Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
1.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 40(5): 411-418, 2024 May.
Artigo em Chinês | MEDLINE | ID: mdl-38790097

RESUMO

Objective To explore the effects of aloperine (Alo) on cigarette smoke-induced injury in human bronchial epithelial cells and its potential mechanism. Methods After human bronchial epithelial 16HBE cells were co-treated by 100 mL/L cigarette smoke extract (CSE) and various concentrations (50,100 and 200 µmol/L) of Alo, cell viability was assessed using CCK-8 assay. Lactate dehydrogenase (LDH) activity was measured with a related kit. Cell apoptosis was evaluated using the terminal-deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling assay (TUNEL) and Western blot analysis. The levels of inflammatory factors were detected by ELISA. Oxidative stress levels were assessed using 2'7'-dichlorofluorescin diacetate (DCFH-DA) staining. The expression of Toll-like receptor 4 (TLR4)/nuclear factor-kappaB (NF-κB)/NLR family pyrin domain containing 3 (NLRP3) signaling-associated proteins was measured by Western blot analysis. After cells were co-treated with 100 mL/L CSE and 200 µmol/L Alo, the aforementioned assays were applied to evaluate the effects of TLR4 overexpression on the TLR4/NF-κB/NLRP3 signaling, LDH activity, apoptosis, inflammatory response and oxidative stress in cells. Results CSE exposure might inhibit 16HBE cell viability, increase LDH activity, apoptosis, inflammatory response and oxidative stress levels and activate TLR4/NF-κB/NLRP3 signaling. Treatment with Alo promoted cell viability, decreased LDH activity, cell apoptosis, inflammation and oxidative stress levels, and inactivated TLR4/NF-κB/NLRP3 signaling. Furthermore, TLR4 overexpression might reverse the protective role of Alo treatment in CSE-induced injury in 16HBE cells. Conclusion Alo may ameliorate CSE-induced injury in human bronchial epithelial cells via inhibiting TLR4/NF-κB/NLRP3 signaling.


Assuntos
Apoptose , Brônquios , Células Epiteliais , NF-kappa B , Proteína 3 que Contém Domínio de Pirina da Família NLR , Quinolizidinas , Transdução de Sinais , Receptor 4 Toll-Like , Humanos , Receptor 4 Toll-Like/metabolismo , NF-kappa B/metabolismo , Transdução de Sinais/efeitos dos fármacos , Células Epiteliais/metabolismo , Células Epiteliais/efeitos dos fármacos , Brônquios/citologia , Brônquios/metabolismo , Brônquios/efeitos dos fármacos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Apoptose/efeitos dos fármacos , Quinolizidinas/farmacologia , Fumaça/efeitos adversos , Estresse Oxidativo/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Linhagem Celular , Nicotiana/efeitos adversos
2.
J Agric Food Chem ; 72(14): 8225-8236, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38557068

RESUMO

As a continuous flow investigation of novel pesticides from natural quinolizidine alkaloids, the chemical compositions of the seeds of Sophora alopecuroides were thoroughly researched. Fifteen new aloperine-type alkaloids (1-15) as well as six known aloperine-type alkaloids (16-21) were obtained from the extract of S. alopecuroides. The structures of 1-21 were confirmed via HRESIMS, NMR, UV, IR, ECD calculations, and X-ray diffraction. The antiviral activities of 1-21 against tobacco mosaic virus (TMV) were detected following the improved method of half-leaf. Compared with ningnanmycin (protective: 69.7% and curative: 64.3%), 15 exhibited excellent protective (71.7%) and curative (64.6%) activities against TMV. Further biological studies illustrated that 15 significantly inhibited the transcription of the TMV-CP gene and increased the activities of polyphenol oxidase (PPO), peroxidase (POD), superoxide dismutase (SOD), and phenylalanine ammonia-lyase (PAL). The antifungal activities of 1-21 against Phytophythora capsica, Botrytis cinerea, Alternaria alternata, and Gibberella zeae were screened according to a mycelial inhibition test. Compound 13 displayed excellent antifungal activity against B. cinerea (EC50: 7.38 µg/mL). Moreover, in vitro antifungal mechanism studies displayed that 13 causes accumulation of reactive oxygen species and finally leads to mycelia cell membrane damage and cell death in vitro.


Assuntos
Alcaloides , Quinolizidinas , Sophora , Vírus do Mosaico do Tabaco , Antifúngicos , Sophora/química , Alcaloides/química , Antivirais/farmacologia , Antivirais/química , Sementes/química
3.
Alkaloids Chem Biol ; 89: 1-37, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36731966

RESUMO

Quinolizidine alkaloids isolated from various marine and terrestrial animals and plants are primarily composed of lupinine-, matrine-, and sparteine-type alkaloids. Matrine, phenanthroquinolizidines, bis-quinolizidines, and small molecules from amphibian skins are representative compounds of such alkaloids. Quinolizidine alkaloids harbor anticancer, antibacterial, antiinflammatory, antifibrosis, antiviral, and anti-arrhythmia. In this chapter, we comprehensively outline the biological activity and pharmacological action of quinolizidine alkaloids and discuss new avenues toward the discovery of novel and more efficient drugs based on these naturally occurring compounds. It is urgent for basic research and clinical practice to conduct more targeted comprehensive research based on the lead drugs of quinolizidine alkaloids with significant pharmacological activity.


Assuntos
Alcaloides , Quinolizidinas , Esparteína , Animais , Alcaloides Quinolizidínicos , Alcaloides/farmacologia , Quinolizidinas/farmacologia , Anti-Inflamatórios , Matrinas
4.
Protein Pept Lett ; 30(3): 250-259, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36734907

RESUMO

BACKGROUND: Aloperine (ALO) is an important active component of quinolizidine alkaloids in Sophora flavescens A and Sophora alopecuroides L, and has effective anticancer activity against multiple cancers. However, the influence and mechanism of ALO on migration, invasion, and adhesion in bladder cancer cells remain unclear. OBJECTIVE: The aim of this study is to determine the anticancer effect of ALO on migration, invasion, and adhesion in bladder cancer cells and to investigate its potential TIMP-4-related mechanism. METHODS: Cell viability, cytotoxicity, wound healing, Transwell invasion, cell adhesion, real-time qPCR, western blot, and ELISA assays were performed to analyze the effect of ALO on migration, invasion, and adhesion in bladder cancer 5637 and UM-UC-3 cells. Furthermore, the anti-TIMP-4 antibody was used to explore the potential effect on ALO-inhibited bladder cancer cells. RESULTS: We have found that ALO significantly suppressed migration, invasion, and adhesion in bladder cancer cells. Furthermore, ALO could downregulate the expression of MMP-2 and MMP-9 mRNAs and proteins, and increase the expression of TIMP-4 mRNA and protein. Moreover, the anti- TIMP-4 antibody reversed the prevention of migration, invasion, and adhesion in ALO-treated bladder cancer cells. CONCLUSION: The data in this study suggest that ALO suppressed migration, invasion, and adhesion in bladder cancer cells by upregulating the expression of TIMP-4.


Assuntos
Quinolizidinas , Neoplasias da Bexiga Urinária , Humanos , Quinolizidinas/farmacologia , Linhagem Celular Tumoral , Neoplasias da Bexiga Urinária/tratamento farmacológico , Movimento Celular
5.
Fitoterapia ; 162: 105278, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35970410

RESUMO

Asthma is a high-incidence disease in the world. Oxysophocarpine (OSC), a quinolizidine alkaloid displays various pharmacological functions including anti-inflammation, neuroprotective, anti-virus and antioxidant. Here, we established mice and cell asthmatic model to explore the effects of OSC for asthma treatment. Mice were sensitized and challenged with ovalbumin (OVA) and treated with OSC before challenge. Enzyme-linked immuno sorbent assay (ELISA), hematoxylin and eosin (H&E), periodic acid-schiff (PAS), tolonium chloride staining and immunohistochemical assay were performed. OSC treatment inhibited inflammatory cell infiltration and mucus secretion in the airway, reduced IgE level in mouse serum and decreased IL-4, IL-5 production in bronchoalveolar lavage fluid (BALF). OSC also reduced the spleen index to regulate immune function. Meanwhile, NCI-H292 cells were induced by lipopolysaccharide (LPS) to simulate airway epithelial injury. OSC pretreatment decreased the IL-6 and IL-8 cytokine levels, mucin 5 AC expression, and mucin 5 AC mRNA level in the cell model. Further, OSC suppressed the phosphorylation of c-Jun N-terminal kinase (JNK), and activator protein 1 (AP-1, Fos and Jun). These findings revealed that OSC alleviated bronchial asthma associated with JNK/AP-1 signaling pathway.


Assuntos
Alcaloides , Asma , Quinolizidinas , Alcaloides/metabolismo , Alcaloides/farmacologia , Animais , Antioxidantes/farmacologia , Asma/tratamento farmacológico , Citocinas/metabolismo , Modelos Animais de Doenças , Amarelo de Eosina-(YS)/metabolismo , Amarelo de Eosina-(YS)/farmacologia , Amarelo de Eosina-(YS)/uso terapêutico , Hematoxilina/metabolismo , Hematoxilina/farmacologia , Hematoxilina/uso terapêutico , Imunoglobulina E , Interleucina-4/metabolismo , Interleucina-4/farmacologia , Interleucina-4/uso terapêutico , Interleucina-5/metabolismo , Interleucina-5/farmacologia , Interleucina-5/uso terapêutico , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Lipopolissacarídeos/farmacologia , Pulmão , Camundongos , Camundongos Endogâmicos BALB C , Estrutura Molecular , Mucinas/metabolismo , Mucinas/farmacologia , Mucinas/uso terapêutico , Muco/metabolismo , Ovalbumina/metabolismo , Ácido Periódico/metabolismo , Ácido Periódico/farmacologia , Ácido Periódico/uso terapêutico , Quinolizidinas/farmacologia , RNA Mensageiro/metabolismo , Cloreto de Tolônio/metabolismo , Cloreto de Tolônio/farmacologia , Cloreto de Tolônio/uso terapêutico , Fator de Transcrição AP-1/metabolismo , Fator de Transcrição AP-1/farmacologia , Fator de Transcrição AP-1/uso terapêutico
6.
Molecules ; 27(13)2022 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-35807242

RESUMO

Genista monspessulana (L.) L.A.S. Johnson (Fabaceae) is a Mediterranean plant introduced to South America and other regions for ornamental purposes. However, it is considered an invasive shrub due to its reproductive vigor in many areas. Unlike other Genista plants, G. monspessulana has few studies disclosing its biologically active components, particularly cytotoxic agents against cancer cells. Thus, as part of our research on anti-proliferative bioactives, a set of ethanolic seed extracts from ten accessions of G. monspessulana, collected in the Bogotá plateau, were evaluated against four cell lines: PC-3 (prostate adenocarcinoma), SiHa (cervical carcinoma), A549 (lung carcinoma), and L929 (normal mouse fibroblasts). Extracts were also analyzed through liquid chromatography coupled with mass spectrometry (LC/MS) to record chemical fingerprints and determine the composition and metabolite variability between accessions. Using multiple covariate statistics, chemical and bioactivity datasets were integrated to recognize patterns and identify bioactive compounds among studied extracts. G. monspessulana seed-derived extracts exhibited dose-dependent antiproliferative activity on PC-3 and SiHa cell lines (>500 µg/mL < IC50 < 26.3 µg/mL). Seven compounds (1−7) were inferred as the compounds most likely responsible for the observed anti-proliferative activity and subsequently isolated and identified by spectroscopic techniques. A tricyclic quinolizidine (1) and a pyranoisoflavone (2) were found to be the most active compounds, exhibiting selectivity against PC-3 cell lines (IC50 < 18.6 µM). These compounds were used as precursors to obtain a quinolizidine-pyranoisoflavone adduct via Betti reaction, improving the activity against PC-3 and comparable to curcumin as the positive control. Results indicated that this composition−activity associative approach is advantageous to finding those bioactive principles efficiently within active extracts. This correlative association can be employed in further studies focused on the targeted isolation of anti-proliferative compounds from Genista plants and accessions.


Assuntos
Carcinoma , Genista , Quinolizidinas , Animais , Genista/química , Masculino , Camundongos , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Sementes
7.
J Org Chem ; 87(14): 8871-8883, 2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35759553

RESUMO

A Ni-catalyzed (4 + 2) cycloaddition of bicyclic 3-azetidinones and alkynes was developed to access indolizidine and quinolizidine alkaloids. A key element was the development of a diazomethylation procedure that allows the efficient synthesis of bicyclic azetidinones from pyroglutamic and 6-oxopiperidine-2-carboxylic acid. A ligand screening led to improved regioselectivity and enantiopurity during the Ni-catalyzed (4 + 2) cycloaddition. This straightforward methodology was leveraged to synthesize (+)-ipalbidine, (+)-septicine, (+)-seco-antofine, and (+)-7-methoxy-julandine.


Assuntos
Alcaloides , Indolizidinas , Quinolizidinas , Catálise , Reação de Cicloadição , Níquel
8.
Molecules ; 27(1)2022 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-35011535

RESUMO

Fusarium oxysporum is an aggressive phytopathogen that affects various plant species, resulting in extensive local and global economic losses. Therefore, the search for competent alternatives is a constant pursuit. Quinolizidine alkaloids (QA) are naturally occurring compounds with diverse biological activities. The structural diversity of quinolizidines is mainly contributed by species of the family Fabaceae, particularly the genus Lupinus. This quinolizidine-based chemo diversity can be explored to find antifungals and even mixtures to address concomitant effects on F. oxysporum. Thus, the antifungal activity of quinolizidine-rich extracts (QREs) from the leaves of eight greenhouse-propagated Lupinus species was evaluated to outline promising QA mixtures against F. oxysporum. Thirteen main compounds were identified and quantified using an external standard. Quantitative analysis revealed different contents per quinolizidine depending on the Lupinus plant, ranging from 0.003 to 32.8 mg/g fresh leaves. Bioautography showed that all extracts were active at the maximum concentration (5 µg/µL). They also exhibited >50% mycelium growth inhibition. All QREs were fungistatic except for the fungicidal QRE of L. polyphyllus Lindl. Angustifoline, matrine, 13α-hydroxylupanine, and 17-oxolupanine were ranked to act jointly against the phytopathogen. Our findings constitute reference information to better understand the antifungal activity of naturally afforded QA mixtures from these globally important plants.


Assuntos
Antifúngicos/farmacologia , Lupinus/química , Extratos Vegetais/farmacologia , Quinolizidinas/farmacologia , Antifúngicos/química , Cromatografia Gasosa-Espectrometria de Massas , Efeito Estufa , Lupinus/crescimento & desenvolvimento , Testes de Sensibilidade Microbiana , Compostos Fitoquímicos/química , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/química , Quinolizidinas/química
9.
Mini Rev Med Chem ; 22(5): 729-742, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34488611

RESUMO

In this review, an effort towards presenting an all-around account of the recent progress on the natural product, aloperine, is made, and the antivirus structure-activity relationship of its derivatives is also summarized comprehensively. In addition, the principal pharmacological effects and corresponding molecular mechanisms of aloperine are discussed. Some new structural modifications of aloperine are also given, which might provide brief guidance for further investigations on the natural product aloperine.


Assuntos
Produtos Biológicos , Quinolizidinas , Produtos Biológicos/farmacologia , Piperidinas/química , Quinolizidinas/farmacologia , Relação Estrutura-Atividade
10.
J Recept Signal Transduct Res ; 42(1): 88-94, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33256538

RESUMO

Age-related macular degeneration (AMD) is a complex multifactorial disease associated with the dysfunction of retinal pigment epithelium (RPE). Aloperine is a quinolizidine alkaloid that has been proven to possess broad pharmacological activities. However, the effects of aloperine on AMD remain unclear. In the present study, we used hydrogen peroxide (H2O2) to induce oxidative injury in human RPE cells (ARPE-19 cells). ARPE-19 cells were pretreated with different concentrations of aloperine for 2 h, followed by H2O2 exposure. Cell cytotoxicity was determined using lactate dehydrogenase (LDH) release assay. Cell viability was measured using Cell Counting Kit-8 (CCK-8) assay. The reactive oxygen species (ROS) generation, malondialdehyde (MDA) level, superoxide dismutase (SOD) activity and glutathione peroxidase (GSH-PX) activity were detected to reflect oxidative status. Western blot was performed to detect the expressions of bcl-2, bax, nuclear factor-erythroid 2-related factor 2 (Nrf2), and heme oxygenase-1 (HO-1). The activity of caspase-3 was also assessed to indicate cell apoptosis. In addition, ARPE-19 cells were transfected with siNrf2 to knock down Nrf2. Our results showed that pretreatment with aloperine elevated the reduced cell viability of H2O2-induced ARPE-19 cells in a dose-dependent manner. Aloperine greatly decreased the production of ROS and MDA, and increased the activities of SOD and GSH-PX in H2O2-stimulated ARPE-19 cells. H2O2-caused a decrease in bcl-2 expression and increases in bax expression and caspase-3 activity were mitigated by aloperine. Moreover, aloperine treatment enhanced the expression levels of Nrf2 in nuclear fraction and the HO-1 expression in lysates. Knockdown of Nrf2 reversed the protective effects of aloperine on H2O2-induced ARPE-19 cells. In conclusion, these findings demonstrated that aloperine protected ARPE-19 cells from H2O2-induced oxidative stress and apoptosis in part via activating the Nrf2/HO-1 signaling pathway. The findings suggested a therapeutic potential of aloperine for the treatment of ADM.


Assuntos
Peróxido de Hidrogênio , Fator 2 Relacionado a NF-E2 , Apoptose , Sobrevivência Celular , Células Epiteliais/metabolismo , Heme Oxigenase-1/genética , Heme Oxigenase-1/metabolismo , Humanos , Peróxido de Hidrogênio/toxicidade , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Quinolizidinas , Espécies Reativas de Oxigênio , Pigmentos da Retina
11.
Nat Prod Res ; 36(7): 1781-1788, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32924588

RESUMO

Seventeen quinolizidine alkaloids, including a new matrine-type one, sophcence A (1), were isolated from the roots of Sophora flavescens Alt. The structure of compound 1 was elucidated by means of 1D and 2D NMR, as well as HR-ESI-MS spectroscopic data. The NMR data of (-)-Δ7-dehydrosophoramine (10) and oxy-N-methylcytisine (12) were reported for the first time. In addition, (+)-sophoranol (4) exhibited moderate inhibition on lipopolysaccharide (LPS)-induced nitric oxide (NO) production in RAW 264.7 macrophages with IC50 value of 22.14 µM, while lupanine (17) was found to inhibit the growth of human glioma stem cells GSC-3# at 20 µg/mL.


Assuntos
Alcaloides , Quinolizidinas , Sophora , Alcaloides/química , Humanos , Lipopolissacarídeos/farmacologia , Raízes de Plantas/química , Quinolizidinas/farmacologia , Quinolizinas/química , Sophora/química
12.
Nat Prod Res ; 36(11): 2722-2734, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33974474

RESUMO

Phytochemical investigation of Sophora secundiflora alkaloid fraction led to isolation of one new quinolizidine alkaloid (1) 13-methoxyanagyrine together with six known ones (2-7). The insecticidal activity of 70% methanol extract of leaves of S. secundiflora, S. tomentosa and the isolated alkaloids were assessed against 3rd instar larvae of Culex pipiens (Diptera: Culicidae) using different concentrations and mortality rate was recorded. Sophora tomentosa extract showed highest mortality rate with median lethal concentration LC50 3.11 ppm after 24 h and 0.66 ppm after 48 h and anagyrine (6) exhibited remarkably insecticidal activity with LC50 value of 3.42 ppm after 24 h of exposure. Additionally, cytotoxic activity of alkaloid fraction of S. secundiflora, S. tomentosa and isolated alkaloids was also studied using crystal violet assay against MCF-7 and HEPG-2 cell lines. Anagyrine (6) exhibited IC50 values of 27.3 ± 0.7 and 30.2 ± 0.9 µg/mL against MCF-7 and HEPG-2 cancer cells, respectively.


Assuntos
Alcaloides , Antineoplásicos , Culex , Culicidae , Inseticidas , Quinolizidinas , Sophora , Alcaloides/toxicidade , Animais , Antineoplásicos/farmacologia , Inseticidas/farmacologia , Larva , Extratos Vegetais/farmacologia , Sophora/química
13.
Tissue Cell ; 74: 101706, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34883316

RESUMO

Anti-tumorous effect of Aloperine (ALO) has been previously found. This study examined the role and the underlying mechanism of ALO in colorectal cancer (CRC). CRC cells were processed by different concentrations of ALO, and subsequently the cell proliferation was detected by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and miR-296-5p expression was determined by quantitative real-time polymerase chain reaction (qRT-PCR). Moreover, the target gene of miR-296-5p was predicted by TargetScan and confirmed by dual-luciferase reporter assay. The expressions of signal transducer and activator of transcription 3 (STAT3), apoptosis-related proteins and epithelial-mesenchymal transition (EMT)-related markers were measured by Western blot. Clone formation assay, flow cytometry, wound-healing and Transwell assays were respectively employed to detect cell proliferation, apoptosis, migration and invasion. ALO inhibited CRC cell proliferation in a dose-dependent manner. MiR-296-5p was low-expressed in CRC tissues and cells, and ALO promoted miR-296-5p expression. STAT3 was targeted by miR-296-5p. Up-regulation of miR-296-5p and ALO treatment both suppressed STAT3 expression, inhibited CRC cell proliferation, migration, invasion as well as the expressions of Bcl-2 and N-cadherin, but promoted apoptosis and expressions of Bax and E-cadherin, which were all reversed by overexpressed STAT3. ALO inhibited CRC cell proliferation, metastasis and EMT but promoted apoptosis via regulating miR-296-5p/STAT3 axis.


Assuntos
Proliferação de Células/efeitos dos fármacos , Neoplasias Colorretais/metabolismo , MicroRNAs/metabolismo , Proteínas de Neoplasias/metabolismo , Quinolizidinas/farmacologia , RNA Neoplásico/metabolismo , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/efeitos dos fármacos , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Células HCT116 , Células HT29 , Humanos , MicroRNAs/genética , Metástase Neoplásica , Proteínas de Neoplasias/genética , RNA Neoplásico/genética , Fator de Transcrição STAT3/genética
14.
Chin J Nat Med ; 19(11): 815-824, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34844720

RESUMO

Cervical cancer (CC) is recognized as the most common neoplasm in the female reproductive system worldwide. The lack of chemotherapeutic agents with outstanding effectiveness and safety severely compromises the anti-cipated prognosis of patients. Aloperine (ALO) is a natural quinolizidine alkaloid with marked anti-cancer effects on multiple malignancies as well as favorable activity in relieving inflammation, allergies and infection. However, its therapeutic efficacy and underlying mechanism in CC are still unclear. In the current study, MTT assay was employed to evaluate the viability of HeLa cells exposed to ALO to preliminarily estimate the effectiveness of ALO in CC. Then, the effects of ALO on the proliferation and apoptosis of HeLa cells were further investigated by plate colony formation and flow cytometry, respectively, while the migration and invasion of ALO-treated HeLa cells were evaluated using Transwell assay. Moreover, nude mice were subcutaneously inoculated with HeLa cells to demonstrate the anti-CC properties of ALO in vivo. The molecular mechanisms underlying these effects of ALO were evaluated by Western blot and immunohistochemical analysis. This study experimentally demonstrated that ALO inhibited the proliferation of HeLa cells via G2 phase cell cycle arrest. Simultaneously, ALO promoted an increase in the percentage of apoptotic HeLa cells by increasing the Bax/Bcl-2 ratio. Additionally, the migration and invasion of HeLa cells were attenuated by ALO treatment, which was considered to result from inhibition of epithelial-to-mesenchymal transition. For molecular mechanisms, the expression and activation of the IL-6-JAK1-STAT3 feedback loop were markedly suppressed by ALO treatment. This study indicated that ALO markedly suppresses the proliferation, migration and invasion and enhances the apoptosis of HeLa cells. In addition, these prominent anti-CC properties of ALO are associated with repression of the IL-6-JAK1-STAT3 feedback loop.


Assuntos
Quinolizidinas/farmacologia , Neoplasias do Colo do Útero , Animais , Apoptose , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Retroalimentação , Feminino , Células HeLa , Humanos , Interleucina-6/genética , Janus Quinase 1/genética , Camundongos , Camundongos Nus , Fator de Transcrição STAT3/genética , Transdução de Sinais , Neoplasias do Colo do Útero/tratamento farmacológico
15.
Bioorg Chem ; 117: 105432, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34678602

RESUMO

Twenty-nine 12 N-substituted aloperine derivatives were synthesized and screened for suppression on PD-L1 expression in H460 cells, as a continuation of our work. Systematic structural modifications led to the identification of compound 6b as the most active PD-L1 modulator. Compound 6b could significantly down-regulate both constitutive and inductive PD-L1 expression in NSCLC cells, and successively enhance the cytotoxicity of co-cultured T cells against tumor cells at the concentration of 20 µM. Also, it exhibited a moderate in vivo anticancer efficacy against Lewis tumor xenograft with a stable PK and safety profile. The mechanism study indicated that 6b mediated the degradation of PD-L1 through a proteasome pathway, rather than a lysosome route. These results provided the powerful information for cancer immunotherapy of aloperine derivatives with unique endocyclic skeleton by targeting PD-L1 to activate immune cells to kill cancer cells.


Assuntos
Antineoplásicos/farmacologia , Antígeno B7-H1/antagonistas & inibidores , Regulação para Baixo/efeitos dos fármacos , Inibidores de Checkpoint Imunológico/farmacologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Quinolizidinas/farmacologia , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Inibidores de Checkpoint Imunológico/síntese química , Inibidores de Checkpoint Imunológico/química , Camundongos , Camundongos Endogâmicos , Estrutura Molecular , Quinolizidinas/síntese química , Quinolizidinas/química , Relação Estrutura-Atividade
16.
Int Immunopharmacol ; 97: 107720, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33945918

RESUMO

Presently, postmenopausal osteoporosis mainly caused by excessive activation of in vivo osteoclasts has become a global public health burden. Natural compounds have gradually become the potential drugs for the treatment of postmenopausal osteoporosis. Aloperine is a new alkaloid extracted from the leaves and seeds of sophora bean. The current studies have proved that aloperine has many biological activities, including anti-inflammatory, antiviral and anticancer activities. This study shows that aloperine can inhibit activity and formation of osteoclast mediated by RANKL in a dose-dependent manner without affecting the activity of bone marrow macrophages (BMM). In addition, it is found that aloperine can inhibit the expression of osteoclast specific marker genes, including nuclear factor of activated T cells cytoplasmic 1 (NFATc1), tartrate resistant acid phosphatase (TRAcP), matrix metallopeptidase 9 (MMP9), cathepsin K (Ctsk), V-ATPase d2 and calcitonin receptor. The in vitro experiment of aloperine proved that aloperine can inhibit the degradation of IκBα and the phosphorylation of P65, ERK and JNK. Additionally, aloperine improves bone loss in ovariectomized (OVX) mice by inhibiting osteoclast activity. This project proved that aloperine can affect the formation of osteoclasts by inhibiting RANKL signaling channel, and it is indicated that aloperine has the potential to be developed as a new drug for the prevention and treatment of postmenopausal osteoporosis.


Assuntos
Osteogênese/efeitos dos fármacos , Osteoporose Pós-Menopausa/tratamento farmacológico , Quinolizidinas/farmacologia , Animais , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Feminino , Fêmur/efeitos dos fármacos , Fêmur/patologia , Humanos , Janus Quinases/antagonistas & inibidores , Janus Quinases/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Camundongos , NF-kappa B/antagonistas & inibidores , NF-kappa B/metabolismo , Osteoclastos/efeitos dos fármacos , Osteoporose Pós-Menopausa/diagnóstico , Osteoporose Pós-Menopausa/etiologia , Osteoporose Pós-Menopausa/patologia , Ovariectomia , Quinolizidinas/uso terapêutico , Ligante RANK/antagonistas & inibidores , Ligante RANK/metabolismo , Microtomografia por Raio-X
17.
Biomolecules ; 11(3)2021 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-33805605

RESUMO

Cystic fibrosis is a monogenic, autosomal, recessive disease characterized by an alteration of chloride transport caused by mutations in the CFTR (Cystic Fibrosis Transmembrane Conductance Regulator) gene. The loss of Phe residue in position 508 (ΔF508-CFTR) causes an incorrect folding of the protein causing its degradation and electrolyte imbalance. CF patients are extremely predisposed to the development of a chronic inflammatory process of the bronchopulmonary system. When the cells of a tissue are damaged, the immune cells are activated and trigger the production of free radicals, provoking an inflammatory process. In addition to routine therapies, today drugs called correctors are available for mutations such as ΔF508-CFTR as well as for others less frequent ones. These active molecules are supposed to facilitate the maturation of the mutant CFTR protein, allowing it to reach the apical membrane of the epithelial cell. Matrine induces ΔF508-CFTR release from the endoplasmic reticulum to cell cytosol and its localization on the cell membrane. We now have evidence that Matrine and Lumacaftor not only restore the transport of mutant CFTR protein, but probably also counteract the inflammatory process by improving the course of the disease.


Assuntos
Alcaloides/uso terapêutico , Aminopiridinas/uso terapêutico , Benzodioxóis/uso terapêutico , Fibrose Cística/tratamento farmacológico , Inflamação/patologia , Quinolizinas/uso terapêutico , Células A549 , Alcaloides/farmacologia , Aminopiridinas/farmacologia , Benzodioxóis/farmacologia , Morte Celular/efeitos dos fármacos , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Fibrose Cística/patologia , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Sinergismo Farmacológico , Quimioterapia Combinada , Humanos , Modelos Biológicos , Estresse Oxidativo/efeitos dos fármacos , Quinolizidinas/farmacologia , Quinolizinas/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Matrinas
18.
Drug Des Devel Ther ; 15: 857-870, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33664565

RESUMO

BACKGROUND: Aloperine can regulate miR-296-5p/Signal Transducer and Activator of Transcription 3 (STAT3) pathway to inhibit the malignant development of colorectal cancer (CRC), but the regulatory mechanism is unclear. This study explored the upstream mechanism of Aloperine in reducing CRC damage from the perspective of the circRNA-miRNA-mRNA regulatory network. METHODS: After treatment with gradient concentrations of Aloperine (0.1 mmol/L, 0.2 mmol/L, 0.4 mmol/L, 0.8 mmol/L and 1 mmol/L) for 24 hours, changes in CRC cell proliferation and apoptosis were detected by functional experiments. Data of the differential expression of miR-296-5p in CRC patients and healthy people were obtained from Starbase. The effects of Aloperine on 12 differentially expressed circRNAs were detected. The binding of miR-296-5p with NOP2/Sun RNA methyltransferase 2 (circNSUN2) and STAT3 was predicted by TargetScan and confirmed through dual-luciferase experiments. The expressions of circNSUN2, miR-296-5p and STAT3 as well as apoptosis-related genes in CRC cells were detected by qRT-PCR and Western blot as needed. Rescue experiments were conducted to test the regulatory effects of circNSUN2, miR-296-5p and STAT3 on CRC cells. RESULTS: Aloperine at a concentration gradient inhibited proliferation and promoted apoptosis in CRC cells. The abnormally low expression of miR-296-5p in CRC could be upregulated by Aloperine. Among the differentially expressed circRNAs in CRC, only circNSUN2 not only targets miR-296-5p, but also can be regulated by Aloperine. The up-regulation of circNSUN2 offset the inhibitory effect of Aloperine on cancer cells. The rescue experiments finally confirmed the regulation of circNSUN2/miR-296-5p/STAT3 axis in CRC cells. CONCLUSION: By regulating the circNSUN2/miR-296-5p/STAT3 pathway, Aloperine prevents the malignant development of CRC cells.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Neoplasias Colorretais/tratamento farmacológico , Quinolizidinas/farmacologia , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Biologia Computacional , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Metiltransferases/genética , Metiltransferases/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Estrutura Molecular , Quinolizidinas/química , RNA Circular/genética , RNA Circular/metabolismo , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Relação Estrutura-Atividade
19.
Bioorg Chem ; 110: 104781, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33677246

RESUMO

Forty-three quinolizidine alkaloids (1-43), including twelve new matrine-type ones, sophalodes A-L (1-7, 17, 19 and 28-30), were isolated from the seeds of Sophora alopecuroides. Structurally, compounds 1-4 were the first examples of C-11 oxidized matrine-type alkaloids from Sophora plants. The structures and absolute configurations of new compounds were elucidated by extensive spectroscopic techniques, X-ray diffraction analysis, and quantum chemical calculation. In addition, the NMR data and absolute configuration of compound 18 was reported for the first time. All the isolates were evaluated for their inhibition on nitric oxide production induced by lipopolysaccharide in RAW 264.7 macrophages, among them, compounds 29, 38 and 42 exhibited the most significant activity with IC50 values of 29.19, 25.86 and 33.30 µM, respectively. Further research about new compound 29 showed that it also suppressed the protein levels of iNOS and COX-2, which revealed its anti-inflammatory potential. Moreover, additional research showed that compound 16 exhibited marginal cytotoxicity against HeLa cell lines, with an IC50 value of 24.27 µM.


Assuntos
Anti-Inflamatórios/farmacologia , Antineoplásicos Fitogênicos/farmacologia , Simulação de Acoplamento Molecular , Quinolizidinas/farmacologia , Sophora/química , Animais , Anti-Inflamatórios/química , Anti-Inflamatórios/isolamento & purificação , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/isolamento & purificação , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Lipopolissacarídeos/antagonistas & inibidores , Lipopolissacarídeos/farmacologia , Camundongos , Estrutura Molecular , Óxido Nítrico/antagonistas & inibidores , Óxido Nítrico/biossíntese , Quinolizidinas/química , Quinolizidinas/isolamento & purificação , Células RAW 264.7 , Relação Estrutura-Atividade
20.
J Nat Prod ; 84(4): 1198-1202, 2021 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-33606529

RESUMO

Five new quinolizidine alkaloids were isolated from the leaves of Cylicomorpha solmstii (Urb.) Urb. (Caricaceae) and named cylicomorphins A-E (1-5). They all are ester derivatives of the same basic quinolizidine skeleton bearing hydroxy, methyl, and ethanoic acid substituents. Their structures were mainly established by NMR spectroscopy, and the absolute configuration is proposed on the basis of VCD data and Mosher ester derivatization. Compound 5 displayed cytotoxicity in the 10 µM range against an HCT-116 cell line.


Assuntos
Alcaloides/farmacologia , Antineoplásicos Fitogênicos/farmacologia , Caricaceae/química , Quinolizidinas/farmacologia , Alcaloides/isolamento & purificação , Antineoplásicos Fitogênicos/isolamento & purificação , Camarões , Células HCT116 , Humanos , Estrutura Molecular , Compostos Fitoquímicos/isolamento & purificação , Compostos Fitoquímicos/farmacologia , Folhas de Planta/química , Quinolizidinas/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA