Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.124
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Cells ; 13(7)2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38607047

RESUMO

Cohesin is a highly conserved ring-shaped complex involved in topologically embracing chromatids, gene expression regulation, genome compartmentalization, and genome stability maintenance. Genomic analyses have detected mutations in the cohesin complex in a wide array of human tumors. These findings have led to increased interest in cohesin as a potential target in cancer therapy. Synthetic lethality has been suggested as an approach to exploit genetic differences in cancer cells to influence their selective killing. In this study, we show that mutations in ESCO1, NIPBL, PDS5B, RAD21, SMC1A, SMC3, STAG2, and WAPL genes are synthetically lethal with stimulation of WNT signaling obtained following LY2090314 treatment, a GSK3 inhibitor, in several cancer cell lines. Moreover, treatment led to the stabilization of ß-catenin and affected the expression of c-MYC, probably due to the occupancy decrease in cohesin at the c-MYC promoter. Finally, LY2090314 caused gene expression dysregulation mainly involving pathways related to transcription regulation, cell proliferation, and chromatin remodeling. For the first time, our work provides the underlying molecular basis for synthetic lethality due to cohesin mutations and suggests that targeting the WNT may be a promising therapeutic approach for tumors carrying mutated cohesin.


Assuntos
Coesinas , Compostos Heterocíclicos com 3 Anéis , Maleimidas , Neoplasias , Humanos , Mutações Sintéticas Letais/genética , Via de Sinalização Wnt/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Quinase 3 da Glicogênio Sintase/metabolismo , Neoplasias/genética , Neoplasias/patologia , Proteínas de Ligação a DNA/metabolismo , Fatores de Transcrição/genética
2.
Chem Biol Drug Des ; 103(3): e14459, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38538058

RESUMO

Diosgenin, a natural steroidal sapogenin, has recently attracted a high amount of attention, as an effective anticancer agent in ovarian cancer. However, diosgenin mediated anticancer impacts are still not completely understood. Thus, the present study evaluated the effect of diosgenin on the proliferation, apoptosis, and metastasis of ovarian cancer cells. OVCAR-3 and SKOV-3 cells were treated with diosgenin, cellular viability was assessed by MTT assay and apoptosis was measured by ELISA and evaluated the protein expression levels of apoptotic markers through western blotting. Cell migration was examined by measuring the mRNA levels of genes involved in the cell invasion. The protein expression levels of main components of PI3K signaling were evaluated via western blotting. Diosgenin led to significant inhibition of cellular proliferation in a dose-dependent manner. It also induced apoptosis through upregulating pro-apoptotic markers and downregulating antiapoptotic mediators. In addition, OVCAR-3 cells exposure to diosgenin decreased cell migration and invasion. More importantly, diosgenin downregulated the expression levels of main proteins in PI3K signaling including PI3K, Akt, mTOR, and GSK3. Diosgenin inhibited the proliferation and migration of OVCAR-3 ovarian cancer cells and induced apoptosis, which may be mediated by targeting PI3K signaling.


Assuntos
Diosgenina , Neoplasias Ovarianas , PTEN Fosfo-Hidrolase , Feminino , Humanos , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células/efeitos dos fármacos , Diosgenina/farmacologia , Quinase 3 da Glicogênio Sintase/genética , Quinase 3 da Glicogênio Sintase/metabolismo , Quinase 3 da Glicogênio Sintase/farmacologia , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , PTEN Fosfo-Hidrolase/efeitos dos fármacos , PTEN Fosfo-Hidrolase/metabolismo , Regulação para Cima
3.
Redox Biol ; 71: 103117, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38479223

RESUMO

Accumulation of reactive oxygen species (i.e., oxidative stress) is a leading cause of beta cell dysfunction and apoptosis in diabetes. NRF2 (NF-E2 p45-related factor-2) regulates the adaptation to oxidative stress, and its activity is negatively regulated by the redox-sensitive CUL3 (cullin-3) ubiquitin ligase substrate adaptor KEAP1 (Kelch-like ECH-associated protein-1). Additionally, NRF2 is repressed by the insulin-regulated Glycogen Synthase Kinase-3 (GSK3). We have demonstrated that phosphorylation of NRF2 by GSK3 enhances ß-TrCP (beta-transducin repeat-containing protein) binding and ubiquitylation by CUL1 (cullin-1), resulting in increased proteasomal degradation of NRF2. Thus, we hypothesise that inhibition of GSK3 activity or ß-TrCP binding upregulates NRF2 and so protects beta cells against oxidative stress. We have found that treating the pancreatic beta cell line INS-1 832/13 with the KEAP1 inhibitor TBE31 significantly enhanced NRF2 protein levels. The presence of the GSK3 inhibitor CT99021 or the ß-TrCP-NRF2 protein-protein interaction inhibitor PHAR, along with TBE31, resulted in prolonged NRF2 stability and enhanced nuclear localisation (P < 0.05). TBE31-mediated induction of NRF2-target genes encoding NAD(P)H quinone oxidoreductase 1 (Nqo1), glutamate-cysteine ligase modifier (Gclm) subunit and heme oxygenase (Hmox1) was significantly enhanced by the presence of CT99021 or PHAR (P < 0.05) in both INS-1 832/13 and in isolated mouse islets. Identical results were obtained using structurally distinct GSK3 inhibitors and inhibition of KEAP1 with sulforaphane. In summary, we demonstrate that GSK3 and ß-TrCP/CUL1 regulate the proteasomal degradation of NRF2, enhancing the impact of KEAP1 regulation, and so contributes to the redox status of pancreatic beta cells. Inhibition of GSK3, or ß-TrCP/CUL1 binding to NRF2 may represent a strategy to protect beta cells from oxidative stress.


Assuntos
Quinase 3 da Glicogênio Sintase , Células Secretoras de Insulina , Animais , Camundongos , Proteínas Contendo Repetições de beta-Transducina/genética , Proteínas Contendo Repetições de beta-Transducina/metabolismo , Proteínas Culina/metabolismo , Quinase 3 da Glicogênio Sintase/metabolismo , Células Secretoras de Insulina/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Estabilidade Proteica , Transcrição Gênica
4.
Cancer Sci ; 115(4): 1333-1345, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38320747

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal malignancies worldwide. However, drug discovery for PDAC treatment has proven complicated, leading to stagnant therapeutic outcomes. Here, we identify Glycogen synthase kinase 3 (GSK3) as a therapeutic target through a whole-body genetic screening utilizing a '4-hit' Drosophila model mimicking the PDAC genotype. Reducing the gene dosage of GSK3 in a whole-body manner or knocking down GSK3 specifically in transformed cells suppressed 4-hit fly lethality, similar to Mitogen-activated protein kinase kinase (MEK), the therapeutic target in PDAC we have recently reported. Consistently, a combination of the GSK3 inhibitor CHIR99021 and the MEK inhibitor trametinib suppressed the phosphorylation of Polo-like kinase 1 (PLK1) as well as the growth of orthotopic human PDAC xenografts in mice. Additionally, reducing PLK1 genetically in 4-hit flies rescued their lethality. Our results reveal a therapeutic vulnerability in PDAC that offers a treatment opportunity for patients by inhibiting multiple targets.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Camundongos , Animais , Quinases de Proteína Quinase Ativadas por Mitógeno , Quinase 3 da Glicogênio Sintase/metabolismo , Transdução de Sinais , Linhagem Celular Tumoral , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo
5.
Mol Hum Reprod ; 30(3)2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38341666

RESUMO

To become fertile, mammalian sperm are required to undergo capacitation in the female tract or in vitro in defined media containing ions (e.g. HCO3 -, Ca2+, Na+, and Cl-), energy sources (e.g. glucose, pyruvate) and serum albumin (e.g. bovine serum albumin (BSA)). These different molecules initiate sequential and concomitant signaling pathways, leading to capacitation. Physiologically, capacitation induces changes in the sperm motility pattern (e.g. hyperactivation) and prepares sperm for the acrosomal reaction (AR), two events required for fertilization. Molecularly, HCO3 - activates the atypical adenylyl cyclase Adcy10 (aka sAC), increasing cAMP and downstream cAMP-dependent pathways. BSA, on the other hand, induces sperm cholesterol release as well as other signaling pathways. How these signaling events, occurring in different sperm compartments and with different kinetics, coordinate among themselves is not well established. Regarding the AR, recent work has proposed a role for glycogen synthase kinases (GSK3α and GSK3ß). GSK3α and GSK3ß are inactivated by phosphorylation of residues Ser21 and Ser9, respectively, in their N-terminal domain. Here, we present evidence that GSK3α (but not GSK3ß) is present in the anterior head and that it is regulated during capacitation. Interestingly, BSA and HCO3 - regulate GSK3α in opposite directions. While BSA induces a fast GSK3α Ser21 phosphorylation, HCO3 - and cAMP-dependent pathways dephosphorylate this residue. We also show that the HCO3--induced Ser21 dephosphorylation is mediated by hyperpolarization of the sperm plasma membrane potential (Em) and by intracellular pH alkalinization. Previous reports indicate that GSK3 kinases mediate the progesterone-induced AR. Here, we show that GSK3 inhibition also blocks the Ca2+ ionophore ionomycin-induced AR, suggesting a role for GSK3 kinases downstream of the increase in intracellular Ca2+ needed for this exocytotic event. Altogether, our data indicate a temporal and biphasic GSK3α regulation with opposite actions of BSA and HCO3 -. Our results also suggest that this regulation is needed to orchestrate the AR during sperm capacitation.


Assuntos
Quinase 3 da Glicogênio Sintase , Soroalbumina Bovina , Capacitação Espermática , Animais , Feminino , Masculino , Camundongos , Cálcio/metabolismo , AMP Cíclico/metabolismo , Quinase 3 da Glicogênio Sintase/genética , Quinase 3 da Glicogênio Sintase/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Mamíferos , Fosforilação , Sêmen/metabolismo , Soroalbumina Bovina/farmacologia , Soroalbumina Bovina/metabolismo , Motilidade dos Espermatozoides , Espermatozoides/metabolismo
6.
Chemosphere ; 352: 141375, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38325618

RESUMO

We previously reported the neurotoxic effects of arsenic in the hippocampus. Here, we explored the involvement of Wnt pathway, which contributes to neuronal functions. Administering environmentally relevant arsenic concentrations to postnatal day-60 (PND60) mice demonstrated a dose-dependent increase in hippocampal Wnt3a and its components, Frizzled, phospho-LRP6, Dishevelled and Axin1 at PND90 and PND120. However, p-GSK3-ß(Ser9) and ß-catenin levels although elevated at PND90, decreased at PND120. Additionally, treatment with Wnt-inhibitor, rDkk1, reduced p-GSK3-ß(Ser9) and ß-catenin at PND90, but failed to affect their levels at PND120, indicating a time-dependent link with Wnt. To explore other underlying factors, we assessed epidermal growth factor receptor (EGFR) pathway, which interacts with GSK3-ß and appears relevant to neuronal functions. We primarily found that arsenic reduced hippocampal phosphorylated-EGFR and its ligand, Heparin-binding EGF-like growth factor (HB-EGF), at both PND90 and PND120. Moreover, treatment with HB-EGF rescued p-GSK3-ß(Ser9) and ß-catenin levels at PND120, suggesting their HB-EGF/EGFR-dependent regulation at this time point. Additionally, rDkk1, LiCl (GSK3-ß-activity inhibitor), or ß-catenin protein treatments induced a time-dependent recovery in HB-EGF, indicating potential inter-dependent mechanism between hippocampal Wnt/ß-catenin and HB-EGF/EGFR following arsenic exposure. Fluorescence immunolabeling then validated these findings in hippocampal neurons. Further exploration of hippocampal neuronal survival and apoptosis demonstrated that treatment with rDkk1, LiCl, ß-catenin and HB-EGF improved Nissl staining and NeuN levels, and reduced cleaved-caspase-3 levels in arsenic-treated mice. Supportively, we detected improved Y-Maze and Passive Avoidance performances for learning-memory functions in these mice. Overall, our study provides novel insights into Wnt/ß-catenin and HB-EGF/EGFR pathway interaction in arsenic-induced hippocampal neurotoxicity.


Assuntos
Arsênio , Camundongos , Animais , Arsênio/toxicidade , Fator de Crescimento Semelhante a EGF de Ligação à Heparina/metabolismo , Quinase 3 da Glicogênio Sintase/metabolismo , beta Catenina/metabolismo , Receptores ErbB/metabolismo , Via de Sinalização Wnt , Hipocampo/metabolismo
7.
Acta Neuropathol ; 147(1): 41, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38363426

RESUMO

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease which currently lacks effective treatments. Mutations in the RNA-binding protein FUS are a common cause of familial ALS, accounting for around 4% of the cases. Understanding the mechanisms by which mutant FUS becomes toxic to neurons can provide insight into the pathogenesis of both familial and sporadic ALS. We have previously observed that overexpression of wild-type or ALS-mutant FUS in Drosophila motor neurons is toxic, which allowed us to screen for novel genetic modifiers of the disease. Using a genome-wide screening approach, we identified Protein Phosphatase 2A (PP2A) and Glycogen Synthase Kinase 3 (GSK3) as novel modifiers of FUS-ALS. Loss of function or pharmacological inhibition of either protein rescued FUS-associated lethality in Drosophila. Consistent with a conserved role in disease pathogenesis, pharmacological inhibition of both proteins rescued disease-relevant phenotypes, including mitochondrial trafficking defects and neuromuscular junction failure, in patient iPSC-derived spinal motor neurons (iPSC-sMNs). In FUS-ALS flies, mice, and human iPSC-sMNs, we observed reduced GSK3 inhibitory phosphorylation, suggesting that FUS dysfunction results in GSK3 hyperactivity. Furthermore, we found that PP2A acts upstream of GSK3, affecting its inhibitory phosphorylation. GSK3 has previously been linked to kinesin-1 hyperphosphorylation. We observed this in both flies and iPSC-sMNs, and we rescued this hyperphosphorylation by inhibiting GSK3 or PP2A. Moreover, increasing the level of kinesin-1 expression in our Drosophila model strongly rescued toxicity, confirming the relevance of kinesin-1 hyperphosphorylation. Our data provide in vivo evidence that PP2A and GSK3 are disease modifiers, and reveal an unexplored mechanistic link between PP2A, GSK3, and kinesin-1, that may be central to the pathogenesis of FUS-ALS and sporadic forms of the disease.


Assuntos
Esclerose Lateral Amiotrófica , Doenças Neurodegenerativas , Animais , Humanos , Camundongos , Esclerose Lateral Amiotrófica/patologia , Quinase 3 da Glicogênio Sintase/genética , Quinase 3 da Glicogênio Sintase/metabolismo , Proteína Fosfatase 2/genética , Proteína Fosfatase 2/metabolismo , Proteína FUS de Ligação a RNA/genética , Proteína FUS de Ligação a RNA/metabolismo , Doenças Neurodegenerativas/patologia , Cinesinas/genética , Cinesinas/metabolismo , Neurônios Motores/metabolismo , Drosophila/genética , Drosophila/metabolismo , Mutação/genética
8.
Pathol Res Pract ; 254: 155148, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38277753

RESUMO

Adenoid cystic carcinoma (ACC) is one of the most common malignant salivary gland tumors. ACC is composed of myoepithelial and epithelial neoplastic cells which grow slowly and have a tendency for neural invasion. The long term prognosis is still relatively poor. Although several gene abnormalities, such as fusions involving MYB or MYBL1 oncogenes and the transcription factor gene NFIB, and overexpression of KIT have been reported in ACC, their precise functions in the pathogenesis of ACC remain unclear. We recently demonstrated that the elevated expression of Semaphorin 3A (SEMA3A), specifically expressed in myoepithelial neoplastic cells, might function as a novel oncogene-related molecule to enhance cell proliferation through activated AKT signaling in 9/10 (90%) ACC cases. In the current study, the patient with ACC whose tumor was negative for SEMA3A in the previous study, revisited our hospital with late metastasis of ACC to the cervical lymph node eight years after surgical resection of the primary tumor. We characterized this recurrent ACC, and compared it with the primary ACC using immunohistochemical methods. In the recurrent ACC, the duct lining epithelial cells, not myoepithelial neoplastic cells, showed an elevated Ki-67 index and increased cell membrane expression of C-kit, along with the expression of phosphorylated ERK. Late metastasis ACC specimens were not positive for ß-catenin and lymphocyte enhancer binding factor 1 (LEF1), which were detected in the nuclei of perineural infiltrating cells in primary ACC cells. In addition, experiments with the GSK-3 inhibitor revealed that ß-catenin pathway suppressed not only KIT expression but also proliferation of ACC cells. Moreover, stem cell factor (SCF; also known as KIT ligand, KITL) induced ERK activation in ACC cells. These results suggest that inactivation of Wnt/ß-catenin signaling may promote C-kit-ERK signaling and cell proliferation of in metastatic ACC.


Assuntos
Carcinoma Adenoide Cístico , Neoplasias das Glândulas Salivares , Humanos , Carcinoma Adenoide Cístico/patologia , beta Catenina/metabolismo , Cateninas/metabolismo , Quinase 3 da Glicogênio Sintase/metabolismo , Semaforina-3A , Recidiva Local de Neoplasia , Neoplasias das Glândulas Salivares/patologia , Via de Sinalização Wnt , Proteínas Proto-Oncogênicas c-kit/metabolismo
9.
Glia ; 72(4): 708-727, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38180226

RESUMO

Radial glia (RG) cells generate neurons and glial cells that make up the cerebral cortex. Both in rodents and humans, these stem cells remain for a specific time after birth, named late radial glia (lRG). The knowledge of lRG and molecules that may be involved in their differentiation is based on very limited data. We analyzed whether ascorbic acid (AA) and its transporter SVCT2, are involved in lRG cells differentiation. We demonstrated that lRG cells are highly present between the first and fourth postnatal days. Anatomical characterization of lRG cells, revealed that lRG cells maintained their bipolar morphology and stem-like character. When lRG cells were labeled with adenovirus-eGFP at 1 postnatal day, we detected that some cells display an obvious migratory neuronal phenotype, suggesting that lRG cells continue generating neurons postnatally. Moreover, we demonstrated that SVCT2 was apically polarized in lRG cells. In vitro studies using the transgenic mice SVCT2+/- and SVCT2tg (SVCT2-overexpressing mouse), showed that decreased SVCT2 levels led to accelerated differentiation into astrocytes, whereas both AA treatment and elevated SVCT2 expression maintain the lRG cells in an undifferentiated state. In vivo overexpression of SVCT2 in lRG cells generated cells with a rounded morphology that were migratory and positive for proliferation and neuronal markers. We also examined mediators that can be involved in AA/SVCT2-modulated signaling pathways, determining that GSK3-ß through AKT, mTORC2, and PDK1 is active in brains with high levels of SVCT2/AA. Our data provide new insights into the role of AA and SVCT2 in late RG cells.


Assuntos
Ácido Ascórbico , Transportadores de Sódio Acoplados à Vitamina C , Animais , Humanos , Camundongos , Ácido Ascórbico/farmacologia , Células Ependimogliais/metabolismo , Quinase 3 da Glicogênio Sintase/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Camundongos Transgênicos , Neurônios/metabolismo , Transportadores de Sódio Acoplados à Vitamina C/genética
10.
Biomed Pharmacother ; 171: 116166, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38244329

RESUMO

Osteoporosis is a systemic disease characterized by an imbalance in bone homeostasis, where osteoblasts fail to fully compensate for the bone resorption induced by osteoclasts. Corylifol A, a flavonoid extracted from Fructus psoraleae, has been identified as a potential treatment for this condition. Predictions from network pharmacology and molecular docking studies suggest that Corylifol A exhibits strong binding affinity with NFATc1, Nrf2, PI3K, and AKT1. Empirical evidence from in vivo experiments indicates that Corylifol A significantly mitigates systemic bone loss induced by ovariectomy by suppressing both the generation and activation of osteoclasts. In vitro studies further showed that Corylifol A inhibited the activation of PI3K-AKT and MAPK pathways and calcium channels induced by RANKL in a time gradient manner, and specifically inhibited the phosphorylation of PI3K, AKT, GSK3 ß, ERK, CaMKII, CaMKIV, and Calmodulin. It also diminishes ROS production through Nrf2 activation, leading to a decrease in the expression of key regulators such as NFATcl, C-Fos, Acp5, Mmp9, and CTSK that are involved in osteoclastogenesis. Notably, our RNA-seq analysis suggests that Corylifol A primarily impacts mitochondrial energy metabolism by suppressing oxidative phosphorylation. Collectively, these findings demonstrate that Corylifol A is a novel inhibitor of osteoclastogenesis, offering potential therapeutic applications for diseases associated with excessive bone resorption.


Assuntos
Reabsorção Óssea , Flavonas , Osteogênese , Feminino , Humanos , Animais , Camundongos , Espécies Reativas de Oxigênio/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Quinase 3 da Glicogênio Sintase/metabolismo , Simulação de Acoplamento Molecular , Fator 2 Relacionado a NF-E2/metabolismo , NF-kappa B/metabolismo , Osteoclastos/metabolismo , Reabsorção Óssea/metabolismo , Ovariectomia , Ligante RANK/metabolismo , Fatores de Transcrição NFATC/metabolismo , Camundongos Endogâmicos C57BL , Diferenciação Celular
11.
Biofactors ; 50(2): 294-310, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37658685

RESUMO

Breast cancer is a frequently diagnosed cancer and the leading cause of death among women worldwide. Tumor-associated macrophages stimulate cytokines and chemokines, which induce angiogenesis, metastasis, proliferation, and tumor-infiltrating immune cells. Although interleukin-32 (IL-32) has been implicated in the development and modulation of several cancers, its function in breast cancer remains elusive. Mutation of interleukin-32θ (IL-32θ) in the tissues of patients with breast cancer was detected by Sanger sequencing. RT-qPCR was used to detect the mRNA levels of inflammatory cytokines, chemokines, and mediators. The secreted proteins were detected using respective enzyme-linked immunosorbent assays. Evaluation of the inhibitory effect of mutant IL-32θ on proliferation, migration, epithelial-mesenchymal transition (EMT), and cell cycle arrest in breast cancer cells was conducted using MTS assays, migration assays, and Western blotting. A point mutation (281C>T, Ala94Val) was detected in IL-32θ in both breast tumors and adjacent normal tissues, which suppressed the expression of pro-inflammatory factors, EMT factors, and cell cycle related factors. Mutated IL-32θ inhibited the expression of inflammatory factors by regulating the NF-κB pathway. Furthermore, mutated IL-32θ suppressed EMT markers and cell cycle related factors through the FAK/PI3K/AKT pathway. It was inferred that mutated IL-32θ modulates breast cancer progression. Mutated IL-32θ (A94V) inhibited inflammation, EMT, and proliferation in breast cancer by regulating the NF-κB (p65/p50) and FAK-PI3K-GSK3 pathways.


Assuntos
Neoplasias da Mama , Interleucinas , Neoplasias de Mama Triplo Negativas , Feminino , Humanos , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Quimiocinas , Transição Epitelial-Mesenquimal/genética , Quinase 3 da Glicogênio Sintase/metabolismo , Interleucinas/genética , Interleucinas/metabolismo , NF-kappa B/genética , NF-kappa B/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia
12.
Prostaglandins Other Lipid Mediat ; 170: 106791, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37918555

RESUMO

Alzheimer's disease (AD) hallmarks include amyloid-ßeta (Aß) and tau proteins aggregates, neurite degeneration, microglial activation with cognitive impairment. Phosphatidylinositol-3-kinase/protein kinase B/Glycogen synthase kinase-3-beta (PI3K/AKT/GSK-3) pathway is essential for neuroprotection, cell survival and proliferation by blocking apoptosis. This study aimed to assess protective role of nanocurcumin (NCMN) as strong antioxidant and anti-inflammatory agent with elucidating its synergistic effects with Donepezil as acetylcholinesterase inhibitor on AD in rats via modulating PI3K/AKT/GSK-3ß pathway. The experiment was performed on 70 male Wistar albino rats divided into seven groups (control, NCMN, Donepezil, AD-model, Donepezil co-treatment, NCMN only co-treatment, and NCMN+Donepezil combined treatment). Behavioral and biochemical investigations as cholinesterase activity, oxidative stress (malondialdehyde, reduced glutathione, nitric oxide, superoxidedismutase, and catalase), tumor necrosis factor-alpha, Tau, ß-site amyloid precursor protein cleaving enzyme-1 (BACE-1), Phosphatase and tensin homolog (Pten), mitogen-activated protein kinase-1 (MAPK-1), Glycogen synthase kinase-3-beta (GSK-3ß) and toll-like receptor-4 were evaluated. Treatment with NCMN improved memory, locomotion, neuronal differentiation by activating PI3K/AKT/GSK-3ß pathway. These results were confirmed by histological studies in hippocampus.


Assuntos
Doença de Alzheimer , Proteínas Proto-Oncogênicas c-akt , Ratos , Masculino , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Donepezila/farmacologia , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Quinase 3 da Glicogênio Sintase/metabolismo , Acetilcolinesterase/metabolismo , Peptídeos beta-Amiloides/metabolismo , Ratos Wistar , Fosforilação
13.
J Biol Chem ; 299(11): 105322, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37805137

RESUMO

The liver is critical in maintaining metabolic homeostasis, regulating both anabolic and catabolic processes. Scaffold protein IQ motif-containing GTPase activating protein 2 (IQGAP2) is highly expressed in the liver and implicated in fatty acid uptake. However, its role in coordinating either fed or fasted responses is not well understood. Here we report that IQGAP2 is widely expressed in the liver that is pronounced in the pericentral region. Although control and IQGAP2 knockout mouse model showed comparable hepatic gene expression in the fasted state, we found significant defects in fed state responses. Glycogen levels were reduced in the periportal region when IQGAP2 was deleted. Consistently, we observed a decrease in phosphorylated glycogen synthase kinase 3α and total glycogen synthase protein in the fed IQGAP2 knockout mice which suggest inadequate glycogen synthesis. Moreover, immunoprecipitation of IQGAP2 revealed its interaction with GSK3 and GYS. Furthermore, our study demonstrated that knocking down IQGAP2 in vitro significantly decreased the phosphorylation of AKT and forkhead box O3 proteins downstream of insulin signaling. These findings suggest that IQGAP2 contributes to liver fed state metabolism by interacting with glycogen synthesis regulators and affecting the phosphorylation of insulin pathway components. Our results suggest that IQGAP2 plays a role in regulating fed state metabolism.


Assuntos
Insulina , Glicogênio Hepático , Animais , Camundongos , Quinase 3 da Glicogênio Sintase/metabolismo , Insulina/metabolismo , Fígado/metabolismo , Glicogênio Hepático/metabolismo , Camundongos Knockout , Fosforilação , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais
14.
Int J Biol Macromol ; 253(Pt 7): 127375, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37839597

RESUMO

The intricate molecular pathways governing cancer development and progression have spurred intensive investigations into novel therapeutic targets. Glycogen Synthase Kinase-3 (GSK3), a complex serine/threonine kinase, has emerged as a key player with intricate roles in various cellular processes, including cell proliferation, differentiation, apoptosis, and metabolism. Harnessing GSK3 inhibitors as potential candidates for cancer therapy has garnered significant interest due to their ability to modulate key signalling pathways that drive oncogenesis. The review encompasses a thorough examination of the molecular mechanisms underlying GSK3's involvement in cancer progression, shedding light on its interaction with critical pathways such as Wnt/ß-catenin, PI3K/AKT, and NF-κB. Through these interactions, GSK3 exerts influence over tumour growth, invasion, angiogenesis, and metastasis, rendering it an attractive target for therapeutic intervention. The discussion includes preclinical and clinical studies, showcasing the inhibitors efficacy across a spectrum of cancer types, including pancreatic, ovarian, lung, and other malignancies. Insights from recent studies highlight the potential synergistic effects of combining GSK3 inhibitors with conventional chemotherapeutic agents or targeted therapies, opening avenues for innovative combinatorial approaches. This review provides a comprehensive overview of the current state of research surrounding GSK3 inhibitors as promising agents for cancer treatment.


Assuntos
Quinase 3 da Glicogênio Sintase , Neoplasias , Humanos , Quinase 3 da Glicogênio Sintase/metabolismo , Quinase 3 da Glicogênio Sintase/uso terapêutico , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , NF-kappa B/metabolismo
15.
Redox Biol ; 67: 102896, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37783059

RESUMO

Trastuzumab notably improves the outcome of human epidermal growth factor receptor 2 (HER2)-positive breast cancer patients, however, resistance to trastuzumab remains a major hurdle to clinical treatment. In the present study, we identify a circular RNA intimately linked to trastuzumab resistance. circ-ß-TrCP, derived from the back-splicing of ß-TrCP exon 7 and 13, confers trastuzumab resistance by regulating NRF2-mediated antioxidant pathway in a KEAP1-independent manner. Concretely, circ-ß-TrCP encodes a novel truncated 343-amino acid peptide located in the nucleus, referred as ß-TrCP-343aa, which competitively binds to NRF2, blocks SCFß-TrCP-mediated NRF2 proteasomal degradation, and this protective effect of ß-TrCP-343aa on NRF2 protein requires GSK3 activity. Subsequently, the elevated NRF2 transcriptionally upregulates a cohort of antioxidant genes, giving rise to trastuzumab resistance. Moreover, the translation ability of circ-ß-TrCP is inhibited by eIF3j under both basal and oxidative stress conditions, and eIF3j is transcriptionally repressed by NRF2, thus forming a positive feedback circuit between ß-TrCP-343aa and NRF2, expediting trastuzumab resistance. Collectively, our data demonstrate that circ-ß-TrCP-encoded ß-TrCP protein isoform drives HER2-targeted therapy resistance in a NRF2-dependent manner, which provides potential therapeutic targets for overcoming trastuzumab resistance.


Assuntos
Antioxidantes , Neoplasias da Mama , Humanos , Feminino , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Proteínas Contendo Repetições de beta-Transducina/genética , Proteínas Contendo Repetições de beta-Transducina/química , Proteínas Contendo Repetições de beta-Transducina/metabolismo , RNA Circular , Trastuzumab/farmacologia , Trastuzumab/uso terapêutico , Trastuzumab/metabolismo , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Fator 2 Relacionado a NF-E2/metabolismo , Quinase 3 da Glicogênio Sintase/metabolismo , Isoformas de Proteínas/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Linhagem Celular Tumoral
16.
Cell Death Dis ; 14(8): 500, 2023 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-37542079

RESUMO

In the adult mammalian brain, neural stem cells (NSCs) located in highly restricted niches sustain the generation of new neurons that integrate into existing circuits. A reduction in adult neurogenesis is linked to ageing and neurodegeneration, whereas dysregulation of proliferation and survival of NSCs have been hypothesized to be at the origin of glioma. Thus, unravelling the molecular underpinnings of the regulated activation that NSCs must undergo to proliferate and generate new progeny is of considerable relevance. Current research has identified cues promoting or restraining NSCs activation. Yet, whether NSCs depend on external signals to survive or if intrinsic factors establish a threshold for sustaining their viability remains elusive, even if this knowledge could involve potential for devising novel therapeutic strategies. Kidins220 (Kinase D-interacting substrate of 220 kDa) is an essential effector of crucial pathways for neuronal survival and differentiation. It is dramatically altered in cancer and in neurological and neurodegenerative disorders, emerging as a regulatory molecule with important functions in human disease. Herein, we discover severe neurogenic deficits and hippocampal-based spatial memory defects accompanied by increased neuroblast death and high loss of newly formed neurons in Kidins220 deficient mice. Mechanistically, we demonstrate that Kidins220-dependent activation of AKT in response to EGF restraints GSK3 activity preventing NSCs apoptosis. We also show that NSCs with Kidins220 can survive with lower concentrations of EGF than the ones lacking this molecule. Hence, Kidins220 levels set a molecular threshold for survival in response to mitogens, allowing adult NSCs growth and expansion. Our study identifies Kidins220 as a key player for sensing the availability of growth factors to sustain adult neurogenesis, uncovering a molecular link that may help paving the way towards neurorepair.


Assuntos
Células-Tronco Adultas , Células-Tronco Neurais , Adulto , Animais , Humanos , Camundongos , Células-Tronco Adultas/metabolismo , Fator de Crescimento Epidérmico/metabolismo , Quinase 3 da Glicogênio Sintase/metabolismo , Hipocampo/metabolismo , Mamíferos , Células-Tronco Neurais/metabolismo , Neurogênese/fisiologia , Neurônios/metabolismo
17.
Int J Mol Sci ; 24(15)2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37569280

RESUMO

Mixed-lineage leukemia 1 (MLL1) introduces 1-, 2- and 3-methylation into histone H3K4 through the evolutionarily conserved set domain. In this study, bovine embryonic stem cells (bESCs, known as bESCs-F7) were established from in vitro-fertilized (IVF) embryos via Wnt signaling inhibition; however, their contribution to the endoderm in vivo is limited. To improve the quality of bESCs, MM-102, an inhibitor of MLL1, was applied to the culture. The results showed that MLL1 inhibition along with GSK3 and MAP2K inhibition (3i) at the embryonic stage did not affect bESCs' establishment and pluripotency. MLL1 inhibition improved the pluripotency and differentiation potential of bESCs via the up-regulation of stem cell signaling pathways such as PI3K-Akt and WNT. MLL1 inhibition decreased H3K4me1 modification at the promoters and altered the distribution of DNA methylation in bESCs. In summary, MLL1 inhibition gives bESCs better pluripotency, and its application may provide high-quality pluripotent stem cells for domestic animals.


Assuntos
Leucemia , Proteína de Leucina Linfoide-Mieloide , Animais , Bovinos , Proteína de Leucina Linfoide-Mieloide/genética , Proteína de Leucina Linfoide-Mieloide/metabolismo , Quinase 3 da Glicogênio Sintase/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Diferenciação Celular , Células-Tronco Embrionárias/metabolismo , Metilação de DNA , Leucemia/genética
18.
Cell Mol Immunol ; 20(10): 1127-1139, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37553428

RESUMO

Cellular immunity mediated by CD8+ T cells plays an indispensable role in bacterial and viral clearance and cancers. However, persistent antigen stimulation of CD8+ T cells leads to an exhausted or dysfunctional cellular state characterized by the loss of effector function and high expression of inhibitory receptors during chronic viral infection and in tumors. Numerous studies have shown that glycogen synthase kinase 3 (GSK3) controls the function and development of immune cells, but whether GSK3 affects CD8+ T cells is not clearly elucidated. Here, we demonstrate that mice with deletion of Gsk3α and Gsk3ß in activated CD8+ T cells (DKO) exhibited decreased CTL differentiation and effector function during acute and chronic viral infection. In addition, DKO mice failed to control tumor growth due to the upregulated expression of inhibitory receptors and augmented T-cell exhaustion in tumor-infiltrating CD8+ T cells. Strikingly, anti-PD-1 immunotherapy substantially restored tumor rejection in DKO mice. Mechanistically, GSK3 regulates T-cell exhaustion by suppressing TCR-induced nuclear import of NFAT, thereby in turn dampening NFAT-mediated exhaustion-related gene expression, including TOX/TOX2 and PD-1. Thus, we uncovered the molecular mechanisms underlying GSK3 regulation of CTL differentiation and T-cell exhaustion in anti-tumor immune responses.


Assuntos
Neoplasias , Viroses , Camundongos , Animais , Linfócitos T CD8-Positivos , Quinase 3 da Glicogênio Sintase/metabolismo , Exaustão das Células T , Diferenciação Celular , Viroses/metabolismo
19.
Int J Mol Sci ; 24(13)2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37446056

RESUMO

Glycogen synthase kinase-3 (GSK-3) is a serine/threonine kinase that has been implicated in numerous oncogenic processes. GSK-3 inhibitor elraglusib (9-ING-41) has shown promising preclinical and clinical antitumor activity across multiple tumor types. Despite promising early-phase clinical trial results, there have been limited efforts to characterize the potential immunomodulatory properties of elraglusib. We report that elraglusib promotes immune cell-mediated tumor cell killing of microsatellite stable colorectal cancer (CRC) cells. Mechanistically, elraglusib sensitized CRC cells to immune-mediated cytotoxicity and enhanced immune cell effector function. Using western blots, we found that elraglusib decreased CRC cell expression of NF-κB p65 and several survival proteins. Using microarrays, we discovered that elraglusib upregulated the expression of proapoptotic and antiproliferative genes and downregulated the expression of cell proliferation, cell cycle progression, metastasis, TGFß signaling, and anti-apoptotic genes in CRC cells. Elraglusib reduced CRC cell production of immunosuppressive molecules such as VEGF, GDF-15, and sPD-L1. Elraglusib increased immune cell IFN-γ secretion, which upregulated CRC cell gasdermin B expression to potentially enhance pyroptosis. Elraglusib enhanced immune effector function resulting in augmented granzyme B, IFN-γ, TNF-α, and TRAIL production. Using a syngeneic, immunocompetent murine model of microsatellite stable CRC, we evaluated elraglusib as a single agent or combined with immune checkpoint blockade (anti-PD-1/L1) and observed improved survival in the elraglusib and anti-PD-L1 group. Murine responders had increased tumor-infiltrating T cells, augmented granzyme B expression, and fewer regulatory T cells. Murine responders had reduced immunosuppressive (VEGF, VEGFR2) and elevated immunostimulatory (GM-CSF, IL-12p70) cytokine plasma concentrations. To determine the clinical significance, we then utilized elraglusib-treated patient plasma samples and found that reduced VEGF and BAFF and elevated IL-1 beta, CCL22, and CCL4 concentrations correlated with improved survival. Using paired tumor biopsies, we found that tumor-infiltrating immune cells had a reduced expression of inhibitory immune checkpoints (VISTA, PD-1, PD-L2) and an elevated expression of T-cell activation markers (CTLA-4, OX40L) after elraglusib treatment. These results address a significant gap in knowledge concerning the immunomodulatory mechanisms of GSK-3 inhibitor elraglusib, provide a rationale for the clinical evaluation of elraglusib in combination with immune checkpoint blockade, and are expected to have an impact on additional tumor types, besides CRC.


Assuntos
Neoplasias Colorretais , Quinase 3 da Glicogênio Sintase , Humanos , Animais , Camundongos , Quinase 3 da Glicogênio Sintase/metabolismo , Granzimas/genética , Granzimas/metabolismo , Modelos Animais de Doenças , Inibidores de Checkpoint Imunológico/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Neoplasias Colorretais/metabolismo , Linfócitos do Interstício Tumoral , Biópsia , Linhagem Celular Tumoral , Antígeno B7-H1
20.
Alzheimers Res Ther ; 15(1): 105, 2023 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-37287063

RESUMO

BACKGROUND: Over recent years, increasing evidence suggests a causal relationship between neurofibrillary tangles (NFTs) formation, the main histopathological hallmark of tauopathies, including Alzheimer's disease (AD), and the ubiquitin-proteasome system (UPS) dysfunction detected in these patients. Nevertheless, the mechanisms underlying UPS failure and the factors involved remain poorly understood. Given that AD and tauopathies are associated with chronic neuroinflammation, here, we explore if ATP, one of the danger-associated molecules patterns (DAMPs) associated with neuroinflammation, impacts on AD-associated UPS dysfunction. METHODS: To evaluate if ATP may modulate the UPS via its selective P2X7 receptor, we combined in vitro and in vivo approaches using both pharmacological and genetic tools. We analyze postmortem samples from human AD patients and P301S mice, a mouse model that mimics pathology observed in AD patients, and those from the new transgenic mouse lines generated, such as P301S mice expressing the UPS reporter UbG76V-YFP or P301S deficient of P2X7R. RESULTS: We describe for the first time that extracellular ATP-induced activation of the purinergic P2X7 receptor (P2X7R) downregulates the transcription of ß5 and ß1 proteasomal catalytic subunits via the PI3K/Akt/GSK3/Nfr2 pathway, leading to their deficient assembly into the 20S core proteasomal complex, resulting in a reduced proteasomal chymotrypsin-like and postglutamyl-like activities. Using UPS-reported mice (UbGFP mice), we identified neurons and microglial cells as the most sensitive cell linages to a P2X7R-mediated UPS regulation. In vivo pharmacological or genetic P2X7R blockade reverted the proteasomal impairment developed by P301S mice, which mimics that were detected in AD patients. Finally, the generation of P301S;UbGFP mice allowed us to identify those hippocampal cells more sensitive to UPS impairment and demonstrate that the pharmacological or genetic blockade of P2X7R promotes their survival. CONCLUSIONS: Our work demonstrates the sustained and aberrant activation of P2X7R caused by Tau-induced neuroinflammation contributes to the UPS dysfunction and subsequent neuronal death associated with AD, especially in the hippocampus.


Assuntos
Doença de Alzheimer , Tauopatias , Camundongos , Humanos , Animais , Doença de Alzheimer/complicações , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Complexo de Endopeptidases do Proteassoma , Receptores Purinérgicos P2X7/genética , Ubiquitina , Doenças Neuroinflamatórias , Quinase 3 da Glicogênio Sintase/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Camundongos Transgênicos , Trifosfato de Adenosina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA