pyrococcus horikoshii/enzimologia , Pyrococcus horikoshii/genética , Modelos Moleculares , Cristalografia por Raios X , S-Adenosilmetionina/metabolismo , Sequência de Aminoácidos
2.
Biochemistry ; 58(31): 3335-3339, 2019 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-31318538

RESUMO

Inteins, or intervening proteins, are mobile genetic elements translated within host polypeptides and removed through protein splicing. This self-catalyzed process breaks two peptide bonds and rejoins the flanking sequences, called N- and C-exteins, with the intein scarlessly escaping the host protein. As these elements have traditionally been viewed as purely selfish genetic elements, recent work has demonstrated that the conditional protein splicing (CPS) of several naturally occurring inteins can be regulated by a variety of environmental cues relevant to the survival of the host organism or crucial to the invading protein function. The RadA recombinase from the archaeon Pyrococcus horikoshii represents an intriguing example of CPS, whereby protein splicing is inhibited by interactions between the intein and host protein C-extein. Single-stranded DNA (ssDNA), a natural substrate of RadA as well as signal that recombinase activity is needed by the cell, dramatically improves the splicing rate and accuracy. Here, we investigate the mechanism by which ssDNA exhibits this influence and find that ssDNA strongly promotes a specific step of the splicing reaction, cyclization of the terminal asparagine of the intein. Interestingly, inhibitory interactions between the host protein and intein that block splicing localize to this asparagine, suggesting that ssDNA binding alleviates this inhibition to promote splicing. We also find that ssDNA directly influences the position of catalytic nucleophiles required for protein splicing, implying that ssDNA promotes assembly of the intein active site. This work advances our understanding of how ssDNA accelerates RadA splicing, providing important insights into this intriguing example of CPS.


Assuntos
DNA de Cadeia Simples/genética , Inteínas/genética , Splicing de RNA , Recombinases/química , Pyrococcus horikoshii/enzimologia
3.
Biomol NMR Assign ; 13(2): 309-314, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31069720

RESUMO

The protein dimethyladenosine transferase 1 (Dim1) is a highly conserved protein occurring in organisms ranging from bacteria such as E. coli where it is named KsgA to humans. Since Dim1 is involved in the biogenesis of the small ribosomal subunit it is an essential protein. During ribosome biogenesis Dim1 acts as an rRNA modification enzyme and dimethylates two adjacent adenosine residues of the small ribosomal subunit rRNA. In eukaryotes it is also required to ensure the proper endonucleolytic processing of the small ribosomal subunit rRNA precursor. Recently, a third function was proposed for eukaryotic Dim1. Karbstein and coworkers suggested that Dim1 interacts with the essential ribosome assembly factor Fap7 and that Fap7 is responsible for the dissociation of Dim1 from the nascent small ribosomal subunit. Here, we report the backbone 1H, 13C and 15N NMR resonance assignments for the 30.9 kDa Dim1 homologue from the hyperthermophilic archaeon Pyrococcus horikoshii (PhDim1) as a prerequisite for a detailed structural investigation of the PhDim1/PhFap7 interaction.


Assuntos
Metiltransferases/química , Ressonância Magnética Nuclear Biomolecular , Pyrococcus horikoshii/enzimologia , Modelos Moleculares , Conformação Proteica
4.
Biochemistry ; 57(25): 3454-3459, 2018 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-29708734

RESUMO

Radical S-adenosylmethionine (SAM) enzymes are a superfamily of enzymes that use SAM and reduced [4Fe-4S] cluster to generate a 5'-deoxyadenosyl radical to catalyze numerous challenging reactions. We have reported a type of noncanonical radical SAM enzymes in the diphthamide biosynthesis pathway. These enzymes also use SAM and reduced [4Fe-4S] clusters, but generate a 3-amino-3-carboxypropyl (ACP) radical to modify the substrate protein, translation elongation factor 2. The regioselective cleavage of a different C-S bond of the sulfonium center of SAM in these enzymes comparing to canonical radical SAM enzymes is intriguing. Here, we highlight some recent findings in the mechanism of these types of enzymes, showing that the diphthamide biosynthetic radial SAM enzymes bound SAM with a distinct geometry. In this way, the unique iron of the [4Fe-4S] cluster in the enzyme can only attack the carbon on the ACP group to form an organometallic intermediate. The homolysis of the organometallic intermediate releases the ACP radical and generates the EF2 radial.


Assuntos
Vias Biossintéticas , Histidina/análogos & derivados , Proteínas Ferro-Enxofre/metabolismo , Pyrococcus horikoshii/enzimologia , S-Adenosilmetionina/metabolismo , Histidina/metabolismo , Pyrococcus horikoshii/metabolismo , Especificidade por Substrato
5.
Science ; 359(6381): 1247-1250, 2018 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-29590073

RESUMO

Diphthamide biosynthesis involves a carbon-carbon bond-forming reaction catalyzed by a radical S-adenosylmethionine (SAM) enzyme that cleaves a carbon-sulfur (C-S) bond in SAM to generate a 3-amino-3-carboxypropyl (ACP) radical. Using rapid freezing, we have captured an organometallic intermediate with an iron-carbon (Fe-C) bond between ACP and the enzyme's [4Fe-4S] cluster. In the presence of the substrate protein, elongation factor 2, this intermediate converts to an organic radical, formed by addition of the ACP radical to a histidine side chain. Crystal structures of archaeal diphthamide biosynthetic radical SAM enzymes reveal that the carbon of the SAM C-S bond being cleaved is positioned near the unique cluster Fe, able to react with the cluster. Our results explain how selective C-S bond cleavage is achieved in this radical SAM enzyme.


Assuntos
Proteínas Arqueais/química , Histidina/análogos & derivados , Proteínas Ferro-Enxofre/química , Pyrococcus horikoshii/enzimologia , S-Adenosilmetionina/química , Carbono/química , Cristalografia por Raios X , Histidina/biossíntese , Ferro/química , Compostos Organometálicos/química
6.
Acta Crystallogr F Struct Biol Commun ; 73(Pt 12): 706-712, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-29199993

RESUMO

Methyltransferases (MTs) are enzymes involved in methylation that are needed to perform cellular processes such as biosynthesis, metabolism, gene expression, protein trafficking and signal transduction. The cofactor S-adenosyl-L-methionine (SAM) is used for catalysis by SAM-dependent methyltransferases (SAM-MTs). The crystal structure of Pyrococcus horikoshii SAM-MT was determined to a resolution of 2.1 Šusing X-ray diffraction. The monomeric structure consists of a Rossmann-like fold (domain I) and a substrate-binding domain (domain II). The cofactor (SAM) molecule binds at the interface between adjacent subunits, presumably near to the active site(s) of the enzyme. The observed dimeric state might be important for the catalytic function of the enzyme.


Assuntos
Metiltransferases/química , Metiltransferases/metabolismo , Pyrococcus horikoshii/enzimologia , S-Adenosilmetionina/metabolismo , Proteínas Arqueais/química , Proteínas Arqueais/metabolismo , Sítios de Ligação , Cristalografia por Raios X , Modelos Moleculares , Conformação Proteica , Domínios Proteicos
7.
J Am Chem Soc ; 139(16): 5680-5683, 2017 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-28383907

RESUMO

S-Adenosylmethionine (SAM) has a sulfonium ion with three distinct C-S bonds. Conventional radical SAM enzymes use a [4Fe-4S] cluster to cleave homolytically the C5',adenosine-S bond of SAM to generate a 5'-deoxyadenosyl radical, which catalyzes various downstream chemical reactions. Radical SAM enzymes involved in diphthamide biosynthesis, such as Pyrococcus horikoshii Dph2 (PhDph2) and yeast Dph1-Dph2 instead cleave the Cγ,Met-S bond of methionine to generate a 3-amino-3-carboxylpropyl radical. We here show radical SAM enzymes can be tuned to cleave the third C-S bond to the sulfonium sulfur by changing the structure of SAM. With a decarboxyl SAM analogue (dc-SAM), PhDph2 cleaves the Cmethyl-S bond, forming 5'-deoxy-5'-(3-aminopropylthio) adenosine (dAPTA, 1). The methyl cleavage activity, like the cleavage of the other two C-S bonds, is dependent on the presence of a [4Fe-4S]+ cluster. Electron-nuclear double resonance and mass spectroscopy data suggests that mechanistically one of the S atoms in the [4Fe-4S] cluster captures the methyl group from dc-SAM, forming a distinct EPR-active intermediate, which can transfer the methyl group to nucleophiles such as dithiothreitol. This reveals the [4Fe-4S] cluster in a radical SAM enzyme can be tuned to cleave any one of the three bonds to the sulfonium sulfur of SAM or analogues, and is the first demonstration a radical SAM enzyme could switch from an Fe-based one electron transfer reaction to a S-based two electron transfer reaction in a substrate-dependent manner. This study provides an illustration of the versatile reactivity of Fe-S clusters.


Assuntos
Histidina/análogos & derivados , Proteínas Ferro-Enxofre/metabolismo , S-Adenosilmetionina/metabolismo , Radicais Livres/química , Radicais Livres/metabolismo , Histidina/biossíntese , Histidina/química , Proteínas Ferro-Enxofre/química , Estrutura Molecular , Pyrococcus horikoshii/enzimologia , S-Adenosilmetionina/química , Saccharomyces cerevisiae/enzimologia , Especificidade por Substrato
8.
J Am Chem Soc ; 138(31): 9755-8, 2016 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-27465315

RESUMO

Pyrococcus horikoshii Dph2 (PhDph2) is an unusual radical S-adenosylmethionine (SAM) enzyme involved in the first step of diphthamide biosynthesis. It catalyzes the reaction by cleaving SAM to generate a 3-amino-3-carboxypropyl (ACP) radical. To probe the reaction mechanism, we synthesized a SAM analogue (SAMCA), in which the ACP group of SAM is replaced with a 3-carboxyallyl group. SAMCA is cleaved by PhDph2, yielding a paramagnetic (S = 1/2) species, which is assigned to a complex formed between the reaction product, α-sulfinyl-3-butenoic acid, and the [4Fe-4S] cluster. Electron-nuclear double resonance (ENDOR) measurements with (13)C and (2)H isotopically labeled SAMCA support a π-complex between the C═C double bond of α-sulfinyl-3-butenoic acid and the unique iron of the [4Fe-4S] cluster. This is the first example of a radical SAM-related [4Fe-4S](+) cluster forming an organometallic complex with an alkene, shedding additional light on the mechanism of PhDph2 and expanding our current notions for the reactivity of [4Fe-4S] clusters in radical SAM enzymes.


Assuntos
Enzimas/química , Proteínas Ferro-Enxofre/química , Compostos Organometálicos/química , Pyrococcus horikoshii/enzimologia , S-Adenosilmetionina/química , Alcenos/química , Anisotropia , Butiratos/química , Carbono/química , Catálise , Cromatografia Líquida de Alta Pressão , Espectroscopia de Ressonância de Spin Eletrônica , Elétrons , Histidina/análogos & derivados , Histidina/química , Ferro/química
9.
Biochemistry ; 55(30): 4135-9, 2016 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-27404889

RESUMO

The quinolinate synthase of prokaryotes and photosynthetic eukaryotes, NadA, contains a [4Fe-4S] cluster with unknown function. We report crystal structures of Pyrococcus horikoshii NadA in complex with dihydroxyacetone phosphate (DHAP), iminoaspartate analogues, and quinolinate. DHAP adopts a nearly planar conformation and chelates the [4Fe-4S] cluster via its keto and hydroxyl groups. The active site architecture suggests that the cluster acts as a Lewis acid in enediolate formation, like zinc in class II aldolases. The DHAP and putative iminoaspartate structures suggest a model for a condensed intermediate. The ensemble of structures suggests a two-state system, which may be exploited in early steps.


Assuntos
Proteínas Arqueais/química , Complexos Multienzimáticos/química , Ácido Aspártico/análogos & derivados , Ácido Aspártico/química , Domínio Catalítico , Cristalografia por Raios X , Fosfato de Di-Hidroxiacetona/química , Proteínas Ferro-Enxofre/química , Modelos Moleculares , Conformação Proteica , Pyrococcus horikoshii/enzimologia , Ácido Quinolínico/química
10.
J Am Chem Soc ; 138(23): 7224-7, 2016 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-27224840

RESUMO

Quinolinic acid (QA) is a common intermediate in the biosynthesis of nicotinamide adenine dinucleotide (NAD(+)) and its derivatives in all organisms that synthesize the molecule de novo. In most prokaryotes, it is formed from the condensation of dihydroxyacetone phosphate (DHAP) and aspartate-enamine by the action of quinolinate synthase (NadA). NadA contains a [4Fe-4S] cluster cofactor with a unique, non-cysteinyl-ligated, iron ion (Fea), which is proposed to bind the hydroxyl group of a postulated intermediate in the last step of the reaction to facilitate a dehydration. However, direct evidence for this role in catalysis has yet to be provided. Herein, we present the structure of NadA in the presence of the product of its reaction, QA. We find that N1 and the C7 carboxylate group of QA ligate to Fea in a bidentate fashion, which is confirmed by Hyperfine Sublevel Correlation (HYSCORE) spectroscopy. This binding mode would place the C5 hydroxyl group of the postulated final intermediate distal to Fea and virtually incapable of coordinating to it. The structure shows that three strictly conserved amino acids, Glu198, Tyr109, and Tyr23, are in close proximity to the bound product. Substitution of these amino acids with Gln, Phe, and Phe, respectively, leads to complete loss of activity.


Assuntos
Complexos Multienzimáticos/química , Pyrococcus horikoshii/enzimologia , Ácido Quinolínico/química , Ácido Aspártico/química , Sítios de Ligação , Catálise , Fosfato de Di-Hidroxiacetona/química , Modelos Moleculares , Conformação Proteica
11.
Biochemistry ; 55(10): 1541-53, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26890980

RESUMO

Translation of mRNAs by the ribosome is stereospecific, with only l-amino acids being incorporated into the nascent polypeptide chain. This stereospecificity results from the exclusion of d-amino acids at three steps during protein synthesis: (1) the aminoacylation of tRNA by aminoacyl-tRNA synthetases, (2) binding of aminoacyl-tRNAs to EF-Tu, and (3) recognition of aminoacyl-tRNAs by the ribosome. As a first step toward incorporating d-amino acids during protein synthesis, we have altered the enantioselectivity of tyrosyl-tRNA synthetase. This enzyme is unusual among aminoacyl-tRNA synthetases, as it can aminoacylate tRNA with d-tyrosine (albeit at a reduced rate compared to l-tyrosine). To change the enantioselectivity of tyrosyl-tRNA synthetase, we introduced the post-transfer editing domain from Pyrococcus horikoshii phenylalanyl-tRNA synthetase into the connective polypeptide 1 (CP1) domain of Geobacillus stearothermophilus tyrosyl-tRNA synthetase (henceforth designated TyrRS-FRSed). We show that the phenylalanyl-tRNA synthetase editing domain is stereospecific, hydrolyzing l-Tyr-tRNA(Tyr), but not d-Tyr-tRNA(Tyr). We further show that inserting the phenylalanyl-tRNA synthetase editing domain into the CP1 domain of tyrosyl-tRNA synthetase decreases the activity of the synthetic site in tyrosyl-tRNA synthetase. This decrease in activity is critical, as it prevents the rate of synthesis from overwhelming the ability of the editing domain to hydrolyze the l-Tyr-tRNA(Tyr) product. Overall, inserting the phenylalanyl-tRNA synthetase editing domain results in a 2-fold shift in the enantioselectivity of tyrosyl-tRNA synthetase toward the d-Tyr-tRNA(Tyr) product. When a 4-fold excess of d-tyrosine is used, approximately 40% of the tRNA(Tyr) is aminoacylated with d-tyrosine.


Assuntos
Geobacillus stearothermophilus/enzimologia , Pyrococcus horikoshii/enzimologia , Tirosina-tRNA Ligase/química , Tirosina-tRNA Ligase/metabolismo , Ligação Proteica/fisiologia , Estrutura Terciária de Proteína/fisiologia , Estereoisomerismo
12.
J Biol Chem ; 290(19): 12256-67, 2015 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-25817995

RESUMO

A conserved structural module following the KMSKS catalytic loop exhibits α-α-ß-α topology in class Ia and Ib aminoacyl-tRNA synthetases. However, the function of this domain has received little attention. Here, we describe the effect this module has on the aminoacylation and editing capacities of leucyl-tRNA synthetases (LeuRSs) by characterizing the key residues from various species. Mutation of highly conserved basic residues on the third α-helix of this domain impairs the affinity of LeuRS for the anticodon stem of tRNA(Leu), which decreases both aminoacylation and editing activities. Two glycine residues on this α-helix contribute to flexibility, leucine activation, and editing of LeuRS from Escherichia coli (EcLeuRS). Acidic residues on the ß-strand enhance the editing activity of EcLeuRS and sense the size of the tRNA(Leu) D-loop. Incorporation of these residues stimulates the tRNA-dependent editing activity of the chimeric minimalist enzyme Mycoplasma mobile LeuRS fused to the connective polypeptide 1 editing domain and leucine-specific domain from EcLeuRS. Together, these results reveal the stem contact-fold to be a functional as well as a structural linker between the catalytic site and the tRNA binding domain. Sequence comparison of the EcLeuRS stem contact-fold domain with editing-deficient enzymes suggests that key residues of this module have evolved an adaptive strategy to follow the editing functions of LeuRS.


Assuntos
Escherichia coli/enzimologia , Leucina-tRNA Ligase/metabolismo , Trifosfato de Adenosina/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Domínio Catalítico , Dicroísmo Circular , Citoplasma/metabolismo , Humanos , Dados de Sequência Molecular , Mutação , Mycoplasma/enzimologia , Ligação Proteica , Estrutura Terciária de Proteína , Pyrococcus , Pyrococcus horikoshii/enzimologia , RNA de Transferência/metabolismo , Homologia de Sequência de Aminoácidos
13.
RNA ; 20(10): 1560-6, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25161314

RESUMO

RNA 3'-phosphate cyclase (RtcA) catalyzes the ATP-dependent cyclization of a 3'-phosphate to form a 2',3'-cyclic phosphate at RNA termini. Cyclization proceeds through RtcA-AMP and RNA(3')pp(5')A covalent intermediates, which are analogous to intermediates formed during catalysis by the tRNA ligase RtcB. Here we present a crystal structure of Pyrococcus horikoshii RtcA in complex with a 3'-phosphate terminated RNA and adenosine in the AMP-binding pocket. Our data reveal that RtcA recognizes substrate RNA by ensuring that the terminal 3'-phosphate makes a large contribution to RNA binding. Furthermore, the RNA 3'-phosphate is poised for in-line attack on the P-N bond that links the phosphorous atom of AMP to N(ε) of His307. Thus, we provide the first insights into RNA 3'-phosphate termini recognition and the mechanism of 3'-phosphate activation by an Rtc enzyme.


Assuntos
Ligases/química , Ligases/metabolismo , Pyrococcus horikoshii/enzimologia , RNA/metabolismo , Monofosfato de Adenosina/metabolismo , Catálise , Cristalografia por Raios X , Ligases/genética , Modelos Moleculares , Mutagênese Sítio-Dirigida , Mutação/genética , Ligação Proteica , Conformação Proteica , RNA/química , RNA/genética
14.
Mol Microbiol ; 94(4): 803-14, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25171083

RESUMO

TET aminopeptidases assemble as large homo-dodecameric complexes. The reason why prokaryotic genomes often encode a diverse set of TET peptidases homologues remains unclear. In the archaeon Pyrococcus horikoshii, PhTET1, PhTET2 and PhTET3 homo-oligomeric particles have been proposed to work in concert to breakdown intracellular polypeptides. When coexpressed in Escherichia coli, the PhTET2 and PhTET3 proteins were found to assemble efficiently as heteromeric complexes. Biophysical analysis demonstrated that these particles possess the same quaternary structure as the homomeric TET dodecamers. The same hetero-oligomeric complexes were immunodetected in P. horikoshii cell extracts analysed by sucrose gradient fractionation and ion exchange chromatography. The biochemical activity of a purified hetero-oligomeric TET particle, assessed on chromogenic substrates and on a complex mixture of peptides, reveals that it displays higher efficiency than an equivalent combination of homo-oligomeric TET particles. Interestingly, phylogenetic analysis shows that PhTET2 and PhTET3 are paralogous proteins that arose from gene duplication in the ancestor of Thermococcales. Together, these results establish that the PhTET2 and PhTET3 proteins are two subunits of the same enzymatic complex aimed at the destruction of polypeptidic chains of very different composition. This is the first report for such a mechanism intended to improve multi-enzymatic complex efficiency among exopeptidases.


Assuntos
Aminopeptidases/metabolismo , Peptídeos/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise , Pyrococcus horikoshii/enzimologia , Pyrococcus horikoshii/metabolismo , Aminopeptidases/genética , Fenômenos Biofísicos , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Complexo de Endopeptidases do Proteassoma/genética , Multimerização Proteica , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
15.
J Am Chem Soc ; 136(5): 1754-7, 2014 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-24422557

RESUMO

Diphthamide, the target of diphtheria toxin, is a unique posttranslational modification on translation elongation factor 2 (EF2) in archaea and eukaryotes. The biosynthesis of diphthamide was proposed to involve three steps. The first step is the transfer of the 3-amino-3-carboxypropyl group from S-adenosyl-l-methionine (SAM) to the histidine residue of EF2, forming a C-C bond. Previous genetic studies showed this step requires four proteins in eukaryotes, Dph1-Dph4. However, the exact molecular functions for the four proteins are unknown. Previous study showed that Pyrococcus horikoshii Dph2 (PhDph2), a novel iron-sulfur cluster-containing enzyme, forms a homodimer and is sufficient for the first step of diphthamide biosynthesis in vitro. Here we demonstrate by in vitro reconstitution that yeast Dph1 and Dph2 form a complex (Dph1-Dph2) that is equivalent to the homodimer of PhDph2 and is sufficient to catalyze the first step in vitro in the presence of dithionite as the reductant. We further demonstrate that yeast Dph3 (also known as KTI11), a CSL-type zinc finger protein, can bind iron and in the reduced state can serve as an electron donor to reduce the Fe-S cluster in Dph1-Dph2. Our study thus firmly establishes the functions for three of the proteins involved in eukaryotic diphthamide biosynthesis. For most radical SAM enzymes in bacteria, flavodoxins and flavodoxin reductases are believed to serve as electron donors for the Fe-S clusters. The finding that Dph3 is an electron donor for the Fe-S clusters in Dph1-Dph2 is thus interesting and opens up new avenues of research on electron transfer to Fe-S proteins in eukaryotic cells.


Assuntos
Histidina/análogos & derivados , Proteínas Ferro-Enxofre/química , Proteínas Repressoras/química , Proteínas de Saccharomyces cerevisiae/química , Proteínas Arqueais/química , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , Vias Biossintéticas , Transporte de Elétrons , Escherichia coli/genética , Histidina/biossíntese , Proteínas Ferro-Enxofre/genética , Proteínas Ferro-Enxofre/metabolismo , Ligação Proteica , Multimerização Proteica , Pyrococcus horikoshii/enzimologia , Proteínas Recombinantes , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , S-Adenosilmetionina/química , Saccharomyces cerevisiae/enzimologia , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Transfecção
16.
Nucleic Acids Res ; 42(6): 3931-42, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24435797

RESUMO

Archease is a 16-kDa protein that is conserved in all three domains of life. In diverse bacteria and archaea, the genes encoding Archease and the tRNA ligase RtcB are localized into an operon. Here we provide a rationale for this operon organization by showing that Archease and RtcB from Pyrococcus horikoshii function in tandem, with Archease altering the catalytic properties of the RNA ligase. RtcB catalyzes the GTP and Mn(II)-dependent joining of either 2',3'-cyclic phosphate or 3'-phosphate termini to 5'-hydroxyl termini. We find that catalytic concentrations of Archease are sufficient to activate RtcB, and that Archease accelerates both the RNA 3'-P guanylylation and ligation steps. In addition, we show that Archease can alter the NTP specificity of RtcB such that ATP, dGTP or ITP is used efficiently. Moreover, RtcB variants that have inactivating substitutions in the guanine-binding pocket can be rescued by the addition of Archease. We also present a 1.4 Å-resolution crystal structure of P. horikoshii Archease that reveals a metal-binding site consisting of conserved carboxylates located at the protein tip. Substitution of the Archease metal-binding residues drastically reduced Archease-dependent activation of RtcB. Thus, evolution has sought to co-express archease and rtcB by creating a tRNA splicing operon.


Assuntos
Proteínas Arqueais/química , Proteínas Arqueais/metabolismo , RNA Ligase (ATP)/metabolismo , Trifosfato de Adenosina/metabolismo , Proteínas Arqueais/genética , Guanina/metabolismo , Guanosina Trifosfato/metabolismo , Modelos Moleculares , Mutagênese , Óperon , Pyrococcus horikoshii/enzimologia , Pyrococcus horikoshii/genética , RNA/química , RNA/metabolismo , RNA Ligase (ATP)/química , RNA Ligase (ATP)/genética , Splicing de RNA , RNA de Transferência/metabolismo
17.
Biosci Biotechnol Biochem ; 77(10): 2140-3, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24096651

RESUMO

One of the most cost-effective methods of producing industrial enzymes is by the use of transgenic plants. We demonstrated successful high-level expression of a hyperthermostable archaeal ß-1,4-endoglucanase in mature tobacco leaves by transformation of chloroplasts by homologous recombination. The active recombinant enzyme was readily recovered not only from fresh but also from dried leaves.


Assuntos
Celulase/biossíntese , Celulase/química , Cloroplastos/genética , Engenharia Genética/métodos , Nicotiana/citologia , Pyrococcus horikoshii/enzimologia , Temperatura , Estabilidade Enzimática , Pyrococcus horikoshii/genética , Nicotiana/genética
18.
Acta Crystallogr D Biol Crystallogr ; 69(Pt 9): 1685-96, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23999292

RESUMO

Quinolinate synthase (QS) catalyzes the condensation of iminoaspartate and dihydroxyacetone phosphate to form quinolinate, the universal precursor for the de novo biosynthesis of nicotinamide adenine dinucleotide. QS has been difficult to characterize owing either to instability or lack of activity when it is overexpressed and purified. Here, the structure of QS from Pyrococcus furiosus has been determined at 2.8 Šresolution. The structure is a homodimer consisting of three domains per protomer. Each domain shows the same topology with a four-stranded parallel ß-sheet flanked by four α-helices, suggesting that the domains are the result of gene triplication. Biochemical studies of QS indicate that the enzyme requires a [4Fe-4S] cluster, which is lacking in this crystal structure, for full activity. The organization of domains in the protomer is distinctly different from that of a monomeric structure of QS from P. horikoshii [Sakuraba et al. (2005), J. Biol. Chem. 280, 26645-26648]. The domain arrangement in P. furiosus QS may be related to protection of cysteine side chains, which are required to chelate the [4Fe-4S] cluster, prior to cluster assembly.


Assuntos
Proteínas Ferro-Enxofre/química , Modelos Químicos , Complexos Multienzimáticos/química , Pyrococcus furiosus/enzimologia , Sequência de Aminoácidos , Vias Biossintéticas/genética , Domínio Catalítico , Sequência Conservada , Cristalografia por Raios X , Duplicação Gênica/genética , Proteínas Ferro-Enxofre/genética , Proteínas Ferro-Enxofre/metabolismo , Dados de Sequência Molecular , Complexos Multienzimáticos/metabolismo , Multimerização Proteica/genética , Estrutura Terciária de Proteína/genética , Pyrococcus horikoshii/enzimologia , Pyrococcus horikoshii/genética , Especificidade por Substrato
19.
Proc Natl Acad Sci U S A ; 110(38): 15253-8, 2013 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-24003121

RESUMO

Factor activating Pos9 (Fap7) is an essential ribosome biogenesis factor important for the assembly of the small ribosomal subunit with an uncommon dual ATPase and adenylate kinase activity. Depletion of Fap7 or mutations in its ATPase motifs lead to defects in small ribosomal subunit rRNA maturation, the absence of ribosomal protein Rps14 from the assembled subunit, and retention of the nascent small subunit in a quality control complex with the large ribosomal subunit. The molecular basis for the role of Fap7 in ribosome biogenesis is, however, not yet understood. Here we show that Fap7 regulates multiple interactions between the precursor rRNA, ribosomal proteins, and ribosome assembly factors in a hierarchical manner. Fap7 binds to Rps14 with a very high affinity. Fap7 binding blocks both rRNA-binding elements of Rps14, suggesting that Fap7 inhibits premature interactions of Rps14 with RNA. The Fap7/Rps14 interaction is modulated by nucleotide binding to Fap7. Rps14 strongly activates the ATPase activity but not the adenylate kinase activity of Fap7, identifying Rps14 as an example of a ribosomal protein functioning as an ATPase-activating factor. In addition, Fap7 inhibits the RNA cleavage activity of Nob1, the endonuclease responsible for the final maturation step of the small subunit rRNA, in a nucleotide independent manner. Thus, Fap7 may regulate small subunit biogenesis at multiple stages.


Assuntos
Adenosina Trifosfatases/metabolismo , Adenilato Quinase/metabolismo , Modelos Moleculares , Conformação Proteica , Pyrococcus horikoshii/enzimologia , Proteínas Ribossômicas/metabolismo , Subunidades Ribossômicas Menores/fisiologia , Sequência de Aminoácidos , Biofísica , Cromatografia em Gel , Cromatografia em Camada Fina , Dicroísmo Circular , Polarização de Fluorescência , Espectroscopia de Ressonância Magnética , Dados de Sequência Molecular , Alinhamento de Sequência , Especificidade da Espécie , Espectrometria de Fluorescência , Técnicas do Sistema de Duplo-Híbrido
20.
J Biol Chem ; 288(31): 22542-54, 2013 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-23696647

RESUMO

Tetrahedral (TET) aminopeptidases are large polypeptide destruction machines present in prokaryotes and eukaryotes. Here, the rules governing their assembly into hollow 12-subunit tetrahedrons are addressed by using TET2 from Pyrococcus horikoshii (PhTET2) as a model. Point mutations allowed the capture of a stable, catalytically active precursor. Small angle x-ray scattering revealed that it is a dimer whose architecture in solution is identical to that determined by x-ray crystallography within the fully assembled TET particle. Small angle x-ray scattering also showed that the reconstituted PhTET2 dodecameric particle displayed the same quaternary structure and thermal stability as the wild-type complex. The PhTET2 assembly intermediates were characterized by analytical ultracentrifugation, native gel electrophoresis, and electron microscopy. They revealed that PhTET2 assembling is a highly ordered process in which hexamers represent the main intermediate. Peptide degradation assays demonstrated that oligomerization triggers the activity of the TET enzyme toward large polypeptidic substrates. Fractionation experiments in Pyrococcus and Halobacterium cells revealed that, in vivo, the dimeric precursor co-exists together with assembled TET complexes. Taken together, our observations explain the biological significance of TET oligomerization and suggest the existence of a functional regulation of the dimer-dodecamer equilibrium in vivo.


Assuntos
Peptídeo Hidrolases/metabolismo , Pyrococcus horikoshii/enzimologia , Clonagem Molecular , Dimerização , Peptídeo Hidrolases/química , Peptídeo Hidrolases/genética , Peptídeo Hidrolases/isolamento & purificação , Conformação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA