Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Ying Yong Sheng Tai Xue Bao ; 35(3): 597-605, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38646746

RESUMO

We investigated the inter- and intra-species differences of leaf vein traits of three dominant Quercus species, Q. wutaishanica, Q. aliena var. acutiserrata, and Q. variabilis of Niubeiling (subtropical humid climate) and Taohuagou (warm temperate semi-humid climate), located in the eastern and western Qinling Mountains. The nine examined leaf vein traits included primary leaf vein width, secondary leaf vein width, mean fine vein width, primary vein density, fine vein density, vein areole diameter, areole density, 3D fine vein surface area, and fine vein volume. We further elucidated the influencing mechanisms and regulatory pathways of biotic and abiotic factors on leaf vein traits. The results showed that species identity had significant effects on eight out of nine leaf vein traits except 3D fine vein surface area, while habitat had significant effects on primary leaf vein width, secondary leaf vein width, vein areole diameter, fine vein density, and areole density. Altitude had significant effects on primary vein density, mean fine vein width, vein areole diameter, fine vein density and areole density. Habitat, tree species identity, and altitude had significantly interactive effects on primary leaf vein density, 3D fine vein surface area, and fine vein volume. There were significant differences in primary leaf vein width, mean fine vein width, areole density, 3D fine vein surface area, fine vein volume, primary vein density of Q. wutaishanica between the two studied habitats, but the differences were only found in secondary leaf vein width and areole density of Q. aliena var. acutiserrata and Q. variabilis. The examined leaf vein traits were influenced both by biotic and abiotic factors, with varying effect sizes. Among the biotic factors, petiole length, leaf length and width ratio had strong effect on leaf vein traits. Among the abiotic factors, climatic and soil factors had high effect size on vein traits, with the former being higher than the latter. Leaf vein traits were affected directly by biotic factors, but indirectly by abiotic factors (soil and climatic factors) via regulating biotic factors (leaf stoichiometry and leaf phenotypic traits).


Assuntos
Ecossistema , Folhas de Planta , Quercus , Quercus/anatomia & histologia , Folhas de Planta/anatomia & histologia , China , Especificidade da Espécie , Altitude
2.
Tree Physiol ; 38(8): 1152-1165, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29718459

RESUMO

In Mediterranean mountains, Pinus sylvestris L. is expected to be displaced under a warming climate by more drought-tolerant species such as the sub-Mediterranean Quercus pyrenaica Willd. Understanding how environmental factors drive tree physiology and phenology is, therefore, essential to assess the effect of changing climatic conditions on the performance of these species and, ultimately, their distribution. We compared the cambial and leaf phenology and leaf gas exchange of Q. pyrenaica and P. sylvestris at their altitudinal boundary in Central Spain and assessed the environmental variables involved. Results indicate that P. sylvestris cambial phenology was more sensitive to weather conditions (temperature at the onset and water deficit at the end of the growing season) than Q. pyrenaica. On the other hand, Q. pyrenaica cambial and leaf phenology were synchronized and driven by photoperiod and temperatures. Pinus sylvestris showed lower photosynthetic nitrogen-use efficiency and higher intrinsic water-use efficiency than Q. pyrenaica as a result of a tighter stomatal control in response to summer dry conditions, despite its less negative midday leaf water potentials. These phenological and leaf gas exchange responses evidence a stronger sensitivity to drought of P. sylvestris than that of Q. pyrenaica, which may therefore hold a competitive advantage over P. sylvestris under the predicted increase in recurrence and intensity of drought events. On the other hand, both species could benefit from warmer springs through an advanced phenology, although this effect could be limited in Q. pyrenaica if it maintains a photoperiod control over the onset of xylogenesis.


Assuntos
Mudança Climática , Secas , Pinus sylvestris/fisiologia , Quercus/fisiologia , Câmbio/anatomia & histologia , Câmbio/química , Câmbio/crescimento & desenvolvimento , Nitrogênio/metabolismo , Pinus sylvestris/anatomia & histologia , Pinus sylvestris/química , Pinus sylvestris/crescimento & desenvolvimento , Folhas de Planta/anatomia & histologia , Folhas de Planta/química , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/fisiologia , Estômatos de Plantas/fisiologia , Quercus/anatomia & histologia , Quercus/química , Quercus/crescimento & desenvolvimento , Espanha , Água/metabolismo
3.
Mol Ecol ; 27(9): 2176-2192, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29577469

RESUMO

The impacts of drought are expanding worldwide as a consequence of climate change. However, there is still little knowledge of how species respond to long-term selection in seasonally dry ecosystems. In this study, we used QST -FST comparisons to investigate (i) the role of natural selection on population genetic differentiation for a set of functional traits related to drought resistance in the seasonally dry tropical oak Quercus oleoides and (ii) the influence of water availability at the site of population origin and in experimental treatments on patterns of trait divergence. We conducted a thorough phenotypic characterization of 1912 seedlings from ten populations growing in field and greenhouse common gardens under replicated watering treatments. We also genotyped 218 individuals from the same set of populations using eleven nuclear microsatellites. QST distributions for leaf lamina area, specific leaf area, leaf thickness and stomatal pore index were higher than FST distribution. Results were consistent across growth environments. Genetic differentiation among populations for these functional traits was associated with the index of moisture at the origin of the populations. Together, our results suggest that drought is an important selective agent for Q. oleoides and that differences in length and severity of the dry season have driven the evolution of genetic differences in functional traits.


Assuntos
Deriva Genética , Quercus/genética , Água/metabolismo , Mudança Climática , Secas , Estudos de Associação Genética , Fenótipo , Folhas de Planta/anatomia & histologia , Folhas de Planta/genética , Folhas de Planta/metabolismo , Quercus/anatomia & histologia , Quercus/metabolismo , Estações do Ano , Plântula/anatomia & histologia , Plântula/genética , Plântula/metabolismo , Seleção Genética
4.
Plant Cell Environ ; 36(3): 579-89, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22897384

RESUMO

The adaptive benefit of stomatal crypts remains a matter of controversy. This work studies the effect on gas exchange of cuticular rims that overarch the stomatal pore in the Mediterranean species Quercus coccifera L. growing under Mediterranean (lower relative humidities and high summer temperatures) or oceanic conditions (higher daily relative humidities and mild temperatures). After microscopic assessment of the leaf surfaces and stomatal architecture, the impact of the cuticular 'cup' on gas exchange was evaluated by employing three-dimensional finite element models. Here, we provide evidence for a high plasticity of the Q. coccifera cuticular cup, with much larger vents under oceanic conditions compared to small vents under Mediterranean conditions. This structure adds a substantial fixed resistance thereby strongly decreasing gas exchange under Mediterranean conditions. The cuticular cup, which also increases leaf internal humidity, might buffer the rapid changes in vapour pressure deficit (VPD) often observed under Mediterranean conditions. Since water loss of guard and adjacent epidermal cells regulates stomatal aperture, we suggest that this structure allows an efficient regulation of stomatal conductance and optimum use of resources under high VPD. This study provides evidence that plasticity of stomatal architecture can be an important structural component of hydraulic adaptation to different climate conditions.


Assuntos
Estômatos de Plantas/fisiologia , Transpiração Vegetal , Quercus/fisiologia , Ceras , Análise de Elementos Finitos , Região do Mediterrâneo , Estômatos de Plantas/anatomia & histologia , Quercus/anatomia & histologia
5.
Mycorrhiza ; 22(4): 279-87, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-21755405

RESUMO

Guatemala is one of the richest biodiversity hotspots worldwide, bursting a wild array of ecosystems that range from pine and mixed forests in the highlands to tropical rain forests in the extensive El Petén area, bordering Belize and Mexico. Despite this biological wealth, however, current knowledge on the Guatemalan mycobiota is particularly scant, in part because of the prolonged civil war that has prevented exploration of many ecological niches. In the present paper, we report on the occurrence of Lactarius rimosellus Peck-a rarely discussed species-in oak-pine mixed forests in the Guatemalan highlands and describe the relevant ectomycorrhizae formed with Quercus sp. by means of molecular and morpho-anatomical tools. On the phylogenetic trees constructed on the basis of the partial LSU sequence, sporocarp- and ectomycorrhizae-derived sequences formed a common, statistically supported clade. The structural features of the ectomycorrhizae of L. rimosellus were generally found to match those described on various hosts for other Lactarius species belonging to the subgenus Russularia, where L. rimosellus has been traditionally assigned. These mycorrhizae are characterized by a pseudoparenchymatous outer mantle layer, with epidermoid or angular hyphal cells, and a plectenchymatous inner mantle layer; lactifers are embedded either in the middle and/or inner mantle layer. In the framework of a more general, ongoing study of the ethnomycology of the Maya populations in the Guatemalan highlands, we also report on the traditional knowledge about Lactarius mushrooms and their uses among native people.


Assuntos
Basidiomycota/crescimento & desenvolvimento , Basidiomycota/genética , Micorrizas/crescimento & desenvolvimento , Micorrizas/genética , Quercus/anatomia & histologia , Quercus/microbiologia , Basidiomycota/classificação , Basidiomycota/citologia , Análise por Conglomerados , DNA Fúngico/química , DNA Fúngico/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Genes de RNAr , Guatemala , Dados de Sequência Molecular , Micorrizas/classificação , Micorrizas/citologia , Filogenia , RNA Fúngico/genética , RNA Ribossômico/genética , Análise de Sequência de DNA
6.
Ann Bot ; 99(5): 959-64, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17409100

RESUMO

BACKGROUND AND AIMS: Polyploids, organisms that have multiple sets of chromosomes, are common in certain plant and animal taxa. However, there are only a few reports of intraspecific ploidy variation within the genus Quercus. The aim of the study was to investigate the suspected ploidy level of two oaks that have unusual microsatellite banding patterns. METHODS: Polyploidy was investigated by using microsatellite analysis, stomata length measurements and nuclear DNA content estimation by flow cytometry. KEY RESULTS: Each putative triploid tree has patterns of microsatellite variation unexpected for diploid genomes, with up to three alleles at some loci, significantly longer stomata and 1.5 times more DNA per nucleus compared with diploids. CONCLUSIONS: To our knowledge, this report contains the first evidence for triploidy in Q. petraea and confirmation of this phenomenon in Q. robur. Regardless of the positive or negative aspects of the presence of triploid oaks in forest stands, it is of value to be able to screen for them. This study demonstrates that nuclear microsatellites and estimation of DNA content by flow cytometry can readily be used for this purpose.


Assuntos
Poliploidia , Quercus/genética , DNA de Plantas , Citometria de Fluxo , Repetições de Microssatélites , Epiderme Vegetal/anatomia & histologia , Folhas de Planta/anatomia & histologia , Quercus/anatomia & histologia , Árvores/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA