Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 208
Filtrar
1.
Int Immunol ; 36(7): 339-352, 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38430523

RESUMO

Bone marrow is a dynamic organ composed of stem cells that constantly receive signals from stromal cells and other hematopoietic cells in the niches of the bone marrow to maintain hematopoiesis and generate immune cells. Perturbation of the bone marrow microenvironment by infection and inflammation affects hematopoiesis and may affect immune cell development. Little is known about the effect of malaria on the bone marrow stromal cells that govern the hematopoietic stem cell (HSC) niche. In this study, we demonstrate that the mesenchymal stromal CXCL12-abundant reticular (CAR) cell population is reduced during acute malaria infection. The reduction of CXCL12 and interleukin-7 signals in the bone marrow impairs the lymphopoietic niche, leading to the depletion of common lymphoid progenitors, B cell progenitors, and mature B cells, including plasma cells in the bone marrow. We found that interferon-γ (IFNγ) is responsible for the upregulation of Sca1 on CAR cells, yet the decline in CAR cell and B cell populations in the bone marrow is IFNγ-independent. In contrast to the decline in B cell populations, HSCs and multipotent progenitors increased with the expansion of myelopoiesis and erythropoiesis, indicating a bias in the differentiation of multipotent progenitors during malaria infection. These findings suggest that malaria may affect host immunity by modulating the bone marrow niche.


Assuntos
Linfócitos B , Medula Óssea , Quimiocina CXCL12 , Malária , Camundongos Endogâmicos C57BL , Animais , Quimiocina CXCL12/metabolismo , Quimiocina CXCL12/imunologia , Camundongos , Malária/imunologia , Malária/parasitologia , Linfócitos B/imunologia , Medula Óssea/imunologia , Medula Óssea/parasitologia , Nicho de Células-Tronco/imunologia , Interferon gama/metabolismo , Interferon gama/imunologia , Células-Tronco Hematopoéticas/imunologia , Células-Tronco Hematopoéticas/metabolismo
2.
Int Immunol ; 33(12): 659-663, 2021 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-34165514

RESUMO

Fibrosis is a life-threatening disorder with significant morbidity and mortality and is caused by excessive formation of connective tissue that can affect several important organs. Fibrosis in organ tissues is caused by an abnormal wound-healing process from repeated injuries. In our recent study using a mouse model of bleomycin-induced lung fibrosis, we examined the role of RNA-binding motif protein 7 (RBM7) on the development of lung fibrosis. RBM7 is up-regulated in the injured lung epithelium and disturbs normal epithelial cell repair and regeneration by promoting apoptosis of damaged epithelial cells. RBM7 causes the decay of nuclear-enriched abundant transcript 1 (NEAT1), which results in apoptosis of lung epithelial cells. These apoptotic cells then produce C-X-C motif chemokine ligand 12 (CXCL12), which leads to the recruitment of a fibrosis-promoting monocyte population called segregated-nucleus-containing atypical monocytes (SatM) to the damaged area, followed by the initiation and promotion of lung fibrosis. Here, we review recent insights into the cross-talk between lung parenchymal cells and hematopoietic cells during the development of pulmonary fibrosis.


Assuntos
Quimiocina CXCL12/imunologia , Monócitos/imunologia , Fibrose Pulmonar/imunologia , RNA Longo não Codificante/imunologia , Proteínas de Ligação a RNA/imunologia , Humanos , Fibrose Pulmonar/patologia
3.
Cell Mol Biol Lett ; 26(1): 30, 2021 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-34174813

RESUMO

BACKGROUND: Phenotypic and functional heterogeneity of macrophages is known to be the main reason for their ability to regulate inflammation and promote tumorigenesis. Mesenchymal stem cells (MSCs) are one of the principal cells commonly found in the tumor stromal niche, with capability of macrophage phenotypic switching. The objective of this study was to evaluate the role of C-X-C motif chemokine ligand 12 (CXCL12) produced by marrow-derived MSCs in the phenotypic and functional pattern of bone marrow-derived macrophages (BMDMs). METHODS: First, the CRISPR/Cas9 system was used for the CXCL12 gene knock-out in MSCs. Then, coculture systems were used to investigate the role of MSCsCXCL12-/- and MSCsCXCL12+/+ in determination of macrophage phenotype. To further analyze the role of the MSC-derived CXCL12 niche, cocultures of 4T1 mammary tumor cells and macrophages primed with MSCsCXCL12-/- or MSCsCXCL12+/+ as well as in-vivo limiting dilution assays were performed. RESULTS: Our results revealed that the expression of IL-4, IL-10, TGF-ß and CD206 as M2 markers was significantly increased in macrophages co-cultured with MSCsCXCL12+/+ , whereas the expression of IL-6, TNF-α and iNOS was conversely decreased. The number and size of multicellular tumor spheroids were remarkably higher when 4T1 cells were cocultured with MSCCXCL12+/+-induced M2 macrophages. We also found that the occurrence of tumors was significantly higher in coinjection of 4T1 cells with MSCCXCL12+/+-primed macrophages. Tumor initiating cells were significantly decreased after coinjection of 4T1 cells with macrophages pretreated with MSCsCXCL12-/-. CONCLUSIONS: In conclusion, our findings shed new light on the role of MSC-derived CXCL12 in macrophage phenotypic switching to M2, affecting their function in tumorigenesis.


Assuntos
Quimiocina CXCL12/imunologia , Ativação de Macrófagos , Macrófagos/imunologia , Células-Tronco Mesenquimais/imunologia , Neoplasias/imunologia , Animais , Carcinogênese/imunologia , Carcinogênese/patologia , Células Cultivadas , Feminino , Macrófagos/patologia , Células-Tronco Mesenquimais/patologia , Camundongos Endogâmicos BALB C , Neoplasias/patologia
4.
Exp Oncol ; 43(2): 135-141, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34190517

RESUMO

BACKGROUND: The expression of the CXCL12 chemokine and its receptor CXCR4 in the stromal component of the tumor plays an important role in tumor cell migration, proliferation, inhibition of apoptosis and determination of invasive and metastatic potential of malignant neoplasms of various genesis. The significance of CXCL12 and CXCR4 expression in endometrial tumor cells for cancer progression is not fully understood. AIM: To evaluate the content of CXCL12+-fibroblasts and expression of CXCL12 and CXCR4 in endometrial cancer cells, depending on the tumor stage. MATERIALS AND METHODS: Surgical material of 45 patients with endometrioid carcinoma of the endometrium (ECE) of the stages I-II and III was studied using morphological and immunohistochemical methods. RESULTS: In ECE of stage I-II CXCR4 expression was lower (43.3 ± 4.2%) while CXCL12 expression was higher (33.6 ± 2.4%) compared with the corresponding indices​​ in ECE of stage III (63.6 ± 3.5%, 24.5 ± 1.9%, respectively, p < 0.05). In ECE of stage III, high expression of CXCR4 (> Me) and low CXCL12 (< Me) was observed in 80% of samples; these tumors invaded more than 1/2 of the myometrium. There was a positive correlation between the depth of tumor invasion in the myometrium and the presence of metastases and CXCR4 expression in tumor cells (R = 0.5 and R = 0.4, respectively, p < 0.05) and the negative correlation with the expression of CXCL12 (R = -0.6 and R = -0.3, respectively, p < 0.05). In tumors that deeply invaded the myometrium, a high number of the CXCL12+-fibroblasts (> Me) (14.9 ± 1.3%) was detected. CONCLUSION: The obtained data reflect the communication of the immunosuppressive factor of the tumor microenvironment, i.e. CXCL12+-fibroblasts and CXCR4 expressing tumor cells. We suggest that the aggressiveness of ECE is determined by the combined effect of these two factors.


Assuntos
Fibroblastos Associados a Câncer/imunologia , Carcinoma Endometrioide/imunologia , Quimiocina CXCL12/imunologia , Neoplasias do Endométrio/imunologia , Receptores CXCR4/imunologia , Adulto , Idoso , Carcinoma Endometrioide/patologia , Neoplasias do Endométrio/patologia , Feminino , Humanos , Pessoa de Meia-Idade , Estudos Retrospectivos , Microambiente Tumoral/imunologia
5.
Cancer Cell ; 39(7): 928-944.e6, 2021 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-33961783

RESUMO

Distinct T cell infiltration patterns, i.e., immune infiltrated, excluded, and desert, result in different responses to cancer immunotherapies. However, the key determinants and biology underpinning these tumor immune phenotypes remain elusive. Here, we provide a high-resolution dissection of the entire tumor ecosystem through single-cell RNA-sequencing analysis of 15 ovarian tumors. Immune-desert tumors are characterized by unique tumor cell-intrinsic features, including metabolic pathways and low antigen presentation, and an enrichment of monocytes and immature macrophages. Immune-infiltrated and -excluded tumors differ markedly in their T cell composition and fibroblast subsets. Furthermore, our study reveals chemokine receptor-ligand interactions within and across compartments as potential mechanisms mediating immune cell infiltration, exemplified by the tumor cell-T cell cross talk via CXCL16-CXCR6 and stromal-immune cell cross talk via CXCL12/14-CXCR4. Our data highlight potential molecular mechanisms that shape the tumor immune phenotypes and may inform therapeutic strategies to improve clinical benefit from cancer immunotherapies.


Assuntos
Biomarcadores Tumorais/genética , Fibroblastos/imunologia , Neoplasias Ovarianas/imunologia , Análise de Célula Única/métodos , Células Estromais/imunologia , Linfócitos T/imunologia , Microambiente Tumoral , Biomarcadores Tumorais/imunologia , Quimiocina CXCL12/genética , Quimiocina CXCL12/imunologia , Quimiocina CXCL16/genética , Quimiocina CXCL16/imunologia , Quimiocinas CXC/genética , Quimiocinas CXC/imunologia , Feminino , Fibroblastos/metabolismo , Fibroblastos/patologia , Humanos , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , RNA-Seq , Receptores CXCR4/genética , Receptores CXCR4/imunologia , Receptores CXCR6/genética , Receptores CXCR6/imunologia , Células Estromais/metabolismo , Células Estromais/patologia , Linfócitos T/metabolismo , Linfócitos T/patologia
6.
Cancer Metastasis Rev ; 40(2): 427-445, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33973098

RESUMO

Breast and prostate cancers have a great propensity to metastasize to long bones. The development of bone metastases is life-threatening, incurable, and drastically reduces patients' quality of life. The chemokines CCL2 and CXCL12 and their respective receptors, CCR2 and CXCR4, are central instigators involved in all stages leading to cancer cell dissemination and secondary tumor formation in distant target organs. They orchestrate tumor cell survival, growth and migration, tumor invasion and angiogenesis, and the formation of micrometastases in the bone marrow. The bone niche is of particular importance in metastasis formation, as it expresses high levels of CCL2 and CXCL12, which attract tumor cells and contribute to malignancy. The limited number of available effective treatment strategies highlights the need to better understand the pathophysiology of bone metastases and reduce the skeletal tumor burden in patients diagnosed with metastatic bone disease. This review focuses on the involvement of the CCL2/CCR2 and CXCL12/CXCR4 chemokine axes in the formation and development of bone metastases, as well as on therapeutic perspectives aimed at targeting these chemokine-receptor pairs.


Assuntos
Neoplasias Ósseas/imunologia , Neoplasias Ósseas/secundário , Neoplasias da Mama/imunologia , Neoplasias da Mama/patologia , Quimiocina CCL2/imunologia , Quimiocina CXCL12/imunologia , Neoplasias da Próstata/imunologia , Neoplasias da Próstata/patologia , Animais , Feminino , Humanos , Masculino
7.
Front Immunol ; 12: 578548, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33815355

RESUMO

Objectives: To explore the potential role of CD3+CD8+CD161high TCRVα7.2+ mucosal-associated invariant T (MAIT) cells in the pathogenesis of primary biliary cholangitis (PBC). Methods: We enrolled 55 patients with PBC, 69 healthy controls (HCs), and 8 patients with hepatic hemangioma. Circulating MAIT cells and their chemokine receptor profiles and cytokine production were quantified using flow cytometry. Liver-resident MAIT cells were examined by immunofluorescence staining. CXCL12-mediated chemotaxis of MAIT cells was measured using a transwell migration assay. Plasma interleukin (IL)-18 was measured using ELISA, and cytokine production in IL-18-stimulated MAIT cells was detected using flow cytometry. Result: Peripheral MAIT cells were found to be significantly lower in patients with PBC (3.0 ± 3.2% vs. 9.4 ± 8.0%, p < 0.01) and negatively correlated with alkaline phosphatase (ALP) levels (r = -0.3209, p < 0.05). Liver immunofluorescence staining suggested that MAIT cells might accumulate in PBC liver. MAIT cells from patients with PBC expressed higher levels of CXCR4 (84.8 ± 18.0% vs. 58.7 ± 11.4%, p < 0.01), and the expression of CXCL12 was higher in PBC liver. CXCL12 promoted MAIT cell chemotaxis (70.4 ± 6.8% vs. 52.2 ± 3.5%, p < 0.01), which was attenuated by CXCR4 antagonist. MAIT cells from PBC produced significantly more interferon-γ (IFN-γ) (88.3 ± 4.2% vs. 64.2 ± 10.1%, p < 0.01), tumor necrosis factor-α (TNF-α) (93.0 ± 1.1% vs. 80.1 ± 5.3%, p < 0.01), Granzyme B (89.3 ± 3.3% vs. 72.1 ± 7.0%, p < 0.01), and perforin (46.8 ± 6.6% vs. 34.8 ± 7.7%, p < 0.05). MAIT cells from PBC expressed higher levels of IL18-Rα (83.8 ± 10.2% vs. 58.3 ± 8.7%, p < 0.01). Plasma IL-18 was more abundant in patients with PBC (286.8 ± 75.7 pg/ml vs. 132.9 ± 78.1 pg/ml, p < 0.01). IL-18 promoted IFN-γ production in MAIT cells (74.9 ± 6.6% vs. 54.7 ± 6.7%, p < 0.01), which was partially attenuated by blocking IL-18R (68.6 ± 8.3% vs. 43.5 ± 4.2%, p < 0.01). Conclusion: Mucosal-associated invariant T cells from patients with PBC accumulated in the liver via CXCL12-CXCR4-mediated chemotaxis, produced pro-inflammatory cytokines, and contributed to portal inflammation, which was potentially mediated by elevated IL-18. Targeting MAIT cells might be a therapeutic approach for PBC.


Assuntos
Quimiocina CXCL12/imunologia , Cirrose Hepática Biliar/imunologia , Fígado/imunologia , Células T Invariantes Associadas à Mucosa/imunologia , Receptores CXCR4/imunologia , Adulto , Fosfatase Alcalina/imunologia , Fosfatase Alcalina/metabolismo , Quimiocina CXCL12/metabolismo , Quimiotaxia/imunologia , Feminino , Granzimas/imunologia , Granzimas/metabolismo , Humanos , Interferon gama/imunologia , Interferon gama/metabolismo , Interleucina-18/imunologia , Interleucina-18/metabolismo , Fígado/metabolismo , Cirrose Hepática Biliar/sangue , Cirrose Hepática Biliar/metabolismo , Contagem de Linfócitos , Masculino , Pessoa de Meia-Idade , Células T Invariantes Associadas à Mucosa/metabolismo , Perforina/imunologia , Perforina/metabolismo , Receptores CXCR4/metabolismo , Fator de Necrose Tumoral alfa/imunologia , Fator de Necrose Tumoral alfa/metabolismo
8.
PLoS Pathog ; 17(4): e1009186, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33826679

RESUMO

Pathogenic mycobacteria actively dysregulate protective host immune signalling pathways during infection to drive the formation of permissive granuloma microenvironments. Dynamic regulation of host microRNA (miRNA) expression is a conserved feature of mycobacterial infections across host-pathogen pairings. Here we examine the role of miR-206 in the zebrafish model of Mycobacterium marinum infection, which allows investigation of the early stages of granuloma formation. We find miR-206 is upregulated following infection by pathogenic M. marinum and that antagomir-mediated knockdown of miR-206 is protective against infection. We observed striking upregulation of cxcl12a and cxcr4b in infected miR-206 knockdown zebrafish embryos and live imaging revealed enhanced recruitment of neutrophils to sites of infection. We used CRISPR/Cas9-mediated knockdown of cxcl12a and cxcr4b expression and AMD3100 inhibition of Cxcr4 to show that the enhanced neutrophil response and reduced bacterial burden caused by miR-206 knockdown was dependent on the Cxcl12/Cxcr4 signalling axis. Together, our data illustrate a pathway through which pathogenic mycobacteria induce host miR-206 expression to suppress Cxcl12/Cxcr4 signalling and prevent protective neutrophil recruitment to granulomas.


Assuntos
Quimiocina CXCL12/metabolismo , MicroRNAs/genética , Infiltração de Neutrófilos/imunologia , Receptores CXCR4/metabolismo , Animais , Quimiocina CXCL12/imunologia , Técnicas de Silenciamento de Genes/métodos , Infecções por Mycobacterium não Tuberculosas/genética , Infecções por Mycobacterium não Tuberculosas/imunologia , Mycobacterium marinum/metabolismo , Receptores CXCR4/imunologia , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Peixe-Zebra/imunologia
9.
Sci Rep ; 11(1): 775, 2021 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-33436863

RESUMO

Since colorectal cancer (CRC) remains one of the most common malignancies, a tremendous amount of studies keep taking place in this field. Over the past 25 years, a notable part of the scientific community has focused on the association between the immune system and colorectal cancer. A variety of studies have shown that high densities of infiltrating CD8+ T-cells are associated with improved disease-free and overall survival in CRC. Stromal cell-derived factor-1 (SDF-1) is a protein that regulates leukocyte trafficking and is variably expressed in several healthy and malignant tissues. There is strong evidence that SDF-1 has a negative prognostic impact on a variety of solid tumors. However, the existing data do not provide sufficient evidence that the expression of SDF-1 has an influence on CRC. Knowing nowadays, that the microenvironment plays a crucial role in the development of cancer, we hypothesized that the expression of SDF-1 in CRC could influence the prognostic significance of CD8+ T-cells, as an indicator of the essential role of the immune microenvironment in cancer development. Therefore, we explored the combined prognostic significance of CD8+ T-cell density and SDF-1 expression in a large CRC collective. We analyzed a tissue microarray of 613 patient specimens of primary CRCs by immunohistochemistry (IHC) for the CD8 + T-cells density and the expression of SDF-1 by tumor cells and tumor-infiltrating immune cells. Besides, we analyzed the expression of SDF-1 at the RNA level in The Cancer Genome Atlas cohort. We found that the combined high CD8+ T-cell infiltration and expression of SDF-1 shows a favorable 5-year overall survival rate (66%; 95% CI 48-79%) compared to tumors showing a high expression of CD8+ T-cell only (55%; 95% CI 45-64%; p = 0.0004). After stratifying the patients in nodal negative and positive groups, we found that the prognostic significance of CD8+ T-cell density in nodal positive colorectal cancer depends on SDF-1 expression. Univariate and multivariate Hazard Cox regression survival analysis considering the combination of both markers revealed that the combined high expression of SDF-1 and CD8+ T-cell density was an independent, favorable, prognostic marker for overall survival (HR = 0.34, 95% CI 0.17-0.66; p = 0.002 and HR = 0.45, 95% CI 0.23-0.89; p = 0.021, respectively). In our cohort there was a very weak correlation between SDF-1 and CD8+ T-cells (rs = 0.13, p = 0.002) and in the trascriptomic expression of these two immune markers display a weak correlation (rs = 0.28, p < 0.001) which was significantly more pronounced in stage III cancers (rs = 0.40, p < 0.001). The combination of high CD8+ T-cell density and expression of SDF-1 represents an independent, favorable, prognostic condition in CRC, mostly in patients with stage III disease.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Quimiocina CXCL12/biossíntese , Neoplasias Colorretais/imunologia , Microambiente Tumoral/imunologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Linfócitos T CD8-Positivos/patologia , Quimiocina CXCL12/imunologia , Estudos de Coortes , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Bases de Dados Genéticas , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Prognóstico , Taxa de Sobrevida
10.
Cell Rep ; 33(12): 108530, 2020 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-33357430

RESUMO

During chronic infection, the inflammatory cytokine interferon gamma (IFNγ) damages hematopoietic stem cells (HSCs) by disrupting quiescence and promoting excessive terminal differentiation. However, the mechanism by which IFNγ hinders HSC quiescence remains undefined. Using intravital 3-dimensional microscopy, we find that IFNγ disrupts the normally close interaction between HSCs and CXCL12-abundant reticular (CAR) cells in the HSC niche. IFNγ stimulation increases expression of the cell surface protein BST2, which we find is required for IFNγ-dependent HSC relocalization and activation. IFNγ stimulation of HSCs increases their E-selectin binding by BST2 and homing to the bone marrow, which depends on E-selectin binding. Upon chronic infection, HSCs from mice lacking BST2 are more quiescent and more resistant to depletion than HSCs from wild-type mice. Overall, this study defines a critical mechanism by which IFNγ promotes niche relocalization and activation in response to inflammatory stimulation and identifies BST2 as a key regulator of HSC quiescence. VIDEO ABSTRACT.


Assuntos
Antígenos CD/imunologia , Células-Tronco Hematopoéticas/imunologia , Interferon gama/imunologia , Glicoproteínas de Membrana/imunologia , Animais , Quimiocina CXCL12/imunologia , Selectina E/imunologia , Proteínas Ligadas por GPI/imunologia , Humanos , Interferon gama/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
11.
Int J Mol Sci ; 21(22)2020 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-33202862

RESUMO

Endogenous bone marrow-derived mesenchymal stem cells are mobilized to peripheral blood and injured tissues in response to changes in the expression of various growth factors and cytokines in the injured tissues, including substance P (SP), transforming growth factor-beta (TGF-ß), and stromal cell-derived factor-1 (SDF-1). SP, TGF-ß, and SDF-1 are all known to induce the migration of bone marrow-derived mesenchymal stem cells (BM-MSCs). However, it is not yet clear how these stimuli influence or interact with each other during BM-MSC mobilization. This study used mouse bone marrow-derived mesenchymal stem cell-like ST2 cells and human BM-MSCs to evaluate whether SP, TGF-ß, and SDF-1 mutually regulate their respective effects on the mobilization of BM-MSCs. SP pretreatment of ST2 and BM-MSCs impaired their response to TGF-ß while the introduction of SP receptor antagonist restored the mobilization of ST2 and BM-MSCs in response to TGF-ß. TGF-ß pretreatment did not affect the migration of ST2 and BM-MSCs in response to SP, but downregulated their migration in response to SDF-1. SP pretreatment modulated the activation of TGF-ß noncanonical pathways in ST2 cells and BM-MSCs, but not canonical pathways. These results suggest that the migration of mesenchymal stem cells is regulated by complex functional interactions between SP, TGF-ß, and SDF-1. Thus, understanding the complex functional interactions of these chemotactic stimuli would contribute to ensuring the development of safe and effective combination treatments for the mobilization of BM-MSCs.


Assuntos
Células da Medula Óssea/imunologia , Quimiotaxia/imunologia , Células-Tronco Mesenquimais/imunologia , Transdução de Sinais/imunologia , Animais , Células da Medula Óssea/citologia , Linhagem Celular , Quimiocina CXCL12/imunologia , Humanos , Células-Tronco Mesenquimais/citologia , Camundongos , Fator de Crescimento Transformador beta/imunologia
12.
Front Immunol ; 11: 2176, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33013914

RESUMO

Chemokine receptor cxcr4 and its ligand cxcl12 have evolved two paralogs in the teleost lineage. In this study, we have identified four duplicated cxcr4 and cxcl12 genes from hexaploid gibel carp, Carassius gibelio, respectively. Cgcxcr4bs and Cgcxcl12as were dynamically and differentially expressed in immune-related tissues, and significantly up-regulated in head kidney and spleen after crucian carp herpesvirus (CaHV) infection. Blocking Cxcr4/Cxcl12 axis by injecting AMD3100 brought more severe bleeding symptom and lower survival rate in CaHV-infected fish. AMD3100 treatment also suppressed the up-regulation of key antiviral genes in head kidney and spleen, and resulted in more acute replication of CaHV in vivo. Consistently, the similar suppression of up-regulated expression of key antiviral genes were also observed in CAB cells treated by AMD3100 after poly(I:C) stimulation. Finally, MAPK3 and JAK/STAT were identified as the possible pathways that CgCxcr4s and CgCxcl12s participate in to promote the antiviral response in vitro.


Assuntos
Carpas/genética , Quimiocina CXCL12/genética , Doenças dos Peixes/genética , Infecções por Herpesviridae/veterinária , Herpesviridae/fisiologia , Receptores CXCR4/genética , Sequência de Aminoácidos , Animais , Antivirais/farmacologia , Sequência de Bases , Benzilaminas/farmacologia , Carpas/imunologia , Carpas/virologia , Quimiocina CXCL12/biossíntese , Quimiocina CXCL12/imunologia , Sequência Conservada , Ciclamos/farmacologia , DNA Complementar/genética , Doenças dos Peixes/imunologia , Doenças dos Peixes/virologia , Duplicação Gênica , Regulação da Expressão Gênica , Rim Cefálico/imunologia , Rim Cefálico/metabolismo , Infecções por Herpesviridae/genética , Infecções por Herpesviridae/imunologia , Infecções por Herpesviridae/virologia , Especificidade de Órgãos , Filogenia , Poli I-C/farmacologia , Poliploidia , Receptores CXCR4/antagonistas & inibidores , Receptores CXCR4/biossíntese , Receptores CXCR4/imunologia , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Transdução de Sinais/imunologia , Baço/imunologia , Baço/metabolismo , Replicação Viral
13.
Am J Reprod Immunol ; 84(3): e13280, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32485053

RESUMO

The survival of allogeneic fetuses during pregnancy is a rather paradoxical phenomenon with a complex mechanism. Chemokine ligand12 (CXCL12) and its receptors CXC chemokine receptor (CXCR)4 and 7 are extensively found in placenta tissues and cells, including trophoblast cells, vascular endothelial cells, and decidual stromal and decidual immune cells (eg, NK cells and regulatory T cells). Evidence has illustrated that the CXClL12/CXCR4/CXCR7 axis could enhance the cross talk at the maternal-fetal interface through multiple processes, such as invasion and placental angiogenesis, which appears to be critical signaling components in placentation and fetal outcome. In addition, an increasing number of studies have demonstrated that the CXCL12/CXCR4/CXCR7 axis also stands out for its pleiotropic roles in several pregnancy-associated diseases (eg, recurrent spontaneous abortion (RSA), pre-eclampsia (PE), and preterm labor). In the present review, the different biological properties and signaling in physiological and pathological pregnancy conditions of CXCL12/CXCR4/CXCR7 axis were discussed, with the aim of obtaining a further understanding of the regulatory mechanisms and highlighting their potential as a target for therapeutic approaches.


Assuntos
Quimiocina CXCL12/imunologia , Complicações na Gravidez/imunologia , Gravidez/imunologia , Animais , Feminino , Feto/imunologia , Humanos , Receptores CXCR/imunologia , Receptores CXCR4/imunologia
14.
Aging (Albany NY) ; 12(12): 12051-12073, 2020 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-32579540

RESUMO

To identify an immune-related prognostic signature based on long non-coding RNAs (lncRNAs) and find immunotherapeutic targets for bladder urothelial carcinoma, we downloaded RNA-sequencing data from The Cancer Genome Atlas (TCGA) dataset. Functional enrichment analysis demonstrated bladder urothelial carcinoma was related to immune-related functions. We obtained 332 immune-related genes and 262 lncRNAs targeting immune-related genes. We constructed a signature based on eight lncRNAs in training cohort. Patients were classified as high-risk and low-risk according to signature risk score. High-risk patients had poor overall survival compared with low-risk patients (P < 0.001). Multivariate Cox regression suggested the signature was an independent prognostic indicator. The findings were further validated in testing, entire TCGA and external validation cohorts. Gene set enrichment analysis indicated significant enrichment of immune-related phenotype in high-risk group. Immunohistochemistry and online analyses validated the functions of 4 key immune-related genes (LIG1, TBX1, CTSG and CXCL12) in bladder urothelial carcinoma. Nomogram proved to be a good classifier for muscle-invasive bladder cancer through combining the signature. In conclusion, our immune-related prognostic signature and nomogram provided prognostic indicators and potential immunotherapeutic targets for muscle-invasive bladder cancer.


Assuntos
Biomarcadores Tumorais/metabolismo , Carcinoma de Células de Transição/mortalidade , Nomogramas , RNA Longo não Codificante/metabolismo , Neoplasias da Bexiga Urinária/mortalidade , Idoso , Carcinoma de Células de Transição/genética , Carcinoma de Células de Transição/imunologia , Carcinoma de Células de Transição/patologia , Catepsina G/genética , Catepsina G/imunologia , Quimiocina CXCL12/genética , Quimiocina CXCL12/imunologia , DNA Ligase Dependente de ATP/genética , DNA Ligase Dependente de ATP/imunologia , Conjuntos de Dados como Assunto , Feminino , Seguimentos , Regulação Neoplásica da Expressão Gênica/imunologia , Humanos , Imuno-Histoquímica , Estimativa de Kaplan-Meier , Masculino , Pessoa de Meia-Idade , Músculos/imunologia , Músculos/patologia , Invasividade Neoplásica/genética , Invasividade Neoplásica/imunologia , Valor Preditivo dos Testes , RNA-Seq , Curva ROC , Fatores de Risco , Proteínas com Domínio T/genética , Proteínas com Domínio T/imunologia , Transcriptoma/imunologia , Bexiga Urinária/imunologia , Bexiga Urinária/patologia , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/imunologia , Neoplasias da Bexiga Urinária/patologia
15.
Immunity ; 52(3): 542-556.e13, 2020 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-32187520

RESUMO

Fibrosis is an incurable disorder of unknown etiology. Segregated-nucleus-containing atypical monocytes (SatMs) are critical for the development of fibrosis. Here we examined the mechanisms that recruit SatMs to pre-fibrotic areas. A screen based on cytokine expression in the fibrotic lung revealed that the chemokine Cxcl12, which is produced by apoptotic nonhematopoietic cells, was essential for SatM recruitment. Analyses of lung tissues at fibrosis onset showed increased expression of Rbm7, a component of the nuclear exosome targeting complex. Rbm7 deletion suppressed bleomycin-induced fibrosis and at a cellular level, suppressed apoptosis of nonhematopoietic cells. Mechanistically, Rbm7 bound to noncoding (nc)RNAs that form subnuclear bodies, including Neat1 speckles. Dysregulated expression of Rbm7 resulted in the nuclear degradation of Neat1 speckles, the dispersion of the DNA repair protein BRCA1, and the triggering of apoptosis. Thus, Rbm7 in epithelial cells plays a critical role in the development of fibrosis by regulating ncRNA decay and thereby the production of chemokines that recruit SatMs.


Assuntos
Apoptose/imunologia , Núcleo Celular/imunologia , Exossomos/imunologia , Fibrose Pulmonar/imunologia , Proteínas de Ligação a RNA/imunologia , Animais , Apoptose/genética , Núcleo Celular/genética , Núcleo Celular/metabolismo , Quimiocina CXCL12/imunologia , Quimiocina CXCL12/metabolismo , Exossomos/genética , Exossomos/metabolismo , Regulação da Expressão Gênica/imunologia , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Monócitos/imunologia , Monócitos/metabolismo , Células NIH 3T3 , Fibrose Pulmonar/genética , Fibrose Pulmonar/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
16.
J Cell Mol Med ; 24(4): 2566-2572, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31912645

RESUMO

Schistosomiasis affects at least 200 million people in tropical and subtropical areas. The major pathology of schistosomiasis is egg-induced liver granuloma characterized by an eosinophil-rich inflammatory infiltration around the eggs, which subsequently leads to hepatic fibrosis and circulatory impairment in host. However, the mechanisms how eosinophils are recruited into the liver, which are crucial for the better understanding of the mechanisms underlying granuloma formation and control of schistosomiasis, remain unclear. In this study, we showed that follicular helper T (Tfh) cells participate in recruitment of eosinophils into liver partially by producing CXCL12 during schistosome infection. Our findings uncovered a previously unappreciated role of Tfh cells in promotion of the development of liver granuloma in schistosomiasis, making Tfh-CXCL12-eosinophil axis a potential target for intervention of schistosomiasis.


Assuntos
Quimiocina CXCL12/imunologia , Eosinófilos/imunologia , Fígado/imunologia , Schistosoma japonicum/imunologia , Esquistossomose Japônica/imunologia , Células T Auxiliares Foliculares/imunologia , Animais , Eosinófilos/parasitologia , Granuloma/imunologia , Granuloma/parasitologia , Fígado/parasitologia , Cirrose Hepática/imunologia , Cirrose Hepática/parasitologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Schistosoma japonicum/parasitologia , Células T Auxiliares Foliculares/parasitologia
17.
Cancer Lett ; 469: 151-161, 2020 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-31669202

RESUMO

Blocking the migration of regulatory T cells (Tregs) to the tumor microenvironment is a promising strategy for tumor immunotherapy. Treg accumulation in the leukemic hematopoietic microenvironment (LHME) has adverse impacts on patient outcomes. The mechanism and effective methods of disrupting Treg accumulation in the LHME have not been well established. Here, we studied the distribution and characteristics of Tregs in the LHME, investigated the effects of Treg ablation on leukemia progression, explored the mechanisms leading to Treg accumulation, and studied whether blocking Treg migration to the LHME delayed leukemia progression in MLL-AF9-induced mouse acute myeloid leukemia (AML) models using wildtype (WT) and Foxp3DTR/GFP mice. Increased accumulation of more activated Tregs was detected in the LHME. Inducible Treg ablation prolonged the survival of AML mice by promoting the antileukemic effects of CD8+ T cells. Furthermore, both local expansion and migration accounted for Treg accumulation in the LHME. Moreover, blocking the CCL3-CCR1/CCR5 and CXCL12-CXCR4 axes inhibited Treg accumulation in the LHME and delayed leukemia progression. Our findings provide laboratory evidence for a potential leukemia immunotherapy by blocking the migration of Tregs.


Assuntos
Antineoplásicos Imunológicos/farmacologia , Fatores de Transcrição Forkhead/metabolismo , Leucemia Mieloide Aguda/tratamento farmacológico , Linfócitos T Reguladores/efeitos dos fármacos , Microambiente Tumoral/efeitos dos fármacos , Adolescente , Transferência Adotiva , Animais , Antineoplásicos Imunológicos/uso terapêutico , Benzilaminas , Medula Óssea/patologia , Movimento Celular/efeitos dos fármacos , Movimento Celular/genética , Quimiocina CCL3/imunologia , Quimiocina CCL3/metabolismo , Quimiocina CXCL12/imunologia , Quimiocina CXCL12/metabolismo , Criança , Pré-Escolar , Ciclamos , Modelos Animais de Doenças , Progressão da Doença , Feminino , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/imunologia , Regulação Leucêmica da Expressão Gênica/imunologia , Técnicas de Introdução de Genes , Compostos Heterocíclicos/farmacologia , Compostos Heterocíclicos/uso terapêutico , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/imunologia , Leucemia Mieloide Aguda/patologia , Masculino , Maraviroc/farmacologia , Maraviroc/uso terapêutico , Camundongos , Camundongos Transgênicos , Proteína de Leucina Linfoide-Mieloide/genética , Proteínas de Fusão Oncogênica/genética , Receptores CCR/antagonistas & inibidores , Receptores CCR/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Linfócitos T Reguladores/patologia , Microambiente Tumoral/genética , Microambiente Tumoral/imunologia
18.
Immunol Lett ; 217: 91-115, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31747563

RESUMO

Chemokines are small molecules called "chemotactic cytokines" and regulate many processes like leukocyte trafficking, homing of immune cells, maturation, cytoskeletal rearrangement, physiology, migration during development, and host immune responses. These proteins bind to their corresponding 7-membrane G-protein-coupled receptors. Chemokines and their receptors are anti-inflammatory factors in autoimmune conditions, so consider as potential targets for neutralization in such diseases. They also express by cancer cells and function as angiogenic factors, and/or survival/growth factors that enhance tumor angiogenesis and development. Among chemokines, the CXCL12/CXCR4 axis has significantly been studied in numerous cancers and autoimmune diseases. CXCL12 is a homeostatic chemokine, which is acts as an anti-inflammatory chemokine during autoimmune inflammatory responses. In cancer cells, CXCL12 acts as an angiogenic, proliferative agent and regulates tumor cell apoptosis as well. CXCR4 has a role in leukocyte chemotaxis in inflammatory situations in numerous autoimmune diseases, as well as the high levels of CXCR4, observed in different types of human cancers. These findings suggest CXCL12/CXCR4 as a potential therapeutic target for therapy of autoimmune diseases and open a new approach to targeted-therapy of cancers by neutralizing CXCL12 and CXCR4. In this paper, we reviewed the current understanding of the role of the CXCL12/CXCR4 axis in disease pathology and cancer biology, and discuss its therapeutic implications in cancer and diseases.


Assuntos
Doenças Autoimunes/metabolismo , Quimiocina CXCL12/metabolismo , Inflamação/metabolismo , Neoplasias/metabolismo , Neovascularização Patológica/metabolismo , Receptores CXCR4/metabolismo , Animais , Apoptose/genética , Doenças Autoimunes/tratamento farmacológico , Doenças Autoimunes/imunologia , Doenças Autoimunes/terapia , Quimiocina CXCL12/genética , Quimiocina CXCL12/imunologia , Humanos , Células Secretoras de Insulina/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/enzimologia , Neoplasias/terapia , Receptores CXCR4/genética , Receptores CXCR4/imunologia , Transdução de Sinais/genética , Transdução de Sinais/imunologia
19.
Cytokine ; 126: 154912, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31704480

RESUMO

Stem cell therapy is a promising strategy for recovering of injured cardiac tissue after acute myocardial infarction. The effects promoted by preventive physical training, beneficial for regeneration, are not yet understood on stem cell homing. In the present study, we evaluated the effect of preventive physical training on cell homing activation and associated mechanisms after acute myocardial infarction and therapy with adipose-derived stem cells in spontaneously hypertensive rats (SHR). Forty female SHR were allocated in sedentary (S), sedentary SHAM (S-SHAM), sedentary AMI (S-AMI), sedentary with cell therapy (S-ICT), aerobically trained (T), trained SHAM (T-SHAM), trained AMI (T-AMI) and trained with cell therapy (S-ICT) groups. Cell therapy was performed through the infusion of 2 × 105 ADSC/0.05 mL at the moment of AMI. Molecular markers of cell homing (SDF-1/CXCR4), inflammatory response (myeloperoxidase and cardiac expression of iNOS, gp91phox and NFkB), vasoconstrictor agents (Ang II and ET-1) and an angiogenesis inducer (VEGF) were measured. Functional capacity and echocardiographic parameters were also evaluated. Preventive physical training associated with cell therapy was able to reduce left ventricle ejection fraction losses in infarcted animals. Results demonstrated activation of the SDF-1/CXCR4 axis by physical training, besides a reduction in vasoconstrictor and systemic inflammatory responses. Physical training prior to AMI was able to induce a cardioprotective effect and optimize the reparative mechanism of cell therapy in an animal model of hypertension.


Assuntos
Quimiocina CXCL12/imunologia , Infarto do Miocárdio/fisiopatologia , Condicionamento Físico Animal/métodos , Receptores CXCR4/imunologia , Transplante de Células-Tronco , Vasoconstrição/fisiologia , Animais , Cardiotônicos , Ecocardiografia , Feminino , Hipertensão/fisiopatologia , Ratos , Ratos Endogâmicos SHR , Comportamento Sedentário , Volume Sistólico/fisiologia , Função Ventricular Esquerda/fisiologia
20.
Semin Cancer Biol ; 65: 176-188, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-31874281

RESUMO

Single agent checkpoint inhibitor therapy has not been effective for most gastrointestinal solid tumors, but combination therapy with drugs targeting additional immunosuppressive pathways is being attempted. One such pathway, the CXCL12-CXCR4/CXCR7 chemokine axis, has attracted attention due to its effects on tumor cell survival and metastasis as well as immune cell migration. CXCL12 is a small protein that functions in normal hematopoietic stem cell homing in addition to repair of damaged tissue. Binding of CXCL12 to CXCR4 leads to activation of G protein signaling kinases such as P13K/mTOR and MEK/ERK while binding to CXCR7 leads to ß-arrestin mediated signaling. While some gastric and colorectal carcinoma cells have been shown to make CXCL12, the primary source in pancreatic cancer and peritoneal metastases is cancer-associated fibroblasts. Binding of CXCL12 to CXCR4 and CXCR7 on tumor cells leads to anti-apoptotic signaling through Bcl-2 and survivin upregulation, as well as promotion of the epithelial-to-mesechymal transition through the Rho-ROCK pathway and alterations in cell adhesion molecules. High levels of CXCL12 seen in the bone marrow, liver, and spleen could partially explain why these are popular sites of metastases for many tumors. CXCL12 is a chemoattractant for lymphocytes at lower levels, but becomes chemorepellant at higher levels; it is unclear exactly what gradient exists in the tumor microenvironment and how this influences tumor-infiltrating lymphocytes. AMD3100 (Plerixafor or Mozobil) is a small molecule CXCR4 antagonist and is the most frequently used drug targeting the CXCL12-CXCR4/CXCR7 axis in clinical trials for gastrointestinal solid tumors currently. Other small molecules and monoclonal antibodies against CXCR4 are being trialed. Further understanding of the CXCL12- CXCR4/CXCR7 chemokine axis in the tumor microenvironment will allow more effective targeting of this pathway in combination immunotherapy.


Assuntos
Quimiocina CXCL12/genética , Resistencia a Medicamentos Antineoplásicos/imunologia , Neoplasias Gastrointestinais/imunologia , Receptores CXCR4/genética , Receptores CXCR/genética , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Quimiocina CXCL12/imunologia , Resistencia a Medicamentos Antineoplásicos/genética , Neoplasias Gastrointestinais/genética , Neoplasias Gastrointestinais/terapia , Humanos , Receptores CXCR/imunologia , Receptores CXCR4/imunologia , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Microambiente Tumoral/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA