Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Crit Rev Biotechnol ; 40(3): 283-291, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32054356

RESUMO

Recent advances in stem cell biology and molecular engineering have improved and simplified the methodology employed to create experimental chimeras, highlighting their value in basic research and broadening the spectrum of potential applications. Experimental chimeras have been used for decades during the generation of murine genetic models, this being especially relevant in developmental and regeneration studies. Indeed, their value for the research and modeling of human diseases was recognized by the 2007 Nobel Prize to Mario Capecchi, Martin Evans, and Oliver Smithies. More recently, their potential application in regenerative medicine has generated a lot of interest, particularly the enticing possibility to generate human organs for transplantation in livestock animals. In this review, we provide an update on interspecific chimeric organogenesis, its possibilities, current limitations, alternatives, and ethical issues.


Assuntos
Quimera/metabolismo , Animais , Temas Bioéticos , Quimera/classificação , Células-Tronco Embrionárias , Humanos , Camundongos , Modelos Genéticos , Organogênese , Medicina Regenerativa , Quimeras de Transplante
2.
Nucleic Acids Res ; 48(4): 1764-1778, 2020 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-31965184

RESUMO

Chimeric RNAs and their encoded proteins have been traditionally viewed as unique features of neoplasia, and have been used as biomarkers and therapeutic targets for multiple cancers. Recent studies have demonstrated that chimeric RNAs also exist in non-cancerous cells and tissues, although large-scale, genome-wide studies of chimeric RNAs in non-diseased tissues have been scarce. Here, we explored the landscape of chimeric RNAs in 9495 non-diseased human tissue samples of 53 different tissues from the GTEx project. Further, we established means for classifying chimeric RNAs, and observed enrichment for particular classifications as more stringent filters are applied. We experimentally validated a subset of chimeric RNAs from each classification and demonstrated functional relevance of two chimeric RNAs in non-cancerous cells. Importantly, our list of chimeric RNAs in non-diseased tissues overlaps with some entries in several cancer fusion databases, raising concerns for some annotations. The data from this study provides a large repository of chimeric RNAs present in non-diseased tissues, which can be used as a control dataset to facilitate the identification of true cancer-specific chimeras.


Assuntos
Biomarcadores , Quimera/genética , RNA/genética , Quimera/classificação , Humanos , Neoplasias/genética , RNA/química , RNA/classificação
3.
Fungal Genet Biol ; 77: 12-21, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25732380

RESUMO

Alder decline has been a problem along European watercourses since the early 1990s. Hybridization was identified as the main cause of this emerging disease. Indeed, the causal agent, a soil-borne pathogen named Phytophthora alni subsp. alni (Paa) is the result of interspecific hybridization between two taxa, Phytophthora alni subsp. multiformis (Pam) and Phytophthora alni subsp. uniformis (Pau), initially identified as subspecies of Paa. The aim of this work was to characterize the ploidy level within the P. alni complex that is presently poorly understood. For that, we used two complementary approaches for a set of 31 isolates of Paa, Pam and Pau: (i) quantification of allele copy number of three single-copy nuclear genes using allele-specific real-time PCR and (ii) comparison of the genome size estimated by flow cytometry. Relative quantification of alleles of the three single-copy genes showed that the copy number of a given allele in Paa was systematically half that of its parents Pau or Pam. Moreover, DNA content estimated by flow cytometry in Paa was equal to half the sum of those in Pam and Pau. Our results therefore suggest that the hybrid Paa is an allotriploid species, containing half of the genome of each of its parents Pam and Pau, which in turn are considered to be allotetraploid and diploid, respectively. Paa thus results from a homoploid speciation process. Based on published data and on results from this study, a new formal taxonomic name is proposed for the three taxa Paa, Pam and Pau which are raised to species status and renamed P. ×alni, P. ×multiformis and P. uniformis, respectively.


Assuntos
Quimera/genética , Genoma , Phytophthora/classificação , Phytophthora/genética , Poliploidia , Alelos , Alnus/microbiologia , Quimera/classificação , Phytophthora/patogenicidade
4.
J Virol ; 87(24): 13297-306, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24089562

RESUMO

Hepatitis C virus (HCV) is highly variable and associated with chronic liver disease. Viral isolates are grouped into seven genotypes (GTs). Accumulating evidence indicates that viral determinants in the core to NS2 proteins modulate the efficiency of virus production. However, the role of the glycoproteins E1 and E2 in this process is currently poorly defined. Therefore, we constructed chimeric viral genomes to explore the role of E1 and E2 in HCV assembly. Comparison of the kinetics and efficiency of particle production by intragenotypic chimeras highlighted core and p7 as crucial determinants for efficient virion release. Glycoprotein sequences, however, had only a minimal impact on this process. In contrast, in the context of intergenotypic HCV chimeras, HCV assembly was profoundly influenced by glycoprotein genes. On the one hand, insertion of GT1a-derived (H77) E1-E2 sequences into a chimeric GT2a virus (Jc1) strongly suppressed virus production. On the other hand, replacement of H77 glycoproteins within the GT1a-GT2a chimeric genome H77/C3 by GT2a-derived (Jc1) E1-E2 increased infectious particle production. Thus, within intergenotypic chimeras, glycoprotein features strongly modulate virus production. Replacement of Jc1 glycoprotein genes by H77-derived E1-E2 did not grossly affect subcellular localization of core, E2, and NS2. However, it caused an accumulation of nonenveloped core protein and increased abundance of nonenveloped core protein structures with slow sedimentation. These findings reveal an important role for the HCV glycoproteins E1 and E2 in membrane envelopment, which likely depends on a genotype-specific interplay with additional viral factors.


Assuntos
Quimera/fisiologia , Hepacivirus/fisiologia , Hepatite C/virologia , Proteínas do Envelope Viral/metabolismo , Linhagem Celular , Quimera/classificação , Quimera/genética , Genótipo , Hepacivirus/classificação , Hepacivirus/genética , Humanos , Proteínas do Envelope Viral/genética , Montagem de Vírus
5.
J Virol ; 87(23): 12611-8, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24027335

RESUMO

Human coronaviruses (CoVs) such as severe acute respiratory syndrome CoV (SARS-CoV) and Middle East respiratory syndrome CoV (MERS-CoV) cause epidemics of severe human respiratory disease. A conserved step of CoV replication is the translation and processing of replicase polyproteins containing 16 nonstructural protein domains (nsp's 1 to 16). The CoV nsp5 protease (3CLpro; Mpro) processes nsp's at 11 cleavage sites and is essential for virus replication. CoV nsp5 has a conserved 3-domain structure and catalytic residues. However, the intra- and intermolecular determinants of nsp5 activity and their conservation across divergent CoVs are unknown, in part due to challenges in cultivating many human and zoonotic CoVs. To test for conservation of nsp5 structure-function determinants, we engineered chimeric betacoronavirus murine hepatitis virus (MHV) genomes encoding nsp5 proteases of human and bat alphacoronaviruses and betacoronaviruses. Exchange of nsp5 proteases from HCoV-HKU1 and HCoV-OC43, which share the same genogroup, genogroup 2a, with MHV, allowed for immediate viral recovery with efficient replication albeit with impaired fitness in direct competition with wild-type MHV. Introduction of MHV nsp5 temperature-sensitive mutations into chimeric HKU1 and OC43 nsp5 proteases resulted in clear differences in viability and temperature-sensitive phenotypes compared with MHV nsp5. These data indicate tight genetic linkage and coevolution between nsp5 protease and the genomic background and identify differences in intramolecular networks regulating nsp5 function. Our results also provide evidence that chimeric viruses within coronavirus genogroups can be used to test nsp5 determinants of function and inhibition in common isogenic backgrounds and cell types.


Assuntos
Sequência Conservada , Coronavirus/enzimologia , Peptídeo Hidrolases/química , Peptídeo Hidrolases/metabolismo , Proteínas Virais/química , Proteínas Virais/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Quimera/classificação , Quimera/genética , Quimera/metabolismo , Quimera/fisiologia , Coronavirus/química , Coronavirus/classificação , Coronavirus/genética , Infecções por Coronavirus/veterinária , Infecções por Coronavirus/virologia , Cricetinae , Evolução Molecular , Humanos , Camundongos , Dados de Sequência Molecular , Peptídeo Hidrolases/genética , Filogenia , Estrutura Terciária de Proteína , Alinhamento de Sequência , Proteínas Virais/genética
6.
BMC Plant Biol ; 12: 55, 2012 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-22530692

RESUMO

BACKGROUND: White clover (Trifolium repens) is a ubiquitous weed of the temperate world that through use of improved cultivars has also become the most important legume of grazed pastures world-wide. It has long been suspected to be allotetraploid, but the diploid ancestral species have remained elusive. Putative diploid ancestors were indicated by DNA sequence phylogeny to be T. pallescens and T. occidentale. Here, we use further DNA evidence as well as a combination of molecular cytogenetics (FISH and GISH) and experimental hybridization to test the hypothesis that white clover originated as a hybrid between T. pallescens and T. occidentale. RESULTS: T. pallescens plants were identified with chloroplast trnL intron DNA sequences identical to those of white clover. Similarly, T. occidentale plants with nuclear ITS sequences identical to white clover were also identified. Reciprocal GISH experiments, alternately using labeled genomic DNA probes from each of the putative ancestral species on the same white clover cells, showed that half of the chromosomes hybridized with each probe. F1 hybrids were generated by embryo rescue and these showed strong interspecific chromosome pairing and produced a significant frequency of unreduced gametes, indicating the likely mode of polyploidization. The F1 hybrids are inter-fertile with white clover and function as synthetic white clovers, a valuable new resource for the re-incorporation of ancestral genomes into modern white clover for future plant breeding. CONCLUSIONS: Evidence from DNA sequence analyses, molecular cytogenetics, interspecific hybridization and breeding experiments supports the hypothesis that a diploid alpine species (T. pallescens) hybridized with a diploid coastal species (T. occidentale) to generate tetraploid T. repens. The coming together of these two narrowly adapted species (one alpine and the other maritime), along with allotetraploidy, has led to a transgressive hybrid with a broad adaptive range.


Assuntos
Quimera/genética , Evolução Molecular , Genoma de Planta/genética , Trifolium/genética , Adaptação Biológica/genética , Sequência de Bases , Cruzamento , Quimera/classificação , Pareamento Cromossômico , Cromossomos de Plantas/genética , Análise Citogenética , DNA de Cloroplastos/química , DNA de Cloroplastos/genética , DNA de Plantas/química , DNA de Plantas/genética , DNA Ribossômico/química , DNA Ribossômico/genética , DNA Espaçador Ribossômico/química , DNA Espaçador Ribossômico/genética , Diploide , Genótipo , Hibridização Genética , Dados de Sequência Molecular , Filogenia , Folhas de Planta/genética , Pólen/genética , Sementes/genética , Análise de Sequência de DNA , Tetraploidia , Trifolium/classificação
7.
Ann Plast Surg ; 63(4): 462-7, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19745710

RESUMO

Reconstruction of complex tissue deficiencies in which each missing component is in a different spatial relationship to each other can be particularly challenging, especially in patients with limited recipient vessels. The chimera flap design is uniquely suited to reconstruct these deformities. Chimera flaps have been previously defined in many ways with 2 main categories: prefabricated or intrinsic. Herein we attempt to clarify the definition of a true intrinsic chimeric flap and provide examples of how these constructs provide a method for reconstruction of complex defects. The versatility of the intrinsic chimera flap and its procurement from 7 different vascular systems is described. A clarification of the definition of a true intrinsic chimera flap is described. In addition, construction of flaps from the lateral femoral circumflex, deep circumflex iliac, inferior gluteal, peroneal, subscapular, thoracodorsal, and radial arterial systems is described to showcase the versatility of these chimera flaps. A true intrinsic chimera flap must consist of more than a single tissue type. Each of the tissue components receives its blood flow from separate vascular branches or perforators that are connected to a single vascular source. These vascular branches must be of appropriate length to allow for insetting with 3-dimensional spatial freedom. There are a multitude of sites from which true intrinsic chimera flaps may be harvested.


Assuntos
Quimera/classificação , Músculo Esquelético/irrigação sanguínea , Procedimentos de Cirurgia Plástica/métodos , Retalhos Cirúrgicos/irrigação sanguínea , Quimera/genética , Feminino , Artéria Femoral/cirurgia , Humanos , Artéria Ilíaca/cirurgia , Masculino , Microcirurgia/métodos , Músculo Esquelético/transplante , Artéria Radial/cirurgia , Sensibilidade e Especificidade
8.
Am J Bioeth ; 3(3): 1-13, 2003.
Artigo em Inglês | MEDLINE | ID: mdl-14594461

RESUMO

This paper critically examines the biology of species identity and the morality of crossing species boundaries in the context of emerging research that involves combining human and nonhuman animals at the genetic or cellular level. We begin with the notion of species identity, particularly focusing on the ostensible fixity of species boundaries, and we explore the general biological and philosophical problem of defining species. Against this backdrop, we survey and criticize earlier attempts to forbid crossing species boundaries in the creation of novel beings. We do not attempt to establish the immorality of crossing species boundaries, but we conclude with some thoughts about such crossings, alluding to the notion of moral confusion regarding social and ethical obligations to novel interspecies beings.


Assuntos
Quimera , Engenharia Genética/ética , Hibridização Genética/ética , Especificidade da Espécie , Experimentação Animal/ética , Animais , Animais Geneticamente Modificados , Quimera/classificação , Genoma Humano , Hominidae/genética , Características Humanas , Humanos , Obrigações Morais , Pessoalidade , Transplante de Células-Tronco/ética , Transplante Heterólogo/ética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA