Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.682
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Gen Physiol Biophys ; 43(3): 185-196, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38774919

RESUMO

Ampelopsin (AMP) had a wound-healing effect in rat skin wounds with or without purulent infection. However, the role of AMP in diabetic wound healing remains poorly defined. Wounds were created on the dorsal skin of type 2 diabetic mouse model, and the histological features of wounds were examined by hematoxylin and eosin (HE) staining. Caspase-1 activity and the secretion of inflammatory cytokines were detected by enzyme-linked immunosorbent assay (ELISA). Cell viability and migration were examined through cell counting kit-8 (CCK-8) and wound healing assays, respectively. AMP facilitated wound healing in vivo. AMP notably facilitated platelet endothelial cell adhesion molecule-31 (CD31), collagen type I alpha 1 chain (COL1A1), and alpha-smooth muscle actin (α-SMA), and inhibited matrix metallopeptidase 9 (MMP9) and cyclooxygenase 2 (Cox2) expression in diabetic wounds. The inflammasome pathway was implicated in skin injury. AMP inhibited pro-inflammatory factor secretions and NLR family pyrin domain containing 3 (NLRP3) inflammasome pathway in diabetic wounds and high glucose-treated THP-1 macrophages. AMP-mediated NLRP3 inflammasome inhibition in THP-1 macrophages increased cell viability and migratory capacity in HaCaT cells. AMP facilitated diabetic wound healing and increased keratinocyte cell viability and migratory ability by inhibiting the NLRP3 inflammasome pathway in macrophages.


Assuntos
Inflamassomos , Queratinócitos , Macrófagos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Cicatrização , Animais , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Cicatrização/efeitos dos fármacos , Queratinócitos/metabolismo , Queratinócitos/efeitos dos fármacos , Camundongos , Humanos , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Inflamassomos/metabolismo , Inflamassomos/efeitos dos fármacos , Masculino , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Transdução de Sinais/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Movimento Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células THP-1 , Células HaCaT , Flavonoides
2.
Int J Mol Sci ; 25(9)2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38731895

RESUMO

UVB radiation is known to induce photodamage to the skin, disrupt the skin barrier, elicit cutaneous inflammation, and accelerate the aging process. Agaricus blazei Murill (ABM) is an edible medicinal and nutritional fungus. One of its constituents, Agaricus blazei Murill polysaccharide (ABP), has been reported to exhibit antioxidant, anti-inflammatory, anti-tumor, and immunomodulatory effects, which suggests potential effects that protect against photodamage. In this study, a UVB-induced photodamage HaCaT model was established to investigate the potential reparative effects of ABP and its two constituents (A1 and A2). Firstly, two purified polysaccharides, A1 and A2, were obtained by DEAE-52 cellulose column chromatography, and their physical properties and chemical structures were studied. A1 and A2 exhibited a network-like microstructure, with molecular weights of 1.5 × 104 Da and 6.5 × 104 Da, respectively. The effects of A1 and A2 on cell proliferation, the mitochondrial membrane potential, and inflammatory factors were also explored. The results show that A1 and A2 significantly promoted cell proliferation, enhanced the mitochondrial membrane potential, suppressed the expression of inflammatory factors interleukin-1ß (IL-1ß), interleukin-8 (IL-8), interleukin-6 (IL-6), and tumor necrosis factor α (TNF-α), and increased the relative content of filaggrin (FLG) and aquaporin-3 (AQP3). The down-regulated JAK-STAT signaling pathway was found to play a role in the response to photodamage. These findings underscore the potential of ABP to ameliorate UVB-induced skin damage.


Assuntos
Agaricus , Proliferação de Células , Proteínas Filagrinas , Células HaCaT , Raios Ultravioleta , Agaricus/química , Humanos , Raios Ultravioleta/efeitos adversos , Proliferação de Células/efeitos dos fármacos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Polissacarídeos Fúngicos/farmacologia , Polissacarídeos Fúngicos/química , Polissacarídeos/farmacologia , Polissacarídeos/química , Queratinócitos/efeitos dos fármacos , Queratinócitos/metabolismo , Queratinócitos/efeitos da radiação , Citocinas/metabolismo
3.
Int J Mol Sci ; 25(9)2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38731983

RESUMO

Acne vulgaris is a prevalent skin disorder affecting many young individuals, marked by keratinization, inflammation, seborrhea, and colonization by Cutibacterium acnes (C. acnes). Ellagitannins, known for their antibacterial and anti-inflammatory properties, have not been widely studied for their anti-acne effects. Chestnut (Castanea sativa Mill., C. sativa), a rich ellagitannin source, including castalagin whose acne-related bioactivity was previously unexplored, was investigated in this study. The research assessed the effect of C. sativa leaf extract and castalagin on human keratinocytes (HaCaT) infected with C. acnes, finding that both inhibited IL-8 and IL-6 release at concentrations below 25 µg/mL. The action mechanism was linked to NF-κB inhibition, without AP-1 involvement. Furthermore, the extract displayed anti-biofilm properties and reduced CK-10 expression, indicating a potential role in mitigating inflammation, bacterial colonization, and keratosis. Castalagin's bioactivity mirrored the extract's effects, notably in IL-8 inhibition, NF-κB inhibition, and biofilm formation at low µM levels. Other polyphenols, such as flavonol glycosides identified via LC-MS, might also contribute to the extract's biological activities. This study is the first to explore ellagitannins' potential in treating acne, offering insights for developing chestnut-based anti-acne treatments pending future in vivo studies.


Assuntos
Acne Vulgar , Fagaceae , Taninos Hidrolisáveis , Extratos Vegetais , Folhas de Planta , Humanos , Taninos Hidrolisáveis/farmacologia , Fagaceae/química , Acne Vulgar/microbiologia , Acne Vulgar/tratamento farmacológico , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Folhas de Planta/química , Queratinócitos/efeitos dos fármacos , Queratinócitos/metabolismo , NF-kappa B/metabolismo , Células HaCaT , Propionibacterium acnes/efeitos dos fármacos , Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Interleucina-8/metabolismo
4.
Artigo em Chinês | MEDLINE | ID: mdl-38664026

RESUMO

Objective: To investigate the effects of gelatin methacrylate anhydride (GelMA) hydrogel loaded with small extracellular vesicles derived from human umbilical cord mesenchymal stem cells (hUCMSCs-sEVs) in the treatment of full-thickness skin defect wounds in mice. Methods: This study was an experimental study. hUCMSCs-sEVs were extracted by ultracentrifugation, their morphology was observed through transmission electron microscope, and the expression of CD9, CD63, tumor susceptibility gene 101 (TSG101), and calnexin was detected by Western blotting. The human umbilical vein endothelial cells (HUVECs), the 3rd and 4th passages of human epidermal keratinocytes (HEKs) and human dermal fibroblasts (HDFs) were all divided into blank control group (routinely cultured) and hUCMSC-sEV group (cultured with the cell supernatant containing hUCMSCs-sEVs). The cell scratch test was performed and the cell migration rates at 6, 12, and 24 h after scratching were calculated, the cell Transwell assay was performed and the number of migration cells at 12 h after culture was calculated, and the proportion of proliferating cells was detected by 5-acetylidene-2'-deoxyuridine and Hoechst staining at 24 h after culture, with sample numbers being all 3. The simple GelMA hydrogel and the GelMA hydrogel loaded with hUCMSCs-sEVs (hereinafter referred to as hUCMSC-sEV/GelMA hydrogel) were prepared. Then the micromorphology of 2 kinds of hydrogels was observed under scanning electron microscope, the distribution of hUCMSCs-sEVs was observed by laser scanning confocal microscope, and the cumulative release rates of hUCMSCs-sEVs at 0 (immediately), 2, 4, 6, 8, 10, and 12 d after soaking hUCMSC-sEV/GelMA hydrogel in phosphate buffer solution (PBS) were measured and calculated by protein colorimetric quantification (n=3). Twenty-four 6-week-old male C57BL/6J mice were divided into PBS group, hUCMSC-sEV alone group, GelMA hydrogel alone group, and hUCMSC-sEV/GelMA hydrogel group according to the random number table, with 6 mice in each group, and after the full-thickness skin defect wounds on the back of mice in each group were produced, the wounds were performed with PBS injection, hUCMSC-sEV suspenson injection, simple GelMA coverage, and hUCMSC-sEV/GelMA hydrogel coverage, respectively. Wound healing was observed on post injury day (PID) 0 (immediately), 4, 8, and 12, and the wound healing rates on PID 4, 8, and 12 were calculated, and the wound tissue was collected on PID 12 for hematoxylin-eosin staining to observe the structure of new tissue, with sample numbers being both 6. Results: The extracted hUCMSCs-sEVs showed a cup-shaped structure and expressed CD9, CD63, and TSG101, but barely expressed calnexin. At 6, 12, and 24 h after scratching, the migration rates of HEKs (with t values of 25.94, 20.98, and 20.04, respectively), HDFs (with t values of 3.18, 5.68, and 4.28, respectively), and HUVECs (with t values of 4.32, 19.33, and 4.00, respectively) in hUCMSC-sEV group were significantly higher than those in blank control group (P<0.05). At 12 h after culture, the numbers of migrated HEKs, HDFs, and HUVECs in hUCMSC-sEV group were 550±23, 235±9, and 856±35, respectively, which were significantly higher than 188±14, 97±6, and 370±32 in blank control group (with t values of 22.95, 23.13, and 17.84, respectively, P<0.05). At 24 h after culture, the proportions of proliferating cells of HEKs, HDFs, and HUVECs in hUCMSC-sEV group were significantly higher than those in blank control group (with t values of 22.00, 13.82, and 32.32, respectively, P<0.05). The inside of simple GelMA hydrogel showed a loose and porous sponge-like structure, and hUCMSCs-sEVs was not observed in it. The hUCMSC-sEV/GelMA hydrogel had the same sponge-like structure, and hUCMSCs-sEVs were uniformly distributed in clumps. The cumulative release rate curve of hUCMSCs-sEVs from hUCMSC-sEV/GelMA hydrogel tended to plateau at 2 d after soaking, and the cumulative release rate of hUCMSCs-sEVs was (59.2±1.8)% at 12 d after soaking. From PID 0 to 12, the wound areas of mice in the 4 groups gradually decreased. On PID 4, 8, and 12, the wound healing rates of mice in hUCMSC-sEV/GelMA hydrogel group were significantly higher than those in the other 3 groups (P<0.05); the wound healing rates of mice in GelMA hydrogel alone group and hUCMSC-sEV alone group were significantly higher than those in PBS group (P<0.05). On PID 8 and 12, the wound healing rates of mice in hUCMSC-sEV alone group were significantly higher than those in GelMA hydrogel alone group (P<0.05). On PID 12, the wounds of mice in hUCMSC-sEV/GelMA hydrogel group showed the best wound epithelization, loose and orderly arrangement of dermal collagen, and the least number of inflammatory cells, while the dense arrangement of dermal collagen and varying degrees of inflammatory cell infiltration were observed in the wounds of mice in the other 3 groups. Conclusions: hUCMSCs-sEVs can promote the migration and proliferation of HEKs, HDFs, and HUVECs which are related to skin wound healing, and slowly release in GelMA hydrogel. The hUCMSC-sEV/GelMA hydrogel as a wound dressing can significantly improve the healing speed of full-thickness skin defect wounds in mice.


Assuntos
Vesículas Extracelulares , Hidrogéis , Células-Tronco Mesenquimais , Cicatrização , Animais , Humanos , Camundongos , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Vesículas Extracelulares/química , Gelatina/química , Células Endoteliais da Veia Umbilical Humana , Hidrogéis/química , Queratinócitos/efeitos dos fármacos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Metacrilatos/química , Pele/efeitos dos fármacos , Pele/lesões , Pele/patologia , Cordão Umbilical/citologia , Cicatrização/efeitos dos fármacos
5.
Int Immunopharmacol ; 132: 111923, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38565041

RESUMO

In this study, we aimed to evaluate the protective effect of geniposide (GEN) on imiquimod (IMQ)-induced psoriasis-like skin lesions in mice. Firstly, visual changes of psoriatic skin lesions were observed and the severity was recorded using psoriasis area and severity index (PASI) score. Histological changes were assessed by HE staining for epidermal thickness and Masson's staining for collagen fibers. Then, photographs of microvascular inside the skin were taken for macroscopic observation, and microscopic changes associated with angiogenesis were evaluated. Furthermore, expression of angiogenic factors were analyzed by ELISA, immunohistochemistry and immunofluorescence, separately. Lastly, the expression of VEGFR signaling-related proteins was detected by WB. Compared with control, IMQ drove a significant increment of epidermal thicknesses with higher PASI scores and more dermal collagen deposition. IMQ treatment led to abnormal keratinocyte proliferation, increased microvascular inside skin, growing production of angiogenesis-related factors, up-regulated expression of VEGFR1 and VEGFR2, and enhanced phosphorylation of p38. However, GEN significantly ameliorated the psoriatic skin lesions, the epidermal thickness, the formation of collagen fibers, and abnormal keratinocyte proliferation. Importantly, GEN inhibited angiogenesis, the production of angiogenic factors (VEGF-A, Ang-2, TNF-α, and IL-17A), and the proliferation of vascular endothelial cells. Simultaneously, GEN curbed the expression of VEGFR1, VEGFR2, p38, and P-p38 proteins involved in VEGFR signaling. Of note, the suppressive effect of GEN was reversed in the HUVECs with over-expressed VEGFR1 or VEGFR2 related to the cells without transfection. These findings suggest that VEGFR1 and VEGFR2 participate in the anti-angiogenesis of GEN in IMQ-induced psoriasis-like skin lesions in mice.


Assuntos
Imiquimode , Iridoides , Neovascularização Patológica , Psoríase , Pele , Animais , Masculino , Camundongos , Angiogênese , Inibidores da Angiogênese/uso terapêutico , Inibidores da Angiogênese/farmacologia , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Imiquimode/toxicidade , Iridoides/farmacologia , Iridoides/uso terapêutico , Queratinócitos/efeitos dos fármacos , Camundongos Endogâmicos BALB C , Neovascularização Patológica/tratamento farmacológico , Psoríase/tratamento farmacológico , Psoríase/induzido quimicamente , Psoríase/patologia , Pele/patologia , Pele/efeitos dos fármacos , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/genética , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
6.
Phytomedicine ; 128: 155412, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38579666

RESUMO

BACKGROUND: Psoriasis is a long-lasting, inflammatory, continuous illness caused through T cells and characterized mainly by abnormal growth and division of keratinocytes. Currently, corticosteroids are the preferred option. However, prolonged use of traditional topical medication can lead to adverse reactions and relapse, presenting a significant therapeutic obstacle. Improved alternative treatment options are urgently required. Formononetin (FMN) is a representative component of isoflavones in Huangqi (HQ) [Astragalus membranaceus (Fisch.) Bge.]. It possesses properties that reduce inflammation, combat oxidation, inhibit tumor growth, and mimic estrogen. Although FMN has been shown to ameliorate skin barrier devastation via regulating keratinocyte apoptosis and proliferation, there are no reports of its effectiveness in treating psoriasis. OBJECTIVE: Through transcriptomics clues and experimental investigation, we aimed to elucidate the fundamental mechanisms underlying FMN's action on psoriasis. MATERIALS AND METHODS: Cell viability was examined using CCK8 assay in this study. The results of analysis of differentially expressed genes (DEGs) between FMN-treated HaCaT cells and normal HaCaT cells using RNA-sequencing (RNA-seq) were presented on volcano plots and heatmap. Enrichment analysis was conducted on DEGs using Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO), and results were validated through RT-qPCR verification. After 12 days of FMN treatment in psoriasis mouse model, we gauged the PASI score and epidermis thickness. A variety of techniques were used to assess FMN's effectiveness on inhibiting inflammation and proliferation related to psoriasis, including RT-qPCR, HE staining, western blot, and immunohistochemistry (IHC). RESULTS: The findings indicated that FMN could suppress the growth of HaCaT cells using CCK8 assay (with IC50 = 40.64 uM) and 20 uM FMN could reduce the level of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) to the greatest extent. FMN-treated HaCaT cells exhibited 985 up-regulated and 855 down-regulated DEGs compared to normal HaCaT cells. GO analysis revealed that DEGs were linked to interferon (IFN) signaling pathway. Furthermore, FMN improved pathological features, which encompassed decreased erythema, scale, and thickness scores of skin lesions in psoriasis mouse model. In vivo experiments confirmed that FMN down-regulated expression of IFN-α, IFN-ß, IFN-γ, decreased secretion of TNF-α and IL-17 inflammatory factors, inhibited expression of IFN-related chemokines included Cxcl9, Cxcl10, Cxcl11 and Cxcr3 and reduced expression of transcription factors p-STAT1, p-STAT3 and IFN regulatory factor 1 (IRF1) in the imiquimod (IMQ) group. CONCLUSIONS: In summary, these results suggested that FMN played an anti-inflammatory and anti-proliferative role in alleviating psoriasis by inhibiting IFN signaling pathway, and FMN could be used as a potential therapeutic agent.


Assuntos
Células HaCaT , Isoflavonas , Psoríase , Transdução de Sinais , Isoflavonas/farmacologia , Psoríase/tratamento farmacológico , Animais , Transdução de Sinais/efeitos dos fármacos , Humanos , Camundongos , Interferons , Sobrevivência Celular/efeitos dos fármacos , Queratinócitos/efeitos dos fármacos , Inflamação/tratamento farmacológico , Astragalus propinquus/química , Camundongos Endogâmicos BALB C , Masculino , Modelos Animais de Doenças
7.
Int Immunopharmacol ; 132: 111971, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38565040

RESUMO

DNA damage resulting from UV irradiation on the skin has been extensively documented in numerous studies. In our prior investigations, we demonstrated that UVB-induced DNA breakage from keratinocytes can activate the cGAS-STING pathway in macrophages. The cGAS-STING signaling pathway serves as the principal effector for detecting and responding to abnormal double-stranded DNA in the cytoplasm. Expanding on our previous findings, we have further validated that STING knockout significantly diminishes UVB-induced skin damage, emphasizing the critical role of cGAS-STING activation in this context. Salvianolic acid A, a principal active constituent of Salvia miltiorrhiza Burge, has been extensively studied for its therapeutic effects in conditions such as coronary heart disease, angina pectoris, and diabetic peripheral neuropathy. However, its effect on cGAS-STING pathway and its ability to alleviate skin damage have not been previously reported. In a co-culture system, supernatant from UVB-treated keratinocytes induced IRF3 activation in macrophages, and this activation was inhibited by salvianolic acid A. Our investigation, employing photodamage and photoaging models, establishes that salvianolic acid A effectively mitigates UV-induced epidermal thickening and collagen degeneration. Treatment with salvianolic acid A significantly reduced skin damage, epidermal thickness increase, and keratinocyte hyperproliferation compared to the untreated photo-damage and photoaging model groups. In summary, salvianolic acid A emerges as a promising candidate for preventing UV-induced skin damage by inhibiting cGAS-STING activation. This research enhances our understanding of the intricate mechanisms underlying skin photodamage and provides a potential avenue for the development of therapeutic interventions.


Assuntos
Ácidos Cafeicos , Queratinócitos , Lactatos , Proteínas de Membrana , Nucleotidiltransferases , Transdução de Sinais , Pele , Raios Ultravioleta , Raios Ultravioleta/efeitos adversos , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Animais , Transdução de Sinais/efeitos dos fármacos , Queratinócitos/efeitos dos fármacos , Queratinócitos/efeitos da radiação , Pele/efeitos dos fármacos , Pele/patologia , Pele/efeitos da radiação , Nucleotidiltransferases/metabolismo , Ácidos Cafeicos/farmacologia , Humanos , Camundongos , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Camundongos Endogâmicos C57BL , Envelhecimento da Pele/efeitos dos fármacos , Envelhecimento da Pele/efeitos da radiação , Dano ao DNA/efeitos dos fármacos , Fator Regulador 3 de Interferon/metabolismo , Feminino , Células RAW 264.7
8.
Virology ; 595: 110063, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38564935

RESUMO

This experimental study aimed to evaluate the antiviral and synergistic effects of photoenergy irradiation on human herpes simplex virus type I (HSV-1) infection. We assessed viral replication, plaque formation, and relevant viral gene expression to examine the antiviral and synergistic effects of blue light (BL) with acyclovir treatment. Our results showed that daily BL (10 J/cm2) irradiation inhibited plaque-forming ability and decreased viral copy numbers in HSV-1-infected monkey kidney epithelial Vero cells and primary human oral keratinocyte (HOK) cells. Combined treatment with the antiviral agent acyclovir and BL irradiation increased anti-viral activity, reducing viral titers and copy numbers. In particular, accumulated BL irradiation suppressed characteristic viral genes including UL19 and US6, and viral DNA replication-essential genes including UL9, UL30, UL42, and UL52 in HOK cells. Our results suggest that BL irradiation has anti-viral and synergistic properties, making it a promising therapeutic candidate for suppressing viral infections in clinical trials.


Assuntos
Aciclovir , Antivirais , Herpesvirus Humano 1 , Replicação Viral , Antivirais/farmacologia , Animais , Herpesvirus Humano 1/efeitos dos fármacos , Herpesvirus Humano 1/efeitos da radiação , Herpesvirus Humano 1/fisiologia , Herpesvirus Humano 1/genética , Chlorocebus aethiops , Células Vero , Humanos , Replicação Viral/efeitos dos fármacos , Replicação Viral/efeitos da radiação , Aciclovir/farmacologia , Luz , Herpes Simples/virologia , Herpes Simples/tratamento farmacológico , Queratinócitos/virologia , Queratinócitos/efeitos da radiação , Queratinócitos/efeitos dos fármacos , Ensaio de Placa Viral
9.
Biosci Biotechnol Biochem ; 88(5): 529-537, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38509025

RESUMO

Four ethanol fractionated crude extracts (EFCEs [A-D]) purified from the leaves of Cinnamomum macrostemon Hayata were screened for antioxidative effects and mitochondrial function in HaCaT cells. The higher cell viability indicated that EFCE C was mildly toxic. Under the treatment of 50 ng/mL EFCE C, the hydrogen peroxide (H2O2)-induced cytosolic and mitochondrial reactive oxygen species levels were reduced as well as the H2O2-impaired cell viability, mitochondrial membrane potential (MMP), ATP production, and mitochondrial mass. The conversion of globular mitochondria to tubular mitochondria is coincident with EFCE C-restored mitochondrial function. The mitophagy activator rapamycin showed similar effects to EFCE C in recovering the H2O2-impaired cell viability, MMP, ATP production, mitochondrial mass, and also mitophagic proteins such as PINK1, Parkin, LC3 II, and biogenesis protein PGC-1α. We thereby propose the application of EFCE C in the prevention of oxidative stress in skin cells.


Assuntos
Sobrevivência Celular , Cinnamomum , Peróxido de Hidrogênio , Queratinócitos , Potencial da Membrana Mitocondrial , Mitocôndrias , Mitofagia , Estresse Oxidativo , Extratos Vegetais , Espécies Reativas de Oxigênio , Humanos , Mitofagia/efeitos dos fármacos , Queratinócitos/efeitos dos fármacos , Queratinócitos/metabolismo , Queratinócitos/citologia , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Peróxido de Hidrogênio/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Cinnamomum/química , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Trifosfato de Adenosina/metabolismo , Folhas de Planta/química , Antioxidantes/farmacologia , Ubiquitina-Proteína Ligases/metabolismo , Sirolimo/farmacologia , Células HaCaT , Proteínas Quinases/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética
10.
Cell Biol Int ; 48(6): 821-834, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38436129

RESUMO

Keratinocytes, located in the outermost layer of human skin, are pivotal cells to resist environmental damage. Cellular autophagy plays a critical role in eliminating damaged organelles and maintaining skin cell homeostasis. Low-dose 5-Aminolevulinic acid photodynamic therapy (ALA-PDT) has been demonstrated to enhance skin's antistress ability; however, the regulatory mechanisms of autophagy in keratinocytes remain unclear. In this study, we treated immortalized human keratinocytes (HaCaT cells) with low-dose ALA-PDT (0.5 mmol/L, 3 J/cm2). Through RNA-sequencing analysis, we identified that low-dose ALA-PDT modulated autophagy-related pathways in keratinocytes and pinpointed Unc-51-like kinase 1 (ULK1) as a key gene involved. Western blot results revealed that low-dose ALA-PDT treatment upregulated the expression of autophagy-related proteins Beclin-1 and LC3-II/LC3-I ratio. Notably, low-dose ALA-PDT regulated autophagy by inducing an appropriate level of reactive oxygen species (ROS), transiently reducing mitochondrial membrane potential, and decreasing adenosine triphosphate production; all these processes functioned on the AMP-activated protein kinase (AMPK)/ULK1 pathway to activate autophagy. Finally, we simulated external environmental damage using ultraviolet B (UVB) at a dose of 60 mJ/cm2 and observed that low-dose ALA-PDT mitigated UVB-induced cell apoptosis; however, this protective effect was reversed when using the autophagy inhibitor 3-methyladenine. Overall, these findings highlight how low-dose ALA-PDT enhances antistress ability in HaCaT cells through controlling ROS generation and activating the AMPK/ULK1 pathway to arouse cellular autophagy.


Assuntos
Proteínas Quinases Ativadas por AMP , Proteína Homóloga à Proteína-1 Relacionada à Autofagia , Autofagia , Queratinócitos , Transdução de Sinais , Humanos , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/metabolismo , Autofagia/efeitos dos fármacos , Queratinócitos/metabolismo , Queratinócitos/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Proteínas Quinases Ativadas por AMP/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Ácido Aminolevulínico/farmacologia , Células HaCaT , Potencial da Membrana Mitocondrial/efeitos dos fármacos
11.
Adv Med Sci ; 69(1): 167-175, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38521458

RESUMO

PURPOSE: Psoriasis is a skin disease characterized by excessive proliferation, inflammation and oxidative stress in keratinocytes. The present study aimed to investigate the therapeutic effects of Dendrobium officinale polysaccharide (DOP) on keratinocyte psoriasis-like models. METHODS: The HaCaT keratinocyte inflammation models were induced by interleukin (IL)-22 or lipopolysaccharide (LPS), respectively, and oxidative stress damage within cells was elicited by H2O2 and treated using DOP. CCK-8 and EdU were carried out to detect cell proliferation. ELISA, qRT-PCR, and Western blot were conducted to measure the expression of pro-inflammatory cytokines IL17A, IL-23, IL1ß, tumor necrosis factor alpha (TNF-α), and IL-6. Reactive oxygen species (ROS) level in keratinocytes was detected by flow cytometry. Cell proliferation-associated proteins (PCNA, Ki67, Cyclin D1) and pathway proteins (p-AKT and AKT), and oxidative stress marker proteins (Nrf-2, CAT, SOD1) were detected by Western blot. RESULT: DOP did not affect the proliferation of normal keratinocytes, but DOP was able to inhibit the proliferative activity of IL-22-induced overproliferating keratinocytes and suppress the expression of proliferation-related factors PCNA, Ki67, and Cyclin D1 as well as the proliferation pathway p-AKT. In addition, DOP treatment was able to inhibit IL-22 and LPS-induced inflammation and H2O2-induced oxidative stress, including the expression of IL17A, IL-23, IL1ß, TNF-α, IL-6, and IL1ß, as well as the expression levels of intracellular ROS levels and cellular oxidative stress-related indicators SOD, MDA, CAT, Nrf-2 and SOD1. CONCLUSION: DOP inhibits keratinocyte hyperproliferation, inflammation and oxidative stress to improve the keratinocyte psoriasis-like state.


Assuntos
Proliferação de Células , Dendrobium , Inflamação , Queratinócitos , Estresse Oxidativo , Polissacarídeos , Psoríase , Estresse Oxidativo/efeitos dos fármacos , Dendrobium/química , Humanos , Queratinócitos/efeitos dos fármacos , Queratinócitos/metabolismo , Proliferação de Células/efeitos dos fármacos , Polissacarídeos/farmacologia , Inflamação/tratamento farmacológico , Inflamação/patologia , Inflamação/metabolismo , Psoríase/tratamento farmacológico , Psoríase/patologia , Psoríase/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Citocinas/metabolismo
12.
J Microbiol Biotechnol ; 34(4): 940-948, 2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38314445

RESUMO

Codium fragile has been traditionally used in oriental medicine to treat enterobiasis, dropsy, and dysuria, and it has been shown to possess many biological properties. Atopic dermatitis (AD) is one of the types of skin inflammation and barrier disruption, which leads to chronic inflammatory skin diseases. In the current investigation, the protective effects of C. fragile extract (CFE) on anti-inflammation and skin barrier improvement were investigated. In LPS-stimulated RAW 264.7 cells, nitric oxide generation and the expression levels of interleukin (IL)-1ß, IL-4, IL-6, iNOS, COX-2, and tumor necrosis factor-alpha (TNF)-α were reduced by CFE. CFE also inhibited the phosphorylation of NF-κB-p65, ERK, p-38, and JNK. Additionally, CFE showed inhibitory activity on TSLP and IL-4 expression in HaCaT cells stimulated with TNF-α/interferon-gamma (IFN-γ). Enhanced expression of factors related to skin barrier function, FLG, IVL, and LOR, was confirmed. These findings implied that CFE may be used as a therapeutic agent against AD due to its skin barrier-strengthening and anti-inflammatory activities, which are derived from natural marine products.


Assuntos
Anti-Inflamatórios , Citocinas , Dermatite Atópica , Proteínas Filagrinas , Queratinócitos , Macrófagos , Óxido Nítrico , Dermatite Atópica/tratamento farmacológico , Humanos , Camundongos , Animais , Anti-Inflamatórios/farmacologia , Queratinócitos/efeitos dos fármacos , Células RAW 264.7 , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Citocinas/metabolismo , Óxido Nítrico/metabolismo , Pele/efeitos dos fármacos , Células HaCaT , Extratos Vegetais/farmacologia , Fator de Necrose Tumoral alfa/metabolismo , Lipopolissacarídeos/farmacologia , Linhagem Celular , NF-kappa B/metabolismo , Ciclo-Oxigenase 2/metabolismo , Ciclo-Oxigenase 2/genética
13.
Mol Biotechnol ; 66(5): 1220-1228, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38103098

RESUMO

Astaxanthin (ATX) is known for its antioxidant and anti-inflammation functions yet its role in cancers requires more research. This study is aimed to reveal the potential synergetic effect of ATX with ionizing radiation (IR) in OSCC. Cell survival was measured after human OSCC cells including CAL27 and SCC9, and normal human oral keratinocytes (NHOKs) were treated with different concentrations of ATX for 24 h. Colony formation assays were performed after OSCC cells were treated with IR, ATX (20 µ M), or combined and survival fraction was analyzed. Malondialdehyde (MDA), glutathione (GSH), and intercellular iron levels were measured. Western blot method was used to measure the ferroptosis-related proteins, GPX4, SLC7A11, and ACSL4. In xenograft mice model, we evaluated the tumor volumes, tumor growth, and examined the GPX4/ACSL4 proteins in tumor tissues using Immunohistochemistry (IHC). ATX inhibited viability of OSCC cells but not NHOK. In OSCC cells, ATX further enhanced the cell death induced by IR. In addition, ATX promoted the MDA content, Iron levels but inhibited the GSH regulated by IR in cells. ATX could synergize with IR, further inhibiting GPX4, SLC7A11 and promoting ACSL4 in OSCC cells. In vivo, ATX and IR treatment inhibited OSCC tumor growth and the group with combined treatment showed the most inhibitory effect. GPX4 was inhibited by IR and further inhibited in the combined group while ACSL4 was promoted by IR and enhanced more significantly in the combined group. ATX might synergize with IR treatment in OSCC partly via ferroptosis.


Assuntos
Carcinoma de Células Escamosas , Neoplasias Bucais , Radiação Ionizante , Xantofilas , Ensaios Antitumorais Modelo de Xenoenxerto , Xantofilas/farmacologia , Humanos , Animais , Neoplasias Bucais/radioterapia , Neoplasias Bucais/patologia , Neoplasias Bucais/metabolismo , Neoplasias Bucais/tratamento farmacológico , Linhagem Celular Tumoral , Camundongos , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/radioterapia , Carcinoma de Células Escamosas/patologia , Carcinoma de Células Escamosas/tratamento farmacológico , Coenzima A Ligases/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/genética , Ferroptose/efeitos dos fármacos , Ferroptose/efeitos da radiação , Sistema y+ de Transporte de Aminoácidos/metabolismo , Sistema y+ de Transporte de Aminoácidos/genética , Glutationa/metabolismo , Malondialdeído/metabolismo , Camundongos Nus , Ferro/metabolismo , Queratinócitos/metabolismo , Queratinócitos/efeitos da radiação , Queratinócitos/efeitos dos fármacos
14.
Int J Mol Sci ; 24(7)2023 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-37047130

RESUMO

Anti-pigmentation peptides have been developed as alternative skin-lightening agents to replace conventional chemicals that have adverse effects on the skin. However, the maximum size of these peptides is often limited by their low skin and cell penetration. To address this issue, we used our intra-dermal delivery technology (IDDT) platform to identify peptides with hypo-pigmenting and high cell-penetrating activity. Using our cell-penetrating peptides (CPPs) from the IDDT platform, we identified RMNE1 and its derivative RMNE3, "DualPep-Shine", which showed levels of α-Melanocyte stimulating hormone (α-MSH)-induced melanin inhibition comparable to the conventional tyrosinase inhibitor, Kojic acid. In addition, DualPep-Shine was delivered into the nucleus and regulated the gene expression levels of melanogenic enzymes by inhibiting the promoter activity of microphthalmia-associated transcription factor-M (MITF-M). Using a 3D human skin model, we found that DualPep-Shine penetrated the lower region of the epidermis and reduced the melanin content in a dose-dependent manner. Furthermore, DualPep-Shine showed high safety with little immunogenicity, indicating its potential as a novel cosmeceutical ingredient and anti-pigmentation therapeutic agent.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos , Peptídeos Penetradores de Células , Melaninas , Melanócitos , Fator de Transcrição Associado à Microftalmia , Proteínas do Tecido Nervoso , Preparações Clareadoras de Pele , Pigmentação da Pele , Transcrição Gênica , Melaninas/antagonistas & inibidores , Pigmentação da Pele/efeitos dos fármacos , Fator de Transcrição Associado à Microftalmia/genética , Transcrição Gênica/efeitos dos fármacos , alfa-MSH/antagonistas & inibidores , alfa-MSH/metabolismo , Humanos , Peptídeos Penetradores de Células/química , Peptídeos Penetradores de Células/farmacologia , Preparações Clareadoras de Pele/química , Preparações Clareadoras de Pele/farmacologia , Melanoma Experimental , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/farmacologia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/química , Fatores de Transcrição Hélice-Alça-Hélice Básicos/farmacologia , Queratinócitos/efeitos dos fármacos , Queratinócitos/metabolismo , Melanócitos/efeitos dos fármacos , Melanócitos/metabolismo , Epiderme/efeitos dos fármacos , Epiderme/metabolismo
15.
Toxicol Lett ; 373: 22-32, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36375637

RESUMO

Dasatinib, a second-generation BCR-ABL inhibitor, is currently used as first-line treatment for patients with chronic myeloid leukemia. However, dasatinib treatment increases the risk of severe cutaneous toxicity, which limits its long-term safe use in clinic. The underlying mechanism for dasatinib-induced cutaneous toxicity has not been clarified. In this study, we tested the toxicity of dasatinib on human immortal keratinocyte line (HaCaT) and normal human epidermal keratinocytes (NHEK). We found that dasatinib directly caused cytotoxicity on keratinocytes, which could be the explanation of the clinical characteristic of pathology. Mechanistically, dasatinib impaired mitophagy by downregulating HMGB1 protein level in keratinocytes, which led to the accumulation of dysfunctional mitochondria. Mitochondria-derived ROS caused DNA damage and cell apoptosis. More importantly, we confirmed that overexpression of HMGB1 could reverse dasatinib-induced keratinocyte apoptosis, and preliminarily explored the intervention effect of saikosaponin A, which could increase HMGB1 expression, on cutaneous toxicity caused by dasatinib. Collectively, our study revealed that dasatinib induced keratinocyte apoptosis via inhibiting HMGB1-mediated mitophagy and saikosaponin A could be a viable strategy for prevention of dasatinib-induced cutaneous toxicity.


Assuntos
Apoptose , Dasatinibe , Humanos , Apoptose/efeitos dos fármacos , Dasatinibe/toxicidade , Proteína HMGB1/antagonistas & inibidores , Proteína HMGB1/efeitos dos fármacos , Proteína HMGB1/metabolismo , Queratinócitos/efeitos dos fármacos , Queratinócitos/metabolismo , Mitofagia/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia
16.
Int J Mol Sci ; 23(23)2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36498953

RESUMO

Psoriasis is a chronic autoimmune disease, and until now, it remains an incurable disease. Therefore, the development of new drugs or agents that ameliorate the disease will have marketing potential. Taiwanofungus camphoratus (TC) is a specific fungus in Taiwan. It is demonstrated to have anticancer, anti-inflammation, and hepatoprotective effects. However, the effects of TC fermented extract on psoriasis are under investigation. In this research, we studied the ability of TC on antioxidative activity and the efficacy of TC on interleukin-17 (IL-17A)-induced intracellular oxidative stress, inflammation-relative, and proliferation-relative protein expression in human keratinocytes. The results of a DPPH radical scavenging assay, reducing power assay, and hydroxyl peroxide inhibition assay indicated that TC has a potent antioxidant ability. Furthermore, TC could reduce IL-17A-induced intracellular ROS generation and restore the NADPH level. In the investigation of pathogenesis, we discovered TC could regulate inflammatory and cell proliferation pathways via p-IKKα/p-p65 and p-mTOR/p-p70S6k signaling pathways in human keratinocytes. In conclusion, TC showed characteristics such as antioxidant, anti-inflammatory, and anti-psoriatic-associated responses. It is expected to be developed as a candidate for oxidative-stress-induced skin disorders or psoriasis treatment.


Assuntos
Produtos Biológicos , Queratinócitos , Psoríase , Humanos , Anti-Inflamatórios/farmacologia , Células HaCaT/efeitos dos fármacos , Células HaCaT/metabolismo , Interleucina-17/metabolismo , Queratinócitos/efeitos dos fármacos , Queratinócitos/metabolismo , NF-kappa B/metabolismo , Psoríase/patologia , Serina-Treonina Quinases TOR/metabolismo , Produtos Biológicos/farmacologia
17.
J Cell Mol Med ; 26(23): 5929-5942, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36412036

RESUMO

Different growth factors can regulate stem cell differentiation. We used keratinocyte growth factor (KGF) to direct adipose-derived stem cells (ASCs) differentiation into keratinocytes. To enhance KGF bioavailability, we targeted KGF for collagen by fusing it to collagen-binding domain from Vibrio mimicus metalloprotease (vibrioCBD-KGF). KGF and vibrioCBD-KGF were expressed in Escherichia coli and purified to homogeneity. Both proteins displayed comparable activities in stimulating proliferation of HEK-293 and MCF-7 cells. vibrioCBD-KGF demonstrated enhanced collagen-binding affinity in immunofluorescence and ELISA. KGF and vibrioCBD-KGF at different concentrations (2, 10, and 20 ng/ml) were applied for 21 days on ASCs cultured on collagen-coated plates. Keratinocyte differentiation was assessed based on morphological changes, the expression of keratinocyte markers (Keratin-10 and Involucrin), and stem cell markers (Collagen-I and Vimentin) by real-time PCR or immunofluorescence. Our results indicated that the expression of keratinocyte markers was substantially increased at all concentrations of vibrioCBD-KGF, while it was observed for KGF only at 20 ng/ml. Immunofluorescence staining approved this finding. Moreover, down-regulation of Collagen-I, an indicator of differentiation commitment, was more significant in samples treated with vibrioCBD-KGF. The present study showed that vibrioCBD-KGF is more potent in inducing the ASCs differentiation into keratinocytes compared to KGF. Our results have important implications for effective skin regeneration using collagen-based biomaterials.


Assuntos
Diferenciação Celular , Fator 7 de Crescimento de Fibroblastos , Queratinócitos , Células-Tronco , Humanos , Colágeno , Colágeno Tipo I/genética , Fator 7 de Crescimento de Fibroblastos/farmacologia , Células HEK293 , Queratinócitos/citologia , Queratinócitos/efeitos dos fármacos , Células-Tronco/citologia , Células-Tronco/efeitos dos fármacos
18.
Metabolomics ; 18(11): 89, 2022 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-36342571

RESUMO

INTRODUCTION: The 2,6-dichloro-1,4-benzoquinone (DCBQ) and its derivative 2,6-dichloro-3-hydroxy-1,4-benzoquinone (DCBQ-OH) are disinfection by-products (DBPs) and emerging pollutants in the environment. They are considered to be of particular importance as they have a high potential of toxicity and they are likely to be carcinogenic. OBJECTIVES: In this study, human epidermal keratinocyte cells (HaCaT) were exposed to the DCBQ and its derivative DCBQ-OH, at concentrations equivalent to their IC20 and IC50, and a study of the metabolic phenotype of cells was performed. METHODS: The perturbations induced in cellular metabolites and their relative content were screened and evaluated through a metabolomic study, using 1H-NMR and MS spectroscopy. RESULTS: Changes in the metabolic pathways of HaCaT at concentrations corresponding to IC20 and IC50 of DCBQ-OH involved the activation of cell membrane α-linolenic acid, biotin, and glutathione and deactivation of glycolysis/gluconeogenesis at IC50. The changes in metabolic pathways at IC20 and IC50 of DCBQ were associated with the activation of inositol phosphate, pertaining to the transfer of messages from the receptors of the membrane to the interior as well as with riboflavin. Deactivation of biotin metabolism was recorded, among others. The cells exposed to DCBQ exhibited a concentration-dependent decrease in saccharide concentrations. The concentration of steroids increased when cells were exposed to IC20 and decreased at IC50. Although both chemical factors stressed the cells, DCBQ led to the activation of transporting messages through phosphorylated derivatives of inositol. CONCLUSION: Our findings provided insights into the impact of the two DBPs on human keratinocytes. Both chemical factors induced energy production perturbations, oxidative stress, and membrane damage.


Assuntos
Desinfecção , Queratinócitos , Humanos , Benzoquinonas/química , Benzoquinonas/toxicidade , Biotina , Queratinócitos/efeitos dos fármacos , Queratinócitos/metabolismo , Metabolômica
19.
J Nat Prod ; 85(11): 2570-2582, 2022 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-36326734

RESUMO

A sesquiterpenoid with an unprecedented 5/5/4 tricyclic skeleton (1), a nor-sesquiterpenoid with a rare 6/7 bicyclic skeleton (2), 10 new sesquiterpenoids (3-12), and six known analogues (13-18) were isolated from the whole plants of Seriphidium transiliense. The structures of compounds 1-12 were elucidated by spectroscopic data analysis. Compound 7 showed melanogenic promotion activity in murine melanoma (B16) cells more potent than the positive control used, 8-methoxypsoralen (8-MOP). Further mechanistic studies indicated that compound 7 promotes melanogenesis through activating the transcription of microphthalmia-associated transcription factor (MITF) and tyrosinase family genes in B16 cells. Moreover, compound 7 also inhibited the expression of IFN-γ-chemokine through the JAK/STAT signaling pathway in immortalized human keratinocyte (HaCaT) cells. These results suggest that the sesquiterpenoid 7 shows potential activity for treating vitiligo.


Assuntos
Asteraceae , Melaninas , Sesquiterpenos , Vitiligo , Animais , Humanos , Camundongos , Asteraceae/química , Linhagem Celular Tumoral , Queratinócitos/efeitos dos fármacos , Queratinócitos/metabolismo , Melaninas/biossíntese , Melanoma Experimental , Fator de Transcrição Associado à Microftalmia/genética , Fator de Transcrição Associado à Microftalmia/metabolismo , Sesquiterpenos/química , Sesquiterpenos/farmacologia , Sesquiterpenos/uso terapêutico , Vitiligo/tratamento farmacológico
20.
Proc Natl Acad Sci U S A ; 119(37): e2123451119, 2022 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-36067301

RESUMO

Filaggrin (FLG), an essential structural protein for skin barrier function, is down-regulated under chronic inflammatory conditions, leading to disruption of the skin barrier. However, the detailed molecular mechanisms of how FLG changes in the context of chronic inflammation are poorly understood. Here, we identified the molecular mechanisms by which inflammatory cytokines inhibit FLG expression in the skin. We found that the AP1 response element within the -343/+25 of the FLG promoter was necessary for TNFα + IFNγ-induced down-regulation of FLG promoter activity. Using DNA affinity precipitation assay, we observed that AP1 subunit composition binding to the FLG promoter was altered from c-FOS:c-JUN (at the early time) to FRA1:c-JUN (at the late time) in response to TNFα + IFNγ stimulation. Knockdown of FRA1 or c-JUN abrogated TNFα + IFNγ-induced FLG suppression. Histone deacetylase (HDAC) 1 interacted with FRA1:c-JUN under TNFα + IFNγ stimulation. Knockdown of HDAC1 abrogated the inhibitory effect of TNFα + IFNγ on FLG expression. The altered expression of FLG, FRA1, c-JUN, and HDAC1 was confirmed in mouse models of 2,4-dinitrochlorobenzene-induced atopic dermatitis and imiquimod-induced psoriasis. Thus, the current study demonstrates that TNFα + IFNγ stimulation suppresses FLG expression by promoting the FRA1:c-JUN:HDAC1 complex. This study provides insight into future therapeutic strategies targeting the FRA1:c-JUN:HDAC1 complex to restore impaired FLG expression in chronic skin inflammation.


Assuntos
Proteínas Filagrinas , Histona Desacetilase 1 , Queratinócitos , Proteínas Proto-Oncogênicas c-fos , Proteínas Proto-Oncogênicas c-jun , Animais , Doença Crônica , Dermatite/genética , Dermatite/metabolismo , Regulação para Baixo , Proteínas Filagrinas/genética , Proteínas Filagrinas/metabolismo , Histona Desacetilase 1/genética , Histona Desacetilase 1/metabolismo , Interferon gama/farmacologia , Queratinócitos/efeitos dos fármacos , Queratinócitos/metabolismo , Camundongos , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Proteínas Proto-Oncogênicas c-fos/genética , Proteínas Proto-Oncogênicas c-fos/metabolismo , Proteínas Proto-Oncogênicas c-jun/genética , Proteínas Proto-Oncogênicas c-jun/metabolismo , Fator de Necrose Tumoral alfa/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA