Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
J Autoimmun ; 123: 102684, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34237649

RESUMO

OBJECTIVE: B-cells are present in the inflamed arteries of giant cell arteritis (GCA) patients and a disturbed B-cell homeostasis is reported in peripheral blood of both GCA and the overlapping disease polymyalgia rheumatica (PMR). In this study, we aimed to investigate chemokine-chemokine receptor axes governing the migration of B-cells in GCA and PMR. METHODS: We performed Luminex screening assay for serum levels of B-cell related chemokines in treatment-naïve GCA (n = 41), PMR (n = 31) and age- and sex matched healthy controls (HC, n = 34). Expression of chemokine receptors on circulating B-cell subsets were investigated by flow cytometry. Immunohistochemistry was performed on GCA temporal artery (n = 14) and aorta (n = 10) and on atherosclerosis aorta (n = 10) tissue. RESULTS: The chemokines CXCL9 and CXCL13 were significantly increased in the circulation of treatment-naïve GCA and PMR patients. CXCL13 increased even further after three months of glucocorticoid treatment. At baseline CXCL13 correlated with disease activity markers. Peripheral CXCR3+ and CXCR5+ switched memory B-cells were significantly reduced in both patient groups and correlated inversely with their complementary chemokines CXCL9 and CXCL13. At the arterial lesions in GCA, CXCR3+ and CXCR5+ B-cells were observed in areas with high CXCL9 and CXCL13 expression. CONCLUSION: Changes in systemic and local chemokine and chemokine receptor pathways related to B-cell migration were observed in GCA and PMR mainly in the CXCL9-CXCR3 and CXCL13-CXCR5 axes. These changes can contribute to homing and organization of B-cells in the vessel wall and provide further evidence for an active involvement of B-cells in GCA and PMR.


Assuntos
Linfócitos B/fisiologia , Quimiocinas/fisiologia , Arterite de Células Gigantes/imunologia , Polimialgia Reumática/imunologia , Idoso , Idoso de 80 Anos ou mais , Movimento Celular , Quimiocina CXCL13/sangue , Quimiocina CXCL13/fisiologia , Quimiocina CXCL9/sangue , Quimiocina CXCL9/fisiologia , Feminino , Arterite de Células Gigantes/etiologia , Humanos , Masculino , Pessoa de Meia-Idade , Polimialgia Reumática/etiologia , Receptores CXCR3/sangue , Receptores CXCR3/fisiologia , Receptores CXCR5/sangue , Receptores CXCR5/fisiologia
2.
Int J Mol Sci ; 21(17)2020 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-32847038

RESUMO

Osteosarcoma is the most common primary tumor of the skeletal system and is well-known to have an aggressive clinical outcome and high metastatic potential. The chemokine (C-X-C motif) ligand 13 (CXCL13) plays a vital role in the development of several cancers. However, the effect of CXCL13 in the motility of osteosarcoma cells remains uncertain. Here, we found that CXCL13 increases the migration and invasion potential of three osteosarcoma cell lines. In addition, CXCL13 expression was upregulated in migration-prone MG-63 cells. Vascular cell adhesion molecule 1 (VCAM-1) siRNA and antibody demonstrated that CXCL13 promotes migration via increasing VCAM-1 production. We also show that CXCR5 receptor controls CXCL13-mediated VCAM-1 expression and cell migration. Our study identified that CXCL13/CXCR5 axis facilitate VCAM-1 production and cell migration in human osteosarcoma via the phospholipase C beta (PLCß), protein kinase C α (PKCα), c-Src, and nuclear factor-κB (NF-κB) signaling pathways. CXCL13 and CXCR5 appear to be a novel therapeutic target in metastatic osteosarcoma.


Assuntos
Neoplasias Ósseas/patologia , Movimento Celular/genética , Quimiocina CXCL13/metabolismo , Osteossarcoma/patologia , Receptores CXCR5/metabolismo , Molécula 1 de Adesão de Célula Vascular/genética , Neoplasias Ósseas/genética , Neoplasias Ósseas/metabolismo , Quimiocina CXCL13/fisiologia , Humanos , Invasividade Neoplásica/genética , Osteossarcoma/genética , Osteossarcoma/metabolismo , Ligação Proteica , Receptores CXCR5/fisiologia , Transdução de Sinais/fisiologia , Células Tumorais Cultivadas , Molécula 1 de Adesão de Célula Vascular/metabolismo
4.
J Immunol ; 203(9): 2415-2424, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31570507

RESUMO

Bacterial, parasitic, and viral infections are well-known causes of lymphoid tissue disorganization, although the factors, both host and/or pathogen derived, that mediate these changes are largely unknown. Ehrlichia muris infection in mice causes a loss of germinal center (GC) B cells that is accompanied by the generation of extrafollicular T-bet+ CD11c+ plasmablasts and IgM memory B cells. We addressed a possible role for TNF-α in this process because this cytokine has been shown to regulate GC development. Ablation of TNF-α during infection resulted in an 8-fold expansion of GL7+ CD38lo CD95+ GC B cells, and a 2.5- and 5-fold expansion of CD138+ plasmablasts and T-bet+ memory cells, respectively. These changes were accompanied by a reduction in splenomegaly, more organized T and B cell zones, and an improved response to Ag challenge. CXCL13, the ligand for CXCR5, was detected at 6-fold higher levels following infection but was much reduced following TNF-α ablation, suggesting that CXCL13 dysregulation also contributes to loss of lymphoid tissue organization. T follicular helper cells, which also underwent expansion in infected TNF-α--deficient mice, may also have contributed to the expansion of T-bet+ B cells, as the latter are known to require T cell help. Our findings contrast with previously described roles for TNF-α in GCs and reveal how host-pathogen interactions can induce profound changes in cytokine and chemokine production that can alter lymphoid tissue organization, GC B cell development, and extrafollicular T-bet+ B cell generation.


Assuntos
Linfócitos B/imunologia , Infecções Bacterianas/imunologia , Centro Germinativo/imunologia , Tecido Linfoide/fisiologia , Fator de Necrose Tumoral alfa/fisiologia , Animais , Quimiocina CXCL13/fisiologia , Tolerância Imunológica , Memória Imunológica , Tecido Linfoide/imunologia , Camundongos , Camundongos Endogâmicos C57BL
5.
Life Sci ; 227: 175-186, 2019 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-31026453

RESUMO

The tumor microenvironment comprises stromal and tumor cells which interact with each other through complex cross-talks that are mediated by a variety of growth factors, cytokines, and chemokines. The chemokine ligand 13 (CXCL13) and its chemokine receptor 5 (CXCR5) are among the key chemotactic factors which play crucial roles in deriving cancer cell biology. CXCL13/CXCR5 signaling axis makes pivotal contributions to the development and progression of several human cancers. In this review, we discuss how CXCL13/CXCR5 signaling modulates cancer cell ability to grow, proliferate, invade, and metastasize. Furthermore, we also discuss the preliminary evidence on context-dependent functioning of this axis within the tumor-immune microenvironment, thus, highlighting its potential dichotomy with respect to anticancer immunity and cancer immune-evasion mechanisms. At the end, we briefly shed light on the therapeutic potential or implications of targeting CXCL13/CXCR5 axis within the tumor microenvironment.


Assuntos
Quimiocina CXCL13/metabolismo , Neoplasias/fisiopatologia , Receptores CXCR5/metabolismo , Biomarcadores Tumorais/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Quimiocina CXCL13/fisiologia , Progressão da Doença , Humanos , Neoplasias/metabolismo , Receptores CXCR5/fisiologia , Transdução de Sinais , Microambiente Tumoral
6.
Inflammation ; 40(3): 762-769, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28155010

RESUMO

Recent data demonstrated that chemokine CXCL13 mediates neuroinflammation and contributes to the maintenance of neuropathic pain after nerve injury in the spinal cord. Pro-nociceptive chemokines activate mitogen-activated protein kinases (MAPKs) which are potential signaling pathways contributing to the nociceptive behavior in inflammatory or neuropathic pain. However, whether activation of p38 and JNK MAPK signaling pathway in the trigeminal ganglion (TG) are involved in CXCL13 and its receptor CXCR5-mediated orofacial pain has not yet been clarified. Here, we show that the unilateral partial infraorbital nerve ligation (pIONL) induced a profound orofacial pain in wild-type (WT) mice. Western blot results showed that pIONL induced p38 but not JNK activation in the TG of WT mice. However, the orofacial pain induced by pIONL was alleviated in Cxcr5 -/- mice, and the activation of p38 was also abrogated in Cxcr5 -/- mice. Furthermore, intra-TG injection of CXCL13 evoked mechanical hypersensitivity and increased p-p38 expression in WT mice. But CXCL13 had no effect on pain behavior or p-p38 expression in Cxcr5 -/- mice. Finally, pretreatment with p38 inhibitor, SB203580, attenuated the pIONL-induced mechanical allodynia and decreased the mRNA expression of pro-inflammatory cytokines including tumor necrosis factor-α (TNF-α) and interleukin-1ß (IL-1ß) in the TG. Taken together, our data suggest that CXCL13 acts on CXCR5 to increase p38 activation and further contributes to the pathogenesis of orofacial neuropathic pain.


Assuntos
Quimiocina CXCL13/fisiologia , Traumatismos Oculares/metabolismo , Dor Facial/etiologia , Gânglio Trigeminal/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Animais , Olho/inervação , Traumatismos Oculares/patologia , Camundongos , Inflamação Neurogênica/etiologia , Receptores CXCR5/fisiologia
7.
Brain Dev ; 38(5): 439-48, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26786246

RESUMO

Despite advances in inducing remission in pediatric opsoclonus-myoclonus syndrome (OMS), relapse remains a challenge. By definition, relapse is not a characteristic of monophasic OMS, but occurs at any time in the course of multiphasic OMS. Due to variability and heterogeneity, patients are best approached and treated on a case-by-case basis, using precepts derived from clinical and scientific studies. Treatment of provocations, such as infection or immunotherapy tapering, is the short-term goal, but discovering unresolved neuroinflammation and re-configuring disease-modifying agents is crucial in the long-term. The working hypothesis is that much of the injury in OMS results from neuroinflammation involving dysregulated B cells, which may cause loss of tolerance and autoantibody production. Biomarkers of disease activity include cerebrospinal fluid (CSF) B cell frequency, oligoclonal bands (OCB), B cell attractants (CXCL13) and activating factors (BAFF). Measuring these markers comprises modern detection and characterization of neuroinflammation or verifies 'no evidence of disease activity'. The decision making process is three-tiered: deciding if the relapse is bone fide, identifying its etiology, and formulating a therapeutic plan. Relapsing-remitting OMS is treatable, and combination multimodal/multi-mechanistic immunotherapy is improving the outcome. However, some patients progress to a refractory state with cognitive impairment and disability from failure to go into remission, multiple relapses, or more aggressive disease. This report provides new insights on underappreciated risks and pitfalls inherent in relapse, pro-active efforts to avoid progression, the need for early and sufficient treatment beyond corticosteroids and immunoglobulins, and utilization of disease activity biomarkers to identify high-risk patients and safely withdraw immunotherapy.


Assuntos
Síndrome de Opsoclonia-Mioclonia/tratamento farmacológico , Prevenção Secundária , Adolescente , Corticosteroides/uso terapêutico , Autoanticorpos , Linfócitos B/patologia , Biomarcadores/líquido cefalorraquidiano , Quimiocina CXCL13/fisiologia , Criança , Pré-Escolar , Estudos Transversais , Humanos , Imunoglobulinas Intravenosas/uso terapêutico , Imunoterapia/tendências , Recidiva Local de Neoplasia/complicações , Recidiva Local de Neoplasia/terapia , Síndrome de Opsoclonia-Mioclonia/líquido cefalorraquidiano , Síndrome de Opsoclonia-Mioclonia/reabilitação , Prevenção Secundária/tendências
8.
Oncotarget ; 7(7): 7550-62, 2016 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-26771137

RESUMO

Abnormal overexpression of CXCL13 is observed in many inflamed tissues and in particular in autoimmune diseases. Myasthenia gravis (MG) is a neuromuscular disease mainly mediated by anti-acetylcholine receptor autoantibodies. Thymic hyperplasia characterized by ectopic germinal centers (GCs) is a common feature in MG and is correlated with high levels of anti-AChR antibodies. We previously showed that the B-cell chemoattractant, CXCL13 is overexpressed by thymic epithelial cells in MG patients. We hypothesized that abnormal CXCL13 expression by the thymic epithelium triggered B-cell recruitment in MG. We therefore created a novel transgenic (Tg) mouse with a keratin 5 driven CXCL13 expression. The thymus of Tg mice overexpressed CXCL13 but did not trigger B-cell recruitment. However, in inflammatory conditions, induced by Poly(I:C), B cells strongly migrated to the thymus. Tg mice were also more susceptible to experimental autoimmune MG (EAMG) with stronger clinical signs, higher titers of anti-AChR antibodies, increased thymic B cells, and the development of germinal center-like structures. Consequently, this mouse model finally mimics the thymic pathology observed in human MG. Our data also demonstrated that inflammation is mandatory to reveal CXCL13 ability to recruit B cells and to induce tertiary lymphoid organ development.


Assuntos
Linfócitos B/patologia , Quimiocina CXCL13/fisiologia , Inflamação/complicações , Miastenia Gravis Autoimune Experimental/patologia , Hiperplasia do Timo/fisiopatologia , Animais , Linfócitos B/metabolismo , Células Cultivadas , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Feminino , Citometria de Fluxo , Centro Germinativo/metabolismo , Centro Germinativo/patologia , Humanos , Técnicas Imunoenzimáticas , Inflamação/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Miastenia Gravis Autoimune Experimental/etiologia , Miastenia Gravis Autoimune Experimental/metabolismo , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa
9.
Neurobiol Dis ; 83: 1-15, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26299391

RESUMO

Ischemic stroke triggers neurogenesis from neural stem/progenitor cells (NSPCs) in the subventricular zone (SVZ) and migration of newly formed neuroblasts toward the damaged striatum where they differentiate to mature neurons. Whether it is the injury per se or the associated inflammation that gives rise to this endogenous neurogenic response is unknown. Here we showed that inflammation without corresponding neuronal loss caused by intrastriatal lipopolysaccharide (LPS) injection leads to striatal neurogenesis in rats comparable to that after a 30 min middle cerebral artery occlusion, as characterized by striatal DCX+ neuroblast recruitment and mature NeuN+/BrdU+ neuron formation. Using global gene expression analysis, changes in several factors that could potentially regulate striatal neurogenesis were identified in microglia sorted from SVZ and striatum of LPS-injected and stroke-subjected rats. Among the upregulated factors, one chemokine, CXCL13, was found to promote neuroblast migration from neonatal mouse SVZ explants in vitro. However, neuroblast migration to the striatum was not affected in constitutive CXCL13 receptor CXCR5(-/-) mice subjected to stroke. Infarct volume and pro-inflammatory M1 microglia/macrophage density were increased in CXCR5(-/-) mice, suggesting that microglia-derived CXCL13, acting through CXCR5, might be involved in neuroprotection following stroke. Our findings raise the possibility that the inflammation accompanying an ischemic insult is the major inducer of striatal neurogenesis after stroke.


Assuntos
Corpo Estriado/fisiopatologia , Encefalite/fisiopatologia , Infarto da Artéria Cerebral Média/fisiopatologia , Células-Tronco Neurais/fisiologia , Neurogênese , Neurônios/fisiologia , Acidente Vascular Cerebral/fisiopatologia , Animais , Morte Celular , Movimento Celular/efeitos dos fármacos , Quimiocina CXCL13/farmacologia , Quimiocina CXCL13/fisiologia , Corpo Estriado/metabolismo , Corpo Estriado/patologia , Proteína Duplacortina , Encefalite/induzido quimicamente , Encefalite/metabolismo , Expressão Gênica , Infarto da Artéria Cerebral Média/patologia , Mediadores da Inflamação/metabolismo , Ventrículos Laterais/citologia , Ventrículos Laterais/metabolismo , Ventrículos Laterais/fisiopatologia , Lipopolissacarídeos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microglia/citologia , Microglia/metabolismo , Neurônios/patologia , Ratos , Ratos Wistar , Receptores CXCR5/genética , Receptores CXCR5/fisiologia , Acidente Vascular Cerebral/patologia
10.
Brain Tumor Pathol ; 32(1): 41-8, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25433721

RESUMO

Chemokines are peptides that function as chemoattractant cytokines in cell activation, differentiation and trafficking. Endothelin B receptor (ETBR) is a receptor for endothelin, which is known to function as a vasoconstrictor. In the present study, to clarify the immune escape mechanism of primary central nervous system lymphomas (PCNSLs), the expression of ETBR and of subsets of chemokines (CXCL12, 13) in 24 PCNSLs was investigated. CXCL12 was expressed by lymphoma cells in different resident brain cell populations in 22/24 cases. CXCL13 expression was identified in tumor cells in 19/24 cases, but was only expressed by tumor cells and by proliferating vascular endothelial cells. In addition, tumor-infiltrated lymphocytes (TILs) accumulated in areas with expression of chemokines, particularly of CXCL13. ETBR expression was detected in 12/24 cases. Positive ETBR cases were associated with a paucity of TILs, particularly of cytotoxic T cells, whereas negative ETBR cases were associated with an abundance of TILs. The combined data indicate that CXCL12 and CXCL13 up-regulation may be differently linked to the development of PCNSLs and to the accumulation of TILs. In addition, ETBR expression by lymphoma and endothelial cells may mediate trafficking of TILs, which may explain the immune escape processes of PCNSLs.


Assuntos
Neoplasias do Sistema Nervoso Central/genética , Neoplasias do Sistema Nervoso Central/imunologia , Quimiocina CXCL12/fisiologia , Quimiocina CXCL13/fisiologia , Linfoma/genética , Linfoma/imunologia , Receptor de Endotelina B/fisiologia , Evasão Tumoral/genética , Microambiente Tumoral/genética , Idoso , Idoso de 80 Anos ou mais , Neoplasias do Sistema Nervoso Central/irrigação sanguínea , Neoplasias do Sistema Nervoso Central/patologia , Quimiocina CXCL12/genética , Quimiocina CXCL13/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Linfoma/patologia , Masculino , Pessoa de Meia-Idade , Receptor de Endotelina B/genética , Regulação para Cima
11.
J Leukoc Biol ; 94(5): 1079-89, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23904442

RESUMO

SS is an autoimmune disease. pSS affects exocrine glands predominantly, whereas sSS occurs with other autoimmune connective tissue disorders. Currently, care for patients with SS is palliative, as no established therapeutics target the disease directly, and its pathogenetic mechanisms remain uncertain. B-cell abnormalities have been identified in SS. CXCL13 directs B-cell chemotaxis and is elevated in several autoimmune diseases. In this study, we tested the hypothesis that CXCL13 is elevated in SS in mice and humans and that neutralization of the chemokine ameliorates disease in a murine model. We assayed CXCL13 in mouse models and human subjects with SS to determine whether CXCL13 is elevated both locally and systemically during SS progression and whether CXCL13 may play a role in and be a biomarker for the disease. Cxcl13 expression in salivary tissue increases with disease progression, and its blockade resulted in a modest reduction in glandular inflammation in an SS model. We demonstrate that in humans CXCL13 is elevated in serum and saliva, and an elevated salivary CXCL13 level distinguishes patients with xerostomia. These data suggest a role for CXCL13 as a valuable biomarker in SS, as 74% of patients with SS displayed elevated CXCL13 in sera, saliva, or both. Thus, CXCL13 may be pathogenically involved in SS and may serve as a new marker and a potential therapeutic target.


Assuntos
Quimiocina CXCL13/fisiologia , Síndrome de Sjogren/imunologia , Animais , Quimiocina CXCL13/análise , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Receptores CXCR5/análise , Glândulas Salivares/química , Síndrome de Sjogren/etiologia , Xerostomia/imunologia
12.
PLoS One ; 7(11): e47487, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23189125

RESUMO

BACKGROUND: Regulation of immune responses is critical for controlling inflammation and disruption of this process can lead to tissue damage. We reported that CXCL13 was induced in fallopian tube tissue following C. trachomatis infection. Here, we examined the influence of the CXCL13-CXCR5 axis in chlamydial genital infection. METHODOLOGY AND PRINCIPAL FINDINGS: Disruption of the CXCL13-CXCR5 axis by injecting anti-CXCL13 Ab to BALB/c mice or using Cxcr5-/- mice increased chronic inflammation in the upper genital tract (UGT; uterine horns and oviducts) after Chlamydia muridarum genital infection (GT). Further studies in Cxcr5-/- mice showed an elevation in bacterial burden in the GT and increased numbers of neutrophils, activated DCs and activated NKT cells early after infection. After resolution, we noted increased fibrosis and the accumulation of a variety of T cells subsets (CD4-IFNγ, CD4-IL-17, CD4-IL-10 & CD8-TNFα) in the oviducts. NKT cell depletion in vitro reduced IL-17α and various cytokines and chemokines, suggesting that activated NKT cells modulate neutrophils and DCs through cytokine/chemokine secretion. Further, chlamydial glycolipids directly activated two distinct types of NKT cell hybridomas in a cell-free CD1d presentation assay and genital infection of Cd1d-/- mice showed reduced oviduct inflammation compared to WT mice. CXCR5 involvement in pathology was also noted using single-nucleotide polymorphism analysis in C. trachomatis infected women attending a sub-fertility clinic. Women who developed tubal pathology after a C. trachomatis infection had a decrease in the frequency of CXCR5 SNP +10950 T>C (rs3922). CONCLUSIONS/SIGNIFICANCE: These experiments indicate that disruption of the CXCL13-CXCR5 axis permits increased activation of NKT cells by type I and type II glycolipids of Chlamydia muridarum and results in UGT pathology potentially through increased numbers of neutrophils and T cell subsets associated with UGT pathology. In addition, CXCR5 appears to contribute to inter-individual differences in human tubal pathology following C. trachomatis infection.


Assuntos
Quimiocina CXCL13/fisiologia , Infecções por Chlamydia/imunologia , Infecções por Chlamydia/patologia , Chlamydia muridarum/imunologia , Células T Matadoras Naturais/imunologia , Receptores CXCR5/fisiologia , Infecções do Sistema Genital/imunologia , Infecções do Sistema Genital/patologia , Animais , Antígenos CD1d/genética , Antígenos CD1d/imunologia , Quimiocina CXCL13/metabolismo , Infecções por Chlamydia/genética , Estudos de Coortes , Citocinas/biossíntese , Modelos Animais de Doenças , Feminino , Humanos , Ativação Linfocitária/imunologia , Camundongos , Células T Matadoras Naturais/metabolismo , Polimorfismo de Nucleotídeo Único , Receptores CXCR5/genética , Receptores CXCR5/metabolismo , Infecções do Sistema Genital/genética , Infecções Sexualmente Transmissíveis/genética , Infecções Sexualmente Transmissíveis/imunologia , Infecções Sexualmente Transmissíveis/patologia , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Subpopulações de Linfócitos T/patologia , População Branca
13.
Am J Transplant ; 12(6): 1610-7, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22335599

RESUMO

Posttransplant lymphoproliferative disease (PTLD) is a severe complication of immunosuppressive treatment in organ-grafted children. Early diagnosis of PTLD is hampered by both unspecific clinical symptoms and lack of easy accessible markers. The homeostatic chemokine CXCL13, which plays a crucial role in B-cell homing and lymphoid organ development, is expressed in some lymphomatous diseases. This study aims to investigate whether serum CXCL13 (sCXCL13) levels correlate with occurrence and regression of PTLD in pediatric solid-organ graft recipients. Serum samples from PTLD patients (n = 21), patients with Epstein-Barr virus (EBV) reactivation (n = 18), and healthy age-matched controls (n = 19) were tested for CXCL13 using a commercially available ELISA kit. sCXCL13 levels were significantly higher in PTLD patients than in healthy children. PTLD patients had also higher sCXCL13 values than pediatric solid-organ recipients with EBV reactivation. An increase in sCXCL13 levels was observed from EBV reactivation to PTLD diagnosis in most cases. Elevated sCXCL13 levels were detected up to 2 years prior to PTLD diagnosis and correlated well with response to cytoreductive treatment in individual patients. sCXCL13, thus, may be a readily available surrogate marker for the diagnosis of PTLD and for monitoring of response to treatment in patients with initially elevated sCXCL13 levels.


Assuntos
Quimiocina CXCL13/fisiologia , Transtornos Linfoproliferativos/diagnóstico , Adolescente , Sequência de Bases , Criança , Pré-Escolar , Primers do DNA , Ensaio de Imunoadsorção Enzimática , Feminino , Humanos , Transtornos Linfoproliferativos/fisiopatologia , Masculino , Monitorização Fisiológica
14.
J Immunol ; 185(3): 1460-5, 2010 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-20574003

RESUMO

Lymphocytes that invade nonlymphoid tissues often organize into follicle-like structures known as tertiary lymphoid organs (TLOs). These structures resemble those found in spleen or lymph nodes, but their function is unknown. TLOs are recognized in many autoimmune diseases, including the NOD mouse model of type 1 diabetes. In some cases, TLOs have been associated with the B lymphocyte chemoattractant, CXCL13. Studies presented in this article show that CXCL13 is present in inflamed islets of NOD mice. Ab blockade of this chemokine unraveled B lymphocyte organization in islet TLOs, without reducing their proportion in the islets. These chaotic milieus contained B lymphocytes with the same distinct repertoire of B cell receptors as those found in mice with well-organized structures. Somatic hypermutation, associated with T-B interactions, was not impaired in these disorganized insulitis lesions. Finally, loss of B lymphocyte organization in islets did not provide disease protection. Thus, B lymphocytes infiltrating islets in NOD mice do not require the morphology of secondary lymphoid tissues to support their role in disease.


Assuntos
Subpopulações de Linfócitos B/imunologia , Subpopulações de Linfócitos B/patologia , Quimiocina CXCL13/antagonistas & inibidores , Quimiocina CXCL13/fisiologia , Diabetes Mellitus Tipo 1/imunologia , Tecido Linfoide/imunologia , Tecido Linfoide/patologia , Receptores de Antígenos de Linfócitos B/fisiologia , Animais , Subpopulações de Linfócitos B/metabolismo , Quimiocina CXCL13/genética , Diabetes Mellitus Tipo 1/patologia , Diabetes Mellitus Tipo 1/prevenção & controle , Progressão da Doença , Feminino , Mediadores da Inflamação/antagonistas & inibidores , Mediadores da Inflamação/metabolismo , Ilhotas Pancreáticas/imunologia , Ilhotas Pancreáticas/metabolismo , Ilhotas Pancreáticas/patologia , Tecido Linfoide/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Técnicas de Cultura de Órgãos , Pâncreas/imunologia , Pâncreas/metabolismo , Pâncreas/patologia , Receptores CXCR5/metabolismo
15.
J Immunol ; 179(5): 2880-8, 2007 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-17709502

RESUMO

Interacting with T cells, cytokine-producing B cells play a critical protective role in autoimmune diseases. However, the interaction between malignant B and T cells remains to be fully elucidated. In a previous study, we have reported that ligation of CCL19-CCR7 and CXCL13-CXCR5 activates paternally expressed gene 10 (PEG10), resulting in an enhancement of apoptotic resistance in B-cell acute lymphocytic leukemia (B-ALL) CD23+CD5+ B cells. Here, we report that B-ALL CD23+CD5+ B cells produce IL-10 at high level, which can be further elevated by costimulation with CCL19 and CXCL13. CCL19/CXCL13-activated B-ALL CD23+CD5+ B cells, in turn, increase IL-10 expression in syngeneic CD8+ T cells in a B cell-derived IL-10-dependent manner and requiring a cell-cell contact. IL-10 secreted from B-ALL CD23+CD5+ B cells in vitro impairs tumor-specific CTL responses of syngeneic CD8+ T cells. The impairment of cytotoxicity of syngeneic CD8+ T cells is escalated by means of CCL19/CXCL13-induced up-regulation of IL-10 from B-ALL CD23+CD5+ B cells. Moreover, using a short hairpin RNA to knockdown PEG10, we provide direct evidence that increased expression of PEG10 in B-ALL CD23+CD5+ B cells is involved in malignant B-T cell interaction, contributing to the up-regulation of IL-10 expression, as well as to the impairment of cytotoxicity of syngeneic CD8+ T cells. Thus, malignant B-ALL CD23+CD5+ B cells play an immunoregulatory role in controlling different inflammatory cytokine expressions. IL-10 may be one of the critical cellular factors conferring B-ALL CD23+CD5+ B cells to escape from host immune surveillance.


Assuntos
Linfócitos B/imunologia , Linfoma de Burkitt/imunologia , Linfócitos T CD8-Positivos/imunologia , Quimiocina CCL19/fisiologia , Quimiocina CXCL13/fisiologia , Vigilância Imunológica/imunologia , Adolescente , Adulto , Proteínas Reguladoras de Apoptose , Linfócitos B/efeitos dos fármacos , Antígenos CD5/análise , Linfócitos T CD8-Positivos/efeitos dos fármacos , Quimiocina CCL19/farmacologia , Quimiocina CXCL13/farmacologia , Criança , Pré-Escolar , Citotoxicidade Imunológica , Proteínas de Ligação a DNA , Feminino , Humanos , Interleucina-10/metabolismo , Masculino , Pessoa de Meia-Idade , Proteínas/antagonistas & inibidores , Proteínas/genética , Proteínas/metabolismo , RNA Interferente Pequeno/farmacologia , Proteínas de Ligação a RNA , Receptores de IgE/análise , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA