Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 209
Filtrar
1.
Cell Commun Signal ; 22(1): 287, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38797819

RESUMO

BACKGROUND: Pancreatic ductal adenocarcinoma (PDA) is one of the most lethal types of cancer, and KRAS oncogene occurs in over 90% of cases. P21-activated kinases (PAK), containing six members (PAK1 to 6), function downstream of KRAS. PAK1 and PAK4 play important roles in carcinogenesis, but their combinational effect remains unknown. In this study, we have determined the effect of dual inhibition of PAK1 and PAK4 in PDA progression using knockout (KO) cancer cell lines. METHODS: Murine wild-type (WT) and PAK1KO pancreatic cancer cell lines were isolated from PAK1+/+ and PAK1-/- KPC (LSL-KrasG12D/+; LSL-Trp53 R172H/+; Pdx-1-Cre) mice. KPC PAK4KO and KPC PAK1&4 KO cell lines were generated from KPC WT and KPC PAK1KO cell lines respectively using the CRISPR-CAS9 gene knockout technique. PAK WT and KO cell lines were used in mouse models of pancreatic tumours. Cells and tumour tissue were also used in flow cytometry and proteomic studies. A human PDA tissue microarray was stained by immunohistochemistry. RESULTS: Double knock out of PAK1 and PAK4 caused complete regression of tumour in a syngeneic mouse model. PAK4KO inhibited tumour growth by stimulating a rapid increase of cytotoxic CD8+ T cell infiltration. PAK1KO synergistically with PAK4KO increased cytotoxic CD8+ T cell infiltration and stimulated a sustained infiltration of CD8+ T cells at a later phase to overcome the immune evasion in the PAK4KO tumour. The human PDA tissue microarray study showed the important role of PAK1 and PAK4 in intra-tumoral T-cell function. CONCLUSION: Our results demonstrated that dual inhibition of PAK1 and PAK4 synergistically suppressed PDA progression by stimulating cytotoxic CD8 + T cell response.


Assuntos
Neoplasias Pancreáticas , Quinases Ativadas por p21 , Quinases Ativadas por p21/metabolismo , Quinases Ativadas por p21/genética , Quinases Ativadas por p21/antagonistas & inibidores , Animais , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/imunologia , Neoplasias Pancreáticas/genética , Camundongos , Linhagem Celular Tumoral , Humanos , Proliferação de Células , Carcinoma Ductal Pancreático/patologia , Carcinoma Ductal Pancreático/imunologia , Carcinoma Ductal Pancreático/genética , Camundongos Knockout
2.
Nature ; 630(8015): 198-205, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38720074

RESUMO

Phosphoinositide-3-kinase-γ (PI3Kγ) is implicated as a target to repolarize tumour-associated macrophages and promote antitumour immune responses in solid cancers1-4. However, cancer cell-intrinsic roles of PI3Kγ are unclear. Here, by integrating unbiased genome-wide CRISPR interference screening with functional analyses across acute leukaemias, we define a selective dependency on the PI3Kγ complex in a high-risk subset that includes myeloid, lymphoid and dendritic lineages. This dependency is characterized by innate inflammatory signalling and activation of phosphoinositide 3-kinase regulatory subunit 5 (PIK3R5), which encodes a regulatory subunit of PI3Kγ5 and stabilizes the active enzymatic complex. We identify p21 (RAC1)-activated kinase 1 (PAK1) as a noncanonical substrate of PI3Kγ that mediates this cell-intrinsic dependency and find that dephosphorylation of PAK1 by PI3Kγ inhibition impairs mitochondrial oxidative phosphorylation. Treatment with the selective PI3Kγ inhibitor eganelisib is effective in leukaemias with activated PIK3R5. In addition, the combination of eganelisib and cytarabine prolongs survival over either agent alone, even in patient-derived leukaemia xenografts with low baseline PIK3R5 expression, as residual leukaemia cells after cytarabine treatment have elevated G protein-coupled purinergic receptor activity and PAK1 phosphorylation. Together, our study reveals a targetable dependency on PI3Kγ-PAK1 signalling that is amenable to near-term evaluation in patients with acute leukaemia.


Assuntos
Classe Ib de Fosfatidilinositol 3-Quinase , Transdução de Sinais , Quinases Ativadas por p21 , Humanos , Classe Ib de Fosfatidilinositol 3-Quinase/metabolismo , Classe Ib de Fosfatidilinositol 3-Quinase/genética , Quinases Ativadas por p21/metabolismo , Quinases Ativadas por p21/antagonistas & inibidores , Quinases Ativadas por p21/genética , Camundongos , Animais , Feminino , Leucemia/genética , Leucemia/enzimologia , Leucemia/patologia , Leucemia/metabolismo , Fosforilação , Linhagem Celular Tumoral , Mitocôndrias/metabolismo , Masculino
3.
Int J Pharm ; 656: 124078, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38569978

RESUMO

The role of tumor stroma in solid tumors has been widely recognized in cancer progression, metastasis and chemoresistance. Cancer-associated fibroblasts (CAFs) play a crucial role in matrix remodeling and promoting cancer cell stemness and resistance via reciprocal crosstalk. Residual tumor tissue after surgical removal as well as unresectable tumors face therapeutic challenges to achieve curable outcome. In this study, we propose to develop a dual delivery approach by combining p21-activated kinase 1 (PAK1) inhibitor (FRAX597) to inhibit tumor stroma and chemotherapeutic agent paclitaxel (PTX) to kill cancer cells using electrospun nanofibers. First, the role of the PAK1 pathway was established in CAF differentiation, migration and contraction using relevant in vitro models. Second, polycaprolactone polymer-based nanofibers were fabricated using a uniaxial electrospinning technique to incorporate FRAX597 and/or PTX, which showed a uniform texture and a prolonged release of both drugs for 16 days. To test nanofibers, stroma-rich 3D heterospheroid models were set up which showed high resistance to PTX nanofibers compared to stroma-free homospheroids. Interestingly, nanofibers containing PTX and FRAX597 showed strong anti-tumor effects on heterospheroids by reducing the growth and viability by > 90 % compared to either of single drug-loaded nanofibers. These effects were reflected by reduced intra-spheroidal expression levels of collagen 1 and α-smooth muscle actin (α-SMA). Overall, this study provides a new therapeutic strategy to inhibit the tumor stroma using PAK1 inhibitor and thereby enhance the efficacy of chemotherapy using nanofibers as a local delivery system for unresectable or residual tumor. Use of 3D models to evaluate nanofibers highlights these models as advanced in vitro tools to study the effect of controlled release local drug delivery systems before animal studies.


Assuntos
Nanofibras , Paclitaxel , Quinases Ativadas por p21 , Paclitaxel/administração & dosagem , Paclitaxel/farmacologia , Nanofibras/administração & dosagem , Quinases Ativadas por p21/antagonistas & inibidores , Quinases Ativadas por p21/metabolismo , Humanos , Linhagem Celular Tumoral , Esferoides Celulares/efeitos dos fármacos , Poliésteres/química , Poliésteres/administração & dosagem , Fibroblastos Associados a Câncer/efeitos dos fármacos , Fibroblastos Associados a Câncer/metabolismo , Sistemas de Liberação de Medicamentos/métodos , Movimento Celular/efeitos dos fármacos , Antineoplásicos Fitogênicos/administração & dosagem , Antineoplásicos Fitogênicos/farmacologia , Liberação Controlada de Fármacos , Diferenciação Celular/efeitos dos fármacos
4.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 41(2): 313-320, 2024 Apr 25.
Artigo em Chinês | MEDLINE | ID: mdl-38686412

RESUMO

Targeting p21-activated kinase 1 (PAK1) is a novel strategy for pancreatic cancer treatment. Compound Kushen injection contains many anti-pancreatic cancer components, but the specific targets are unknown. In this study, 14α-hydroxymatrine, an active component of Kushen injection, was found to possess high binding free energy with the allosteric site of PAK1 by molecular docking based virtual screening. Molecular dynamics simulations suggested that 14α-hydroxymatrine caused the α1 and α2 helices of the allosteric site of PAK1 to extend outward to form a deep allosteric regulatory pocket. Meanwhile, 14α-hydroxymatrine induced the ß-folding region at the adenosine triphosphate (ATP)-binding pocket of PAK1 to close inward, resulting in the ATP-binding pocket in a "semi-closed" state which caused the inactivation of PAK1. After removal of 14α-hydroxymatrine, PAK1 showed a tendency to change from the inactive conformation to the active conformation. We supposed that 14α-hydroxymatrine of compound Kushen injection might be a reversible allosteric inhibitor of PAK1. This study used modern technologies and methods to study the active components of traditional Chinese medicine, which laid a foundation for the development and utilization of natural products and the search for new treatments for pancreatic cancer.


Assuntos
Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Quinases Ativadas por p21 , Quinases Ativadas por p21/metabolismo , Quinases Ativadas por p21/antagonistas & inibidores , Humanos , Sítio Alostérico , Neoplasias Pancreáticas/tratamento farmacológico , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/química , Quinolizinas/farmacologia , Quinolizinas/química
5.
Cancer Gene Ther ; 31(5): 721-735, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38424218

RESUMO

Ovarian cancer follows a characteristic progression pattern, forming multiple tumor masses enriched with cancer stem cells (CSCs) within the abdomen. Most patients develop resistance to standard platinum-based drugs, necessitating better treatment approaches. Targeting CSCs by inhibiting NAD+ synthesis has been previously explored. Nicotinamide phosphoribosyltransferase (NAMPT), which is the rate limiting enzyme in the salvage pathway for NAD+ synthesis is an attractive drug target in this pathway. KPT-9274 is an innovative drug targeting both NAMPT and p21 activated kinase 4 (PAK4). However, its effectiveness against ovarian cancer has not been validated. Here, we show the efficacy and mechanisms of KPT-9274 in treating 3D-cultured spheroids that are resistant to platinum-based drugs. In these spheroids, KPT-9274 not only inhibited NAD+ production in NAMPT-dependent cell lines, but also suppressed NADPH and ATP production, indicating reduced mitochondrial function. It also downregulated of inflammation and DNA repair-related genes. Moreover, the compound reduced PAK4 activity by altering its mostly cytoplasmic localization, leading to NAD+-dependent decreases in phosphorylation of S6 Ribosomal protein, AKT, and ß-Catenin in the cytoplasm. These findings suggest that KPT-9274 could be a promising treatment for ovarian cancer patients who are resistant to platinum drugs, emphasizing the need for precision medicine to identify the specific NAD+ producing pathway that a tumor relies upon before treatment.


Assuntos
Citocinas , Resistencia a Medicamentos Antineoplásicos , Nicotinamida Fosforribosiltransferase , Neoplasias Ovarianas , Esferoides Celulares , Quinases Ativadas por p21 , Nicotinamida Fosforribosiltransferase/antagonistas & inibidores , Nicotinamida Fosforribosiltransferase/metabolismo , Humanos , Feminino , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Quinases Ativadas por p21/metabolismo , Quinases Ativadas por p21/antagonistas & inibidores , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Citocinas/metabolismo , Linhagem Celular Tumoral , Esferoides Celulares/efeitos dos fármacos , NAD/metabolismo , Acrilamidas/farmacologia , Acrilamidas/uso terapêutico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Aminopiridinas
6.
Zhonghua Xue Ye Xue Za Zhi ; 43(6): 499-505, 2022 Jun 14.
Artigo em Chinês | MEDLINE | ID: mdl-35968594

RESUMO

Objective: To investigate the effect of blocking P21 activated kinase 1 (PAK1) activity on the proliferation, differentiation, and apoptosis of acute megakaryocytic leukemia (AMKL) cell lines (CHRF and CMK) . Methods: Cell counts were used to detect the effects of PAK1 inhibitors (IPA-3 and G5555) on AMKL cell proliferation inhibition and colony formation, and flow cytometry was used to detect its effects on AMKL cell cycle. The effect of PAK1 inhibitor on the expression of cyclin D1 and apoptosis-related protein Cleaved caspase 3 was detected using Western blot, while interference with the protein expression level of PAK1 in AMKL cells was assessed using lentivirus-mediated shRNA transfection technology. Flow cytometry was used to detect the effects of knockdown of PAK1 kinase activity on the ability of polyploid DNA formation and cell apoptosis in AMKL cells. Results: PAK1 inhibitors inhibited the proliferation of AMKL cells in a dose-dependent manner and reduced the ability of cell colony formation, and the difference was statistically significant when compared with the control group (P<0.05) . Moreover, they also reduced the percentage of AMKL cells in S phase, and Western blot detection showed that the expression levels of phosphorylated PAK1 and cyclin D1 decreased significantly. Finally, PAK1 inhibitors induced AMKL cell apoptosis by up-regulating Cleaved caspase 3 and showed different abilities to increase the content of polyploid DNA in megakaryocytes. Only high concentrations of IPA-3 and low doses of G5555 increased the number of polyploid megakaryocytes, while knockdown of PAK1 kinase activity promoted AMKL cell differentiation and increased the apoptosis rate. Conclusion: PAK1 inhibitor significantly arrests AMKL cell growth and promotes cell apoptosis. Knocking down the expression of PAK1 promotes the formation of polyploid DNA and induces AMKL cell apoptosis. The above findings indicate that inhibiting the activity of PAK1 may control AMKL effectively.


Assuntos
Leucemia Megacarioblástica Aguda , Quinases Ativadas por p21 , Apoptose , Caspase 3/metabolismo , Diferenciação Celular , Linhagem Celular Tumoral , Ciclina D1/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Leucemia Megacarioblástica Aguda/tratamento farmacológico , Leucemia Megacarioblástica Aguda/genética , Leucemia Megacarioblástica Aguda/metabolismo , Poliploidia , Quinases Ativadas por p21/antagonistas & inibidores , Quinases Ativadas por p21/genética , Quinases Ativadas por p21/metabolismo
7.
Leukemia ; 36(2): 315-326, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34697424

RESUMO

The p21-Activated Kinases (PAKs) are a family of six serine/threonine kinases that were originally identified as downstream effectors of the Rho GTPases Cdc42 and Rac. Since the first PAK was discovered in 1994, studies have revealed their fundamental and biological importance in the development of physiological systems. Within the cell, PAKs also play significant roles in regulating essential cellular processes such as cytoskeletal dynamics, gene expression, cell survival, and cell cycle progression. These processes are often deregulated in numerous cancers when different PAKs are overexpressed or amplified at the chromosomal level. Furthermore, PAKs modulate multiple oncogenic signaling pathways which facilitate apoptosis escape, uncontrolled proliferation, and drug resistance. There is growing insight into the critical roles of PAKs in regulating steady-state hematopoiesis, including the properties of hematopoietic stem cells (HSC), and the initiation and progression of hematological malignancies. This review will focus on the most recent studies that provide experimental evidence showing how specific PAKs regulate the properties of leukemic stem cells (LSCs) and drug-resistant cells to initiate and maintain hematological malignancies. The current understanding of the molecular and cellular mechanisms by which the PAKs operate in specific human leukemia or lymphomas will be discussed. From a translational point of view, PAKs have been suggested to be critical therapeutic targets and potential prognosis markers; thus, this review will also discuss current therapeutic strategies against hematological malignancies using existing small-molecule PAK inhibitors, as well as promising combination treatments, to sensitize drug-resistant cells to conventional therapies. The challenges of toxicity and non-specific targeting associated with some PAK inhibitors, as well as how future approaches for PAK inhibition to overcome these limitations, will also be addressed.


Assuntos
Neoplasias Hematológicas/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Quinases Ativadas por p21/antagonistas & inibidores , Animais , Neoplasias Hematológicas/enzimologia , Neoplasias Hematológicas/patologia , Humanos , Transdução de Sinais
8.
Cells ; 10(12)2021 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-34944073

RESUMO

P21-activated kinases (PAKs) are serine/threonine kinases involved in the regulation of cell survival, proliferation, inhibition of apoptosis, and the regulation of cell morphology. Some members of the PAK family are highly expressed in several types of cancer, and they have also been implicated in several other medical disorders. They are thus considered to be good targets for treatment of cancer and other diseases. Although there are several inhibitors of the PAKs, the utility of some of these inhibitors is reduced for several reasons, including limited metabolic stability. One way to overcome this problem is the use of nanoparticles, which have the potential to increase drug delivery. The overall goals of this review are to describe the roles for PAK kinases in cell signaling and disease, and to describe how the use of nanomedicine is a promising new method for administering PAK inhibitors for the purpose of disease treatment and research. We discuss some of the basic mechanisms behind nanomedicine technology, and we then describe how these techniques are being used to package and deliver PAK inhibitors.


Assuntos
Nanomedicina , Neoplasias/tratamento farmacológico , Transdução de Sinais , Quinases Ativadas por p21/metabolismo , Animais , Modelos Animais de Doenças , Humanos , Nanopartículas/química , Quinases Ativadas por p21/antagonistas & inibidores
9.
Oxid Med Cell Longev ; 2021: 6957900, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34603600

RESUMO

Macrophage polarization in response to environmental cues has emerged as an important event in the development of atherosclerosis. Compelling evidences suggest that P21-activated kinases 1 (PAK1) is involved in a wide variety of diseases. However, the potential role and mechanism of PAK1 in regulation of macrophage polarization remains to be elucidated. Here, we observed that PAK1 showed a dramatically increased expression in M1 macrophages but decreased expression in M2 macrophages by using a well-established in vitro model to study heterogeneity of macrophage polarization. Adenovirus-mediated loss-of-function approach demonstrated that PAK1 silencing induced an M2 macrophage phenotype-associated gene profiles but repressed the phenotypic markers related to M1 macrophage polarization. Additionally, dramatically decreased foam cell formation was found in PAK1 silencing-induced M2 macrophage activation which was accompanied with alternation of marker account for cholesterol efflux or influx from macrophage foam cells. Moderate results in lipid metabolism and foam cell formation were found in M1 macrophage activation mediated by AdshPAK1. Importantly, we presented mechanistic evidence that PAK1 knockdown promoted the expression of PPARγ, and the effect of macrophage activation regulated by PAK1 silencing was largely reversed when a PPARγ antagonist was utilized. Collectively, these findings reveal that PAK1 is an independent effector of macrophage polarization at least partially attributed to regulation of PPARγ expression, which suggested PAK1-PPARγ axis as a novel therapeutic strategy in atherosclerosis management.


Assuntos
PPAR gama/metabolismo , Interferência de RNA , Quinases Ativadas por p21/metabolismo , Adenoviridae/genética , Animais , Células Espumosas/citologia , Células Espumosas/metabolismo , Vetores Genéticos/genética , Vetores Genéticos/metabolismo , Lipopolissacarídeos/farmacologia , Ativação de Macrófagos , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Camundongos Knockout , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Quinases Ativadas por p21/antagonistas & inibidores , Quinases Ativadas por p21/genética
10.
Expert Opin Ther Pat ; 31(11): 977-987, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34369844

RESUMO

Introduction: The Ser/Thr protein kinase PAK4 is a downstream regulator of Cdc42, mediating cytoskeleton remodeling, and cell motility, and inhibiting apoptosis and transcriptional regulation. Nowadays, efforts in PAK4 inhibitor development are focusing on improving inhibitory selectivity, cellular potency, and in vivo pharmacokinetic properties, and identifying the feasibility of immunotherapy combination in oncology therapy.Areas covered: This review summarized the development of PAK4 inhibitors that reported on patents in the past two decades. According to their binding features, these inhibitors were classified into type I, type I 1/2, and PAMs. Their designing ideas and SAR were elucidated in this review. Moreover, synergistic therapy of PAK4 inhibitors with PD-1/PD-L1 or CAR-T were also summarized .Expert opinion: In the past years, preclinical and clinical studies of PAK4 inhibitors ended in failure due to poor selectivity, cellular activity, or pharmacokinetic issues. There are researchers questioning the reliability of PAK4 as a drug target, particularly PAK4-related therapy is concerned with the distinguishment of the non-kinase functions and catalytic functions triggered by PAK4 phosphorylation. Meanwhile, synergistic effects of PAK4 inhibitors with PD-1/PD-L1 and CAR-T immunotherapy shed light for the development of PAK4 inhibitors.


Assuntos
Descoberta de Drogas , Inibidores de Proteínas Quinases/farmacologia , Quinases Ativadas por p21/antagonistas & inibidores , Animais , Desenvolvimento de Medicamentos , Humanos , Terapia de Alvo Molecular , Neoplasias/tratamento farmacológico , Neoplasias/enzimologia , Patentes como Assunto , Quinases Ativadas por p21/metabolismo
11.
Mol Cancer Ther ; 20(10): 1836-1845, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34253597

RESUMO

Metastatic pancreatic neuroendocrine tumors (PNET) remain an unmet clinical problem. Chronologic treatment in PNETs includes observation (watchful protocol), surgery, targeted therapy, and chemotherapy. However, increasing evidence illustrates that the outcomes of targeted therapeutic options for the treatment of advanced PNETs show minimal response. The FDA-approved mTOR inhibitor everolimus does not shrink these tumors. It only delays disease progression in a subset of patients, while a significant fraction acquires resistance and shows disease progression. Thus, there is a need for more effective targeted approaches to sensitize PNETs to everolimus for better treatment outcomes. Previously, we showed that mTOR regulator p21 activated kinase 4 (PAK4) and nicotinamide adenine dinucleotide biosynthesis enzyme nicotinamide phosphoribosyl transferase (NAMPT) were aberrantly expressed in PNET tissue and promoted everolimus resistance. In this report, we demonstrate that PAK4-NAMPT dual inhibitor KPT-9274 can synergize with everolimus (growth inhibition, colony suppression, and glucose uptake assays). KPT-9274-everolimus disrupted spheroid formation in multiple PNET models. Molecular analysis showed alteration of mTORC2 through downregulation of RICTOR as a mechanism supporting synergy with everolimus in vitro KPT-9274 suppressed ß-catenin activity via inhibition of PAK4, highlighting the cross-talk between Rho GTPases and Wnt signaling in PNETs. KPT-9274, given at 150 mg/kg in combination with sub-MTD everolimus (2.5 mg/kg), significantly suppressed two PNET-derived xenografts. These studies bring forward a well-grounded strategy for advanced PNETs that fail to respond to single-agent everolimus.


Assuntos
Acrilamidas/farmacologia , Aminopiridinas/farmacologia , Citocinas/antagonistas & inibidores , Everolimo/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Tumores Neuroendócrinos/tratamento farmacológico , Nicotinamida Fosforribosiltransferase/antagonistas & inibidores , Neoplasias Pancreáticas/tratamento farmacológico , Quinases Ativadas por p21/antagonistas & inibidores , Animais , Antineoplásicos/farmacologia , Apoptose , Proliferação de Células , Quimioterapia Combinada , Feminino , Humanos , Camundongos , Camundongos Endogâmicos ICR , Camundongos SCID , Tumores Neuroendócrinos/metabolismo , Tumores Neuroendócrinos/patologia , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
12.
Hum Exp Toxicol ; 40(12): 2202-2214, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34165002

RESUMO

OBJECTIVE: In light of the upregulation of p21-activated kinase (PAK7) in a variety of cancers, including hepatocellular carcinoma (HCC), we aimed to investigate the effect of PAK7 on the sensitivity of HCC cells to radiotherapy. METHODS: PAK7 expression was determined in normal adult liver epithelial THLE-2 and human HCC cell lines. The effect of ionizing radiation (IR) on the HCC cell viability was evaluated by Sulforhodamine B (SRB) assay. HCC cell lines Mahlavu and Huh7 were chosen to assess the effect of PAK7 shRNAs on the viability, clone formation, apoptosis, cycle distribution and γ-H2AX expression after exposure to IR. RESULTS: As compared to THLE-2 cells, PAK7 was upregulated in poorly differentiated Mahlavu and SK-Hep-1 cells, but moderately or lowly expressed in well-differentiated Huh7 and HepG2 cells. HCC cells with moderate or low expression of PAK7 presented a decreased viability at 2 Gy IR, which had no significant effect on PAK7high HCC cells. Mahlavu and Huh7 cells transfected with PAK7 shRNAs showed increased inhibitory effect of IR on viability. In addition, PAK7 shRNAs reduced clone formation, facilitated the cell apoptosis, arrested cells at G2/M phase, and increased γ-H2AX expression. Moreover, changes above were more evident in the HCC cells co-treated with IR and PAK7 shRNAs. CONCLUSION: PAK7 downregulation could inhibit the viability, promote the apoptosis, arrest cells in G2/M phase, and induce the DNA damage in HCC cells, thereby enhancing the radiosensitivity in HCC.


Assuntos
Carcinoma Hepatocelular/radioterapia , Neoplasias Hepáticas/radioterapia , Tolerância a Radiação , Quinases Ativadas por p21/antagonistas & inibidores , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Linhagem Celular , Sobrevivência Celular/efeitos da radiação , Dano ao DNA , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , RNA Interferente Pequeno/genética , Radiação Ionizante , Quinases Ativadas por p21/genética , Quinases Ativadas por p21/metabolismo
13.
PLoS One ; 16(6): e0252927, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34138895

RESUMO

Theoretically, small molecule CDK4/6 inhibitors (CDK4/6is) represent a logical therapeutic option in non-small cell lung cancers since most of these malignancies have wildtype RB, the key target of CDKs and master regulator of the cell cycle. Unfortunately, CDK4/6is are found to have limited clinical activity as single agents in non-small cell lung cancer. To address this problem and to identify effective CDK4/6i combinations, we screened a library of targeted agents for efficacy in four non-small cell lung cancer lines treated with CDK4/6 inhibitors Palbociclib or Abemaciclib. The pan-PAK (p21-activated kinase) inhibitor PF03758309 emerged as a promising candidate with viability ratios indicating synergy in all 4 cell lines and for both CDK4/6is. It is noteworthy that the PAKs are downstream effectors of small GTPases Rac1 and Cdc42 and are overexpressed in a wide variety of cancers. Individually the compounds primarily induced cell cycle arrest; however, the synergistic combination induced apoptosis, accounting for the synergy. Surprisingly, while the pan-PAK inhibitor PF03758309 synergizes with CDK4/6is, no synergy occurs with group I PAK inhibitors FRAX486 or FRAX597. Cell lines treated only with Ribociclib, FRAX486 or FRAX597 underwent G1/G0 arrest, whereas combination treatment with these compounds predominantly resulted in autophagy. Combining high concentrations of FRAX486, which weakly inhibits PAK4, and Ribociclib, mimics the autophagy and apoptotic effect of PF03758309 combined with Ribociclib. FRAX597, a PAKi that does not inhibit PAK4 did not reduce autophagy in combination with Ribociclib. Our results suggest that a unique combination of PAKs plays a crucial role in the synergy of PAK inhibitors with CDK4/6i. Targeting this unique PAK combination, could greatly improve the efficacy of CDK4/6i and broaden the spectrum of cancer treatment.


Assuntos
Antineoplásicos/farmacologia , Quinases Ciclina-Dependentes/antagonistas & inibidores , Neoplasias Pulmonares/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Quinases Ativadas por p21/antagonistas & inibidores , Aminopiridinas/farmacologia , Benzimidazóis/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Quinase 4 Dependente de Ciclina/metabolismo , Quinase 6 Dependente de Ciclina/metabolismo , Ensaios de Seleção de Medicamentos Antitumorais , Sinergismo Farmacológico , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Piperazinas/farmacologia , Piridinas/farmacologia
14.
Int J Mol Sci ; 22(11)2021 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-34074054

RESUMO

Alzheimer's disease (AD) is thought to be caused by amyloid-ß (Aß) accumulation in the central nervous system due to deficient clearance. The aim of the present study was to investigate the effect of ganoderic acid A (GAA) on Aß clearance in microglia and its anti-AD activity. Aß degradation in BV2 microglial cells was determined using an intracellular Aß clearance assay. GAA stimulated autophagosome formation via the Axl receptor tyrosine kinase (Axl)/RAC/CDC42-activated kinase 1 (Pak1) pathway was determined by Western blot analyses, and fluorescence-labeled Aß42 was localized in lysosomes in confocal laser microscopy images. The in vivo anti-AD activity of GAA was evaluated by object recognition and Morris water maze (MWM) tests in an AD mouse model following intracerebroventricular injection of aggregated Aß42. The autophagy level in the hippocampus was assayed by immunohistochemical assessment against microtubule-associated proteins 1A/1B light-chain 3B (LC3B). Intracellular Aß42 levels were significantly reduced by GAA treatment in microglial cells. Additionally, GAA activated autophagy according to increased LC3B-II levels, with this increased autophagy stimulated by upregulating Axl and Pak1 phosphorylation. The effect of eliminating Aß by GAA through autophagy was reversed by R428, an Axl inhibitor, or IPA-3, a Pak1 inhibitor. Consistent with the cell-based assay, GAA ameliorated cognitive deficiency and reduced Aß42 levels in an AD mouse model. Furthermore, LC3B expression in the hippocampus was up-regulated by GAA treatment, with these GAA-specific effects abolished by R428. GAA promoted Aß clearance by enhancing autophagy via the Axl/Pak1 signaling pathway in microglial cells and ameliorated cognitive deficiency in an AD mouse model.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Autofagia/efeitos dos fármacos , Ácidos Heptanoicos/farmacologia , Lanosterol/análogos & derivados , Microglia/efeitos dos fármacos , Proteínas Proto-Oncogênicas/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Animais , Autofagossomos/efeitos dos fármacos , Autofagossomos/metabolismo , Autofagia/genética , Linhagem Celular , Modelos Animais de Doenças , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Hipocampo/patologia , Imuno-Histoquímica , Lanosterol/farmacologia , Lisossomos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microglia/metabolismo , Microglia/patologia , Teste do Labirinto Aquático de Morris/efeitos dos fármacos , Fosforilação , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Receptores Proteína Tirosina Quinases/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Quinases Ativadas por p21/antagonistas & inibidores , Quinases Ativadas por p21/metabolismo , Receptor Tirosina Quinase Axl
15.
Cell Prolif ; 54(4): e13003, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33615605

RESUMO

OBJECTIVES: Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by the progressive loss of motor neurons (MN). CREB pathway-mediated inhibition of apoptosis contributes to neuron protection, and PAK4 activates CREB signalling in diverse cell types. This study aimed to investigate PAK4's effect and mechanism of action in ALS. METHODS: We analysed RNA levels by qRT-PCR, protein levels by immunofluorescence and Western blotting, and apoptosis by flow cytometry and TUNEL staining. Cell transfection was performed for in vitro experiment. Mice were injected intraspinally to evaluate PAK4 function in vivo experiment. Rotarod test was performed to measure motor function. RESULTS: The expression and activation of PAK4 significantly decreased in the cell and mouse models of ALS as the disease progressed, which was caused by the negative regulation of miR-9-5p. Silencing of PAK4 increased the apoptosis of MN by inhibiting CREB-mediated neuroprotection, whereas overexpression of PAK4 protected MN from hSOD1G93A -induced degeneration by activating CREB signalling. The neuroprotective effect of PAK4 was markedly inhibited by CREB inhibitor. In ALS models, the PAK4/CREB pathway was inhibited, and cell apoptosis increased. In vivo experiments revealed that PAK4 overexpression in the spinal neurons of hSOD1G93A mice suppressed MN degeneration, prolonged survival and promoted the CREB pathway. CONCLUSIONS: PAK4 protects MN from degeneration by activating the anti-apoptotic effects of CREB signalling, suggesting it may be a therapeutic target in ALS.


Assuntos
Esclerose Lateral Amiotrófica/patologia , Neurônios Motores/metabolismo , Superóxido Dismutase-1/metabolismo , Quinases Ativadas por p21/metabolismo , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/mortalidade , Animais , Apoptose/efeitos dos fármacos , Proteína de Ligação a CREB/antagonistas & inibidores , Proteína de Ligação a CREB/metabolismo , Linhagem Celular Tumoral , Modelos Animais de Doenças , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , MicroRNAs/metabolismo , Mutagênese Sítio-Dirigida , Fármacos Neuroprotetores/farmacologia , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Transdução de Sinais/efeitos dos fármacos , Superóxido Dismutase-1/genética , Taxa de Sobrevida , Quinases Ativadas por p21/antagonistas & inibidores , Quinases Ativadas por p21/genética
16.
Oncogene ; 40(6): 1176-1190, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33414491

RESUMO

Ewing sarcoma (ES) is the second most common bone tumor in children and young adults. Unfortunately, there have been minimal recent advancements in improving patient outcomes, especially in metastatic and recurrent diseases. In this study, we investigated the biological role of p21-activated kinases (PAKs) in ES, and the ability to therapeutically target them in high-risk disease. Via informatics analysis, we established the inverse association of PAK1 and PAK4 expression with clinical stage and outcome in ES patients. Through expression knockdown and small-molecule inhibition of PAKs, utilizing FRAX-597, KPT-9274, and PF-3758309 in multiple ES cell lines and patient-derived xenograft models, we further explored the role of PAKs in ES tumor growth and metastatic capabilities. In vitro studies in several ES cell lines indicated that diminishing PAK1 and PAK4 expression reduces tumor cell viability, migratory, and invasive properties. In vivo studies using PAK4 inhibitors, KPT-9274 and PF-3758309 demonstrated significant inhibition of primary and metastatic tumor formation, while transcriptomic analysis of PAK4-inhibitor-treated tumors identified concomitant suppression of Notch, ß-catenin, and hypoxia-mediated signatures. In addition, the analysis showed enrichment of anti-tumor immune regulatory mechanisms, including interferon (IFN)-É£ and IFN-α responses. Altogether, our molecular and pre-clinical studies are the first to establish a critical role for PAKs in ES development and progression, and consequently as viable therapeutic targets for the treatment of high-risk ES in the near future.


Assuntos
Sarcoma de Ewing/tratamento farmacológico , Quinases Ativadas por p21/genética , Acrilamidas/farmacologia , Aminopiridinas/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Interferon-alfa/genética , Interferon gama/genética , Pirazóis/farmacologia , Pirróis/farmacologia , Sarcoma de Ewing/genética , Sarcoma de Ewing/patologia , Transdução de Sinais/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto , Quinases Ativadas por p21/antagonistas & inibidores
17.
Small GTPases ; 12(4): 273-281, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-32043900

RESUMO

Malignant melanoma is characterized by mutations in a number of driver genes, most notably BRAF and NRAS. Recent genomic analyses revealed that 4-9% of sun-exposed melanomas bear activating mutations in RAC1, which encodes a small GTPase that is known to play key roles in cell proliferation, survival, and migration. The RAC1 protein activates several effector pathways, including Group A p21-activated kinases (PAKs), phosphoinositol-3-kinases (PI3Ks), in particular the beta isoform, and the serum-response factor/myocardin-related transcription factor (SRF/MRTF). Having previously shown that inhibition of Group A PAKs impedes oncogenic signalling from RAC1P29S, we here extend this analysis to examine the roles of PI3Ks and SRF/MRTF in melanocytes and/or in a zebrafish model. We demonstrate that a selective Group A PAK inhibitor (Frax-1036), a pan-PI3K (BKM120), and two PI3Kß inhibitors (TGX221, GSK2636771) impede the growth of melanoma cells driven by mutant RAC1 but not by mutant BRAF, while other PI3K selective inhibitors, including PI3Kα, δ and γ, are less effective. Using these compounds as well as an SRF/MRTF inhibitor (CCG-203,971), we observed similar results in vivo, using embryonic zebrafish development as a readout. These results suggest that targeting Group A PAKs, PI3Kß, and/or SRF/MRTF represent a promising approach to suppress RAC1 signalling in malignant melanoma.


Assuntos
Embrião não Mamífero/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Melanoma/tratamento farmacológico , Mutação , Proteínas rac1 de Ligação ao GTP/genética , Animais , Apoptose , Proliferação de Células , Embrião não Mamífero/metabolismo , Embrião não Mamífero/patologia , Humanos , Melanoma/genética , Melanoma/metabolismo , Melanoma/patologia , Fosfatidilinositol 3-Quinases/química , Fator de Resposta Sérica/antagonistas & inibidores , Transdução de Sinais , Transativadores/antagonistas & inibidores , Células Tumorais Cultivadas , Peixe-Zebra , Quinases Ativadas por p21/antagonistas & inibidores
18.
Cancer Res ; 81(1): 199-212, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33168646

RESUMO

Rhabdomyosarcoma (RMS) is the most prevalent pediatric soft-tissue sarcoma. Multimodal treatment, including surgery and traditional chemotherapy with radiotherapy, has contributed to improvements in overall survival rates. However, patients with recurrent or metastatic disease have 5-year survival rates of less than 30%. One reason for the lack of therapeutic advancement is identification and targeting of critical signaling nodes. p21-activated kinases (PAK) are a family of serine/threonine kinases downstream of multiple critical tumorigenic receptor tyrosine kinase receptors and oncogenic regulators, including IGFR and RAS signaling, that significantly contribute to aggressive malignant phenotypes. Here, we report that RMS cell lines and tumors exhibit enhanced PAK4 expression levels and activity, which are further activated by growth factors involved in RMS development. Molecular perturbation of PAK4 in multiple RMS models in vitro and in vivo resulted in inhibition of RMS development and progression. Fusion-positive and -negative RMS models were sensitive to two PAK4 small-molecule inhibitors, PF-3758309 and KPT-9274, which elicited significant antitumor and antimetastatic potential in several primary and metastatic in vivo models, including a relapsed RMS patient-derived xenograft model. Transcriptomic analysis of PAK4-targeted tumors revealed inhibition of the RAS-GTPase, Hedgehog, and Notch pathways, along with evidence of activation of antitumor immune response signatures. This PAK4-targeting gene signature showed prognostic significance for patients with sarcoma. Overall, our results show for the first time that PAK4 is a novel and viable therapeutic target for the treatment of high-risk RMS. SIGNIFICANCE: These data demonstrate a novel oncogenic role for PAK4 in rhabdomyosarcoma and show that targeting PAK4 activity is a promising viable therapeutic option for advanced rhabdomyosarcoma.


Assuntos
Acrilamidas/farmacologia , Aminopiridinas/farmacologia , Biomarcadores Tumorais/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Pirazóis/farmacologia , Pirróis/farmacologia , Rabdomiossarcoma/patologia , Quinases Ativadas por p21/antagonistas & inibidores , Proteínas ras/metabolismo , Animais , Apoptose , Biomarcadores Tumorais/genética , Movimento Celular , Proliferação de Células , Criança , Humanos , Masculino , Camundongos , Rabdomiossarcoma/genética , Rabdomiossarcoma/metabolismo , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto , Quinases Ativadas por p21/genética , Quinases Ativadas por p21/metabolismo , Proteínas ras/genética
19.
Clin Transl Oncol ; 23(4): 892-901, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32974862

RESUMO

PURPOSE: P21-activated kinase 1 (PAK1), a serine/threonine protein kinase which functions downstream of RAC and CDC42 GTPase, is activated by a variety of stimuli, including RAS and other growth signaling factors. The extracellular signal kinase (ERK) and protein kinase B (AKT) signal pathways have been implicated in the pathogenesis of cancers. Whether PAK1 is sensitive to KRAS mutation signals and plays a role through ERK and AKT signaling pathways in NSCLC needs to be studied. METHODS: The expression of PAK1, ERK and AKT was detected in both lung cancer cell lines and clinical samples. PAK1 RNA interference and specific inhibitor of PAK1(IPA-3) were applied to lung cancer cell lines and mouse xenograft tumors. Cell growth was measured by MTT and colony formation assays. Cell migration and invasion were detected by wound healing and transwell assays. RAS mutation was detected by Taqman probe method. Correlation between KRAS, PAK1, ERK and AKT activities was analyzed in lung cancer patients. RESULTS: PAK1 was highly expressed not only in RAS mutant but also in RAS wild-type lung cancer cells. Using specific inhibitor of PAK1, IPA-3 and PAK1 RNA interference, cell proliferation, migration and invasion of lung cancer cells were reduced significantly, accompanied by decreased activities of ERK and AKT. Dual inhibition of ERK and AKT suppressed these cellular processes to levels comparable to those achieved by reduction in PAK1 expression. In NSCLC patients, PAK1 was not correlated with KRAS mutation but was significantly positively correlated with pERK and pAKT. CONCLUSION: PAK1 played roles in NSCLC proliferation and invasion via ERK and AKT signaling and suggested a therapeutic target for NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/metabolismo , Neoplasias Pulmonares/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Quinases Ativadas por p21/antagonistas & inibidores , Animais , Apoptose , Carcinoma Pulmonar de Células não Pequenas/enzimologia , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Dissulfetos/farmacologia , Ativação Enzimática , Feminino , Genes ras/genética , Xenoenxertos , Humanos , Neoplasias Pulmonares/enzimologia , Neoplasias Pulmonares/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Mutação , Naftóis/farmacologia , Invasividade Neoplásica , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ensaio Tumoral de Célula-Tronco , Cicatrização
20.
Phytother Res ; 35(1): 207-222, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32776610

RESUMO

Propolis, a resinous substance, is collected from plants and processed by honeybees to seal holes and cracks in beehives, protecting them from microbial infection. Based on the plant source and geographical location, propolis is categorized into seven groups. Of these, Pacific propolis, found in the Pacific islands, originates from Macaranga spp. and is, therefore, known as Macaranga-type Pacific propolis. Okinawa propolis and Taiwanese propolis, which are both Macaranga-type propolis, are rich in prenylated flavonoids from the same botanical source, Macaranga tanarius, and are used locally as traditional remedies. They are reported to have a wide range of pharmacological benefits, including antioxidant, anti-inflammation, antimicrobial, anticancer, antidiabetic, anti-Alzheimer's, anti-melanogenic, and longevity-extending effects. However, not much is known about their mode of action, and recently, the extract of Okinawa propolis and its major prenylated flavonoids were found to selectively inhibit the oncogenic kinase, p21-activated kinase 1 (PAK1). PAK1 enables cross-talking among several signaling pathways, causing many diseases/disorders. The existing results reviewed here support the use of Macaranga-type Pacific propolis for the effective development of safe herbal drugs and functional foods. Furthermore, its mode of action by modulating PAK1 can be explored, and the geographical and seasonal effects on its chemistry and biology, and its pharmacokinetics and toxicology should be studied as well.


Assuntos
Euphorbiaceae/química , Própole/farmacologia , Animais , Anti-Infecciosos/farmacologia , Anti-Inflamatórios/farmacologia , Antineoplásicos/farmacologia , Antioxidantes/farmacologia , Abelhas , Flavonoides/farmacologia , Humanos , Hipoglicemiantes/farmacologia , Longevidade/efeitos dos fármacos , Estrutura Molecular , Ilhas do Pacífico , Prenilação , Própole/química , Quinases Ativadas por p21/antagonistas & inibidores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA