Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
1.
ACS Chem Biol ; 16(9): 1770-1778, 2021 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-34427427

RESUMO

The utility of in vitro human disease models is mainly dependent on the availability and functional maturity of tissue-specific cell types. We have previously screened for and identified small molecules that can enhance hepatocyte function in vitro. Here, we characterize the functional effects of one of the hits, FH1, on primary human hepatocytes in vitro, and also in vivo on primary hepatocytes in a zebrafish model. Furthermore, we conducted an analogue screen to establish the structure-activity relationship of FH1. We performed affinity-purification proteomics that identified NQO2 to be a potential binding target for this small molecule, revealing a possible link between inflammatory signaling and hepatocellular function in zebrafish and human hepatocyte model systems.


Assuntos
Biomarcadores/metabolismo , Inibidores Enzimáticos/química , Hepatócitos/metabolismo , Quinona Redutases/antagonistas & inibidores , Animais , Inibidores Enzimáticos/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Ensaios de Triagem em Larga Escala , Humanos , Interleucina-6/genética , Fígado , Simulação de Acoplamento Molecular , Ligação Proteica , Fator de Transcrição STAT3/genética , Transdução de Sinais , Relação Estrutura-Atividade , Fatores de Necrose Tumoral/genética , Peixe-Zebra
2.
J Agric Food Chem ; 68(43): 11975-11986, 2020 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-33054205

RESUMO

Garcinia mangostana L. (mangosteen) is a famous tropical fruit that contains a large number of xanthones. Regular consumption of mangosteen may confer health benefits and prevent some diseases, such as malaria. Quinone reductase 2 (QR-2) is a cytosolic enzyme found in human red blood cells, and it is becoming a target for chemoprevention because it is involved in the mechanisms of several diseases, including malaria. To understand whether the xanthones present in mangosteen might inhibit the activity of QR-2, blood samples were collected from rat following the oral administration of mangosteen extract and then incubated with QR-2 followed by UF-HPLC-QTOF/MS analysis to rapidly screen for and identify the QR-2-inhibiting xanthones. A total of 16 xanthones were identified, and six of these (α-mangostin, γ-mangostin, 8-deoxyartanin, 1,3,7-trihydroxy-2,8-di(3-methylbut-2-enyl)xanthone, garcinone E, and 9-hydroxycalabaxanthone) were subjected to QR-2 inhibition assay. γ-Mangostin exhibited the strongest inhibition, achieving an IC50 value of 3.82 ± 0.51 µM. Its interaction with QR-2 was found to involve hydrogen bond and arene-arene interaction as revealed by molecular docking. The present study could provide new insight into the potential application of mangosteen as functional food ingredients for inhibiting the activity of QR-2. However, the extent of daily intake of mangosteen required and the exact contribution of mangosteen to the prevention and treatment of malaria remain subjects of further study.


Assuntos
Inibidores Enzimáticos/farmacocinética , Garcinia mangostana/química , Extratos Vegetais/farmacocinética , Quinona Redutases/antagonistas & inibidores , Administração Oral , Animais , Cromatografia Líquida , Inibidores Enzimáticos/administração & dosagem , Inibidores Enzimáticos/química , Frutas/química , Humanos , Simulação de Acoplamento Molecular , Estrutura Molecular , Extratos Vegetais/administração & dosagem , Extratos Vegetais/química , Quinona Redutases/química , Quinona Redutases/metabolismo , Ratos , Ratos Sprague-Dawley , Espectrometria de Massas em Tandem , Xantonas/administração & dosagem , Xantonas/química , Xantonas/farmacocinética
3.
Eur J Med Chem ; 182: 111649, 2019 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-31514018

RESUMO

(NRH):quinone oxidoreductase 2 (NQO2) is associated with various processes involved in cancer initiation and progression probably via the production of ROS during quinone metabolism. Thus, there is a need to develop inhibitors of NQO2 that are active in vitro and in vivo. As part of a strategy to achieve this we have used the 4-aminoquinoline backbone as a starting point and synthesized 21 novel analogues. The syntheses utilised p-anisidine with Meldrum's acid and trimethyl orthoacetate or trimethyl orthobenzoate to give the 4-hydrazin-quinoline scaffold, which was derivatised with aldehydes or acid chlorides to give hydrazone or hydrazide analogues, respectively. The hydrazones were the most potent inhibitors of NQO2 in cell free systems, some with low nano-molar IC50 values. Structure-activity analysis highlighted the importance of a small substituent at the 2-position of the 4-aminoquinoline ring, to reduce steric hindrance and improve engagement of the scaffold within the NQO2 active site. Cytotoxicity and NQO2-inhibitory activity in vitro was evaluated using ovarian cancer SKOV-3 and TOV-112 cells (expressing high and low levels of NQO2, respectively). Generally, the hydrazones were more toxic than hydrazide analogues and further, toxicity is unrelated to cellular NQO2 activity. Pharmacological inhibition of NQO2 in cells was measured using the toxicity of CB1954 as a surrogate end-point. Both the hydrazone and hydrazide derivatives are functionally active as inhibitors of NQO2 in the cells, but at different inhibitory potency levels. In particular, 4-((2-(6-methoxy-2-methylquinolin-4-yl)hydrazono)methyl)phenol has the greatest potency of any compound yet evaluated (53 nM), which is 50-fold lower than its toxicity IC50. This compound and some of its analogues could serve as useful pharmacological probes to determine the functional role of NQO2 in cancer development and response to therapy.


Assuntos
Aminoquinolinas/farmacologia , Descoberta de Drogas , Inibidores Enzimáticos/farmacologia , Hidrazonas/farmacologia , Quinona Redutases/antagonistas & inibidores , Aminoquinolinas/síntese química , Aminoquinolinas/química , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Humanos , Hidrazonas/síntese química , Hidrazonas/química , Modelos Moleculares , Estrutura Molecular , Quinona Redutases/metabolismo , Relação Estrutura-Atividade , Células Tumorais Cultivadas
4.
Biosci Rep ; 39(9)2019 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-31431515

RESUMO

Human NAD(P)H quinone oxidoreductase (DT-diaphorase, NQO1) exhibits negative cooperativity towards its potent inhibitor, dicoumarol. Here, we addressed the hypothesis that the effects of the two cancer-associated polymorphisms (p.R139W and p.P187S) may be partly mediated by their effects on inhibitor binding and negative cooperativity. Dicoumarol stabilized both variants and bound with much higher affinity for p.R139W than p.P187S. Both variants exhibited negative cooperativity towards dicoumarol; in both cases, the Hill coefficient (h) was approximately 0.5 and similar to that observed with the wild-type protein. NQO1 was also inhibited by resveratrol and by nicotinamide. Inhibition of NQO1 by resveratrol was approximately 10,000-fold less strong than that observed with the structurally similar enzyme, NRH quinine oxidoreductase 2 (NQO2). The enzyme exhibited non-cooperative behaviour towards nicotinamide, whereas resveratrol induced modest negative cooperativity (h = 0.85). Nicotinamide stabilized wild-type NQO1 and p.R139W towards thermal denaturation but had no detectable effect on p.P187S. Resveratrol destabilized the wild-type enzyme and both cancer-associated variants. Our data suggest that neither polymorphism exerts its effect by changing the enzyme's ability to exhibit negative cooperativity towards inhibitors. However, it does demonstrate that resveratrol can inhibit NQO1 in addition to this compound's well-documented effects on NQO2. The implications of these findings for molecular pathology are discussed.


Assuntos
Estabilidade Enzimática/efeitos dos fármacos , NAD(P)H Desidrogenase (Quinona)/genética , Neoplasias/genética , Quinona Redutases/genética , Dicumarol/química , Dicumarol/farmacologia , Humanos , Cinética , NAD(P)H Desidrogenase (Quinona)/antagonistas & inibidores , NAD(P)H Desidrogenase (Quinona)/química , Neoplasias/química , Neoplasias/tratamento farmacológico , Neoplasias/enzimologia , Niacinamida/química , Niacinamida/farmacologia , Polimorfismo Genético , Ligação Proteica , Quinona Redutases/antagonistas & inibidores , Quinona Redutases/química
5.
J Biol Chem ; 294(32): 12077-12090, 2019 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-31213529

RESUMO

Unlike most other tissues, the colon epithelium is exposed to high levels of H2S derived from gut microbial metabolism. H2S is a signaling molecule that modulates various physiological effects. It is also a respiratory toxin that inhibits complex IV in the electron transfer chain (ETC). Colon epithelial cells are adapted to high environmental H2S exposure as they harbor an efficient mitochondrial H2S oxidation pathway, which is dedicated to its disposal. Herein, we report that the sulfide oxidation pathway enzymes are apically localized in human colonic crypts at the host-microbiome interface, but that the normal apical-to-crypt gradient is lost in colorectal cancer epithelium. We found that sulfide quinone oxidoreductase (SQR), which catalyzes the committing step in the mitochondrial sulfide oxidation pathway and couples to complex III, is a critical respiratory shield against H2S poisoning. H2S at concentrations ≤20 µm stimulated the oxygen consumption rate in colon epithelial cells, but, when SQR expression was ablated, H2S concentrations as low as 5 µm poisoned cells. Mitochondrial H2S oxidation altered cellular bioenergetics, inducing a reductive shift in the NAD+/NADH redox couple. The consequent electron acceptor insufficiency caused uridine and aspartate deficiency and enhanced glutamine-dependent reductive carboxylation. The metabolomic signature of this H2S-induced stress response mapped, in part, to redox-sensitive nodes in central carbon metabolism. Colorectal cancer tissues and cell lines appeared to counter the growth-restricting effects of H2S by overexpressing sulfide oxidation pathway enzymes. Our findings reveal an alternative mechanism for H2S signaling, arising from alterations in mitochondrial bioenergetics that drive metabolic reprogramming.


Assuntos
Metabolismo Energético , Sulfeto de Hidrogênio/metabolismo , Mitocôndrias/metabolismo , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Colo/citologia , Colo/metabolismo , Colo/patologia , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Cisteína/química , Cisteína/metabolismo , Metabolismo Energético/efeitos dos fármacos , Humanos , Sulfeto de Hidrogênio/química , Sulfeto de Hidrogênio/farmacologia , NAD/química , Oxirredução , Consumo de Oxigênio/efeitos dos fármacos , Quinona Redutases/antagonistas & inibidores , Quinona Redutases/genética , Quinona Redutases/metabolismo , Interferência de RNA , RNA Interferente Pequeno/metabolismo
6.
J Bacteriol ; 201(11)2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30858300

RESUMO

Korormicin is an antibiotic produced by some pseudoalteromonads which selectively kills Gram-negative bacteria that express the Na+-pumping NADH:quinone oxidoreductase (Na+-NQR.) We show that although korormicin is an inhibitor of Na+-NQR, the antibiotic action is not a direct result of inhibiting enzyme activity. Instead, perturbation of electron transfer inside the enzyme promotes a reaction between O2 and one or more redox cofactors in the enzyme (likely the flavin adenine dinucleotide [FAD] and 2Fe-2S center), leading to the production of reactive oxygen species (ROS). All Pseudoalteromonas contain the nqr operon in their genomes, including Pseudoalteromonas strain J010, which produces korormicin. We present activity data indicating that this strain expresses an active Na+-NQR and that this enzyme is not susceptible to korormicin inhibition. On the basis of our DNA sequence data, we show that the Na+-NQR of Pseudoalteromonas J010 carries an amino acid substitution (NqrB-G141A; Vibrio cholerae numbering) that in other Na+-NQRs confers resistance against korormicin. This is likely the reason that a functional Na+-NQR is able to exist in a bacterium that produces a compound that typically inhibits this enzyme and causes cell death. Korormicin is an effective antibiotic against such pathogens as Vibrio cholerae, Aliivibrio fischeri, and Pseudomonas aeruginosa but has no effect on Bacteroides fragilis and Bacteroides thetaiotaomicron, microorganisms that are important members of the human intestinal microflora.IMPORTANCE As multidrug antibiotic resistance in pathogenic bacteria continues to rise, there is a critical need for novel antimicrobial agents. An essential requirement for a useful antibiotic is that it selectively targets bacteria without significant effects on the eukaryotic hosts. Korormicin is an excellent candidate in this respect because it targets a unique respiratory enzyme found only in prokaryotes, the Na+-pumping NADH:quinone oxidoreductase (Na+-NQR). Korormicin is synthesized by some species of the marine bacterium Pseudoalteromonas and is a potent and specific inhibitor of Na+-NQR, an enzyme that is essential for the survival and proliferation of many Gram-negative human pathogens, including Vibrio cholerae and Pseudomonas aeruginosa, among others. Here, we identified how korormicin selectively kills these bacteria. The binding of korormicin to Na+-NQR promotes the formation of reactive oxygen species generated by the reaction of the FAD and the 2Fe-2S center cofactors with O2.


Assuntos
Antibacterianos/farmacologia , Antibiose , Pseudoalteromonas/metabolismo , Espécies Reativas de Oxigênio/agonistas , Aliivibrio fischeri/efeitos dos fármacos , Aliivibrio fischeri/enzimologia , Aliivibrio fischeri/crescimento & desenvolvimento , Aliivibrio fischeri/patogenicidade , Antibacterianos/metabolismo , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Bacteroides fragilis/efeitos dos fármacos , Bacteroides fragilis/enzimologia , Bacteroides fragilis/crescimento & desenvolvimento , Bacteroides thetaiotaomicron/efeitos dos fármacos , Bacteroides thetaiotaomicron/enzimologia , Bacteroides thetaiotaomicron/crescimento & desenvolvimento , Ácidos Graxos Insaturados/biossíntese , Ácidos Graxos Insaturados/farmacologia , Flavina-Adenina Dinucleotídeo/metabolismo , Expressão Gênica , Lactonas/farmacologia , Testes de Sensibilidade Microbiana , Modelos Moleculares , Óperon , Oxirredução , Estrutura Secundária de Proteína , Pseudoalteromonas/genética , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/enzimologia , Pseudomonas aeruginosa/crescimento & desenvolvimento , Pseudomonas aeruginosa/patogenicidade , Quinona Redutases/antagonistas & inibidores , Quinona Redutases/genética , Quinona Redutases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , ATPase Trocadora de Sódio-Potássio/antagonistas & inibidores , ATPase Trocadora de Sódio-Potássio/genética , ATPase Trocadora de Sódio-Potássio/metabolismo , Vibrio cholerae/efeitos dos fármacos , Vibrio cholerae/enzimologia , Vibrio cholerae/crescimento & desenvolvimento , Vibrio cholerae/patogenicidade
7.
Mol Pharmacol ; 95(3): 269-285, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30567956

RESUMO

Quinone reductase 2 (QR2, E.C. 1.10.5.1) is an enzyme with a feature that has attracted attention for several decades: in standard conditions, instead of recognizing NAD(P)H as an electron donor, it recognizes putative metabolites of NADH, such as N-methyl- and N-ribosyl-dihydronicotinamide. QR2 has been particularly associated with reactive oxygen species and memory, strongly suggesting a link among QR2 (as a possible key element in pro-oxidation), autophagy, and neurodegeneration. In molecular and cellular pharmacology, understanding physiopathological associations can be difficult because of a lack of specific and powerful tools. Here, we present a thorough description of the potent, nanomolar inhibitor [2-(2-methoxy-5H-1,4b,9-triaza(indeno[2,1-a]inden-10-yl)ethyl]-2-furamide (S29434 or NMDPEF; IC50 = 5-16 nM) of QR2 at different organizational levels. We provide full detailed syntheses, describe its cocrystallization with and behavior at QR2 on a millisecond timeline, show that it penetrates cell membranes and inhibits QR2-mediated reactive oxygen species (ROS) production within the 100 nM range, and describe its actions in several in vivo models and lack of actions in various ROS-producing systems. The inhibitor is fairly stable in vivo, penetrates cells, specifically inhibits QR2, and shows activities that suggest a key role for this enzyme in different pathologic conditions, including neurodegenerative diseases.


Assuntos
Piridinas/farmacologia , Alcaloides de Pirrolizidina/farmacologia , Quinona Redutases/antagonistas & inibidores , Animais , Linhagem Celular Tumoral , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Células Hep G2 , Humanos , Masculino , Camundongos , NAD(P)H Desidrogenase (Quinona)/metabolismo , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo
8.
Bioorg Med Chem Lett ; 28(8): 1292-1297, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29567345

RESUMO

Inhibitors of the enzyme NQO2 (NRH: quinone oxidoreductase 2) are of potential use in cancer chemotherapy and malaria. We have previously reported that non-symmetrical furan amidines are potent inhibitors of NQO2 and here novel analogues are evaluated. The furan ring has been changed to other heterocycles (imidazole, N-methylimidazole, oxazole, thiophene) and the amidine group has been replaced with imidate, reversed amidine, N-arylamide and amidoxime to probe NQO2 activity, improve solubility and decrease basicity of the lead furan amidine. All compounds were fully characterised spectroscopically and the structure of the unexpected product N-hydroxy-4-(5-methyl-4-phenylfuran-2-yl)benzamidine was established by X-ray crystallography. The analogues were evaluated for inhibition of NQO2, which showed lower activity than the lead furan amidine. The observed structure-activity relationship for the furan-amidine series with NQO2 was rationalized by preliminary molecular docking and binding mode analysis. In addition, the oxazole-amidine analogue inhibited the growth of Plasmodium falciparum with an IC50 value of 0.3 µM.


Assuntos
Amidinas/farmacologia , Inibidores Enzimáticos/farmacologia , Furanos/farmacologia , Quinona Redutases/antagonistas & inibidores , Amidinas/síntese química , Amidinas/química , Antimaláricos/síntese química , Antimaláricos/química , Antimaláricos/farmacologia , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Furanos/síntese química , Furanos/química , Imidazóis/síntese química , Imidazóis/química , Imidazóis/farmacologia , Estrutura Molecular , Oxazóis/síntese química , Oxazóis/química , Oxazóis/farmacologia , Oximas/síntese química , Oximas/química , Oximas/farmacologia , Plasmodium falciparum/efeitos dos fármacos , Relação Estrutura-Atividade , Tiofenos/síntese química , Tiofenos/química , Tiofenos/farmacologia
9.
Bull Exp Biol Med ; 159(1): 44-7, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-26033588

RESUMO

Cell damage depending on activity of quinone reductase 2 (MT3 receptor) was simulated in experiments on bone marrow cell suspension and assessed by menadione-induced DNA breaks measured by comet assay. We analyzed the protective effect of afobazole interacting with MT1, MT3, σ1 receptors, and monoamine oxidase A and its main metabolite M11 that specifi cally binds to MT3 receptors. Both compounds reduced the level of menadione-induced DNA damage (afobazole was effective in lower concentrations in comparison with M-11). Conclusion was made on the contribution of MT3 receptors to the protective effect of afobazole, but the observed concentration differences indicate possible contribution of other targets of anxiolytic drug to the protective mechanisms.


Assuntos
Ansiolíticos/farmacologia , Benzimidazóis/farmacologia , Células da Medula Óssea/efeitos dos fármacos , Quebras de DNA/efeitos dos fármacos , Morfolinas/farmacologia , Fármacos Neuroprotetores/farmacologia , Quinona Redutases/antagonistas & inibidores , Receptores de Melatonina/efeitos dos fármacos , Animais , Ansiolíticos/metabolismo , Benzimidazóis/metabolismo , Biotransformação , Células Cultivadas , Ensaio Cometa , Dicumarol/farmacologia , Avaliação Pré-Clínica de Medicamentos , Metalotioneína 3 , Camundongos , Monoaminoxidase , Inibidores da Monoaminoxidase , Morfolinas/metabolismo , NAD(P)H Desidrogenase (Quinona)/antagonistas & inibidores , Fármacos Neuroprotetores/metabolismo , Quinona Redutases/metabolismo , Receptor MT1 de Melatonina/efeitos dos fármacos , Receptores sigma/efeitos dos fármacos , Vitamina K 3/toxicidade
10.
J Photochem Photobiol B ; 148: 197-208, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25966308

RESUMO

For a compound to be a best chemopreventive agent it should be a descent DNA binder and at the same time should be active against any of the three stages of carcinogenesis i.e. cancer initiation, cancer propagation and tumor growth. Most of the problems associated with chemotherapy can be overcome if the chemopreventive agent is active against all the three stages of cancer development. Cancer may be initiated by higher concentration of free radicals, inflammating agents and phase I enzymes (Cytochrome P450) in the body. Cancer propagation can be very efficiently controlled by inducing the phase II enzymes (glutathione S-transferases (GSTs), UDP-glucuronosyl transferases, and quinone reductases) in the body and cancer termination depends on the killing of the faulty cells i.e. cytotoxic actions. This article reports comprehensively the comparative DNA binding studies (with, cyclic voltammetry, UV-vis spectroscopy and viscometry), antioxidant activities (DPPH scavenging), anti-inflammatory activities (nitrite inhibition), phase I enzyme inhibition activities (aromatase inhibition), phase II enzyme induction studies (quinone reductase induction) and cytotoxic studies against neuroblastoma (MYCN2 and SK-N-SH), liver cancer (Hepa 1c1c7) and breast cancer (MCF-7) of seventeen ferrocene incorporated selenoureas.


Assuntos
Antineoplásicos/química , Compostos Ferrosos/química , Compostos Organosselênicos/química , Ureia/análogos & derivados , Animais , Antineoplásicos/síntese química , Antineoplásicos/toxicidade , Apoptose/efeitos dos fármacos , Linhagem Celular , Cristalografia por Raios X , DNA/química , DNA/metabolismo , Glucuronosiltransferase/antagonistas & inibidores , Glucuronosiltransferase/metabolismo , Glutationa Transferase/antagonistas & inibidores , Glutationa Transferase/metabolismo , Humanos , Células MCF-7 , Metalocenos , Camundongos , Conformação Molecular , Óxido Nítrico/química , Quinona Redutases/antagonistas & inibidores , Quinona Redutases/metabolismo , Relação Estrutura-Atividade , Ureia/química
11.
Curr Med Chem ; 20(33): 4195-202, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23992305

RESUMO

To obtain information on anti-prostate cancer (CaP) activities of piceatannol, a metabolite biotransformed from resveratrol by cytochrome P450 CYP1B, CWR22Rv1 cells were incubated with increasing dose of piceatannol. Proliferation and apoptosis assays in exposed cells showed that piceatannol produced inhibition comparable to resveratrol. To determine whether quinone reductase 2 (NQO2) plays a role in the observed effects, in silico analysis was performed. Piceatannol interacted with NQO2 at the same site as resveratrol forming hydrogen bond with asparagine-161 (ASN161). NQO2 mediated anti-CaP effects of piceatannol were also tested and supported by the attenuation of anti-proliferative activity and reduction in extent of inhibition of NQO2 activity by piceatannol in NQO2-knockdown cells relative to NQO2- expressing cells, and by the copious expression of CYP1B in CWR22Rv1 cells. These results show that NQO2 is an intracellular target for piceatannol, suggesting that CaP prevention by resveratrol may be partially attributed to its conversion to piceatannol.


Assuntos
Apoptose/efeitos dos fármacos , Quinona Redutases/antagonistas & inibidores , Estilbenos/toxicidade , Hidrocarboneto de Aril Hidroxilases/metabolismo , Sítios de Ligação , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Citocromo P-450 CYP1B1 , Humanos , Simulação de Acoplamento Molecular , NAD(P)H Desidrogenase (Quinona)/metabolismo , Estrutura Terciária de Proteína , Quinona Redutases/genética , Quinona Redutases/metabolismo , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Resveratrol , Estilbenos/química , Estilbenos/metabolismo
12.
Bioorg Med Chem ; 21(19): 6022-37, 2013 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-23953689

RESUMO

Resveratrol (3,5,4'-trihydroxylstilbene) has been proposed to elicit a variety of positive health effects including protection against cancer and cardiovascular disease. The highest affinity target of resveratrol identified so far is the oxidoreductase enzyme quinone reductase 2 (QR2), which is believed to function in metabolic reduction and detoxification processes; however, evidence exists linking QR2 to the metabolic activation of quinones, which can lead to cell toxicity. Therefore, inhibition of QR2 by resveratrol may protect cells against reactive intermediates and eventually cancer. With the aim of identifying novel inhibitors of QR2, we designed, synthesized, and tested two generations of resveratrol analogue libraries for inhibition of QR2. In addition, X-ray crystal structures of six of the resveratrol analogues in the active site of QR2 were determined. Several novel inhibitors of QR2 were successfully identified as well as a compound that inhibits QR2 with a novel binding orientation.


Assuntos
Desenho de Fármacos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Quinona Redutases/antagonistas & inibidores , Estilbenos/química , Anilidas/química , Domínio Catalítico , Cristalografia por Raios X , Ativação Enzimática/efeitos dos fármacos , Humanos , Concentração Inibidora 50 , Estrutura Molecular , Resveratrol , Bibliotecas de Moléculas Pequenas , Estilbenos/síntese química , Estilbenos/farmacologia
13.
Br J Pharmacol ; 168(1): 44-5, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22563778

RESUMO

The use of the herbicide paraquat (1,1'-dimethyl-4,4'-bipyridylium dichloride; PQ) has been fiercely challenged due to its severe acute toxicity, putative neurotoxicity after long-term exposure and lack of antidotes. Breakthrough research on PQ is therefore required for an effective risk control and to allow a safer use of PQ in the future. The silencing or inhibition of quinone oxidoreductase 2, a NAD(P)H-independent flavoenzyme, was shown to significantly attenuate PQ toxicity in vitro, in primary pneumocytes and astroglial U373 cells, and to strongly antagonize PQ-induced systemic toxicity and animal mortality. The novel results reported in this issue of BJP, added to recent findings using sodium salicylate and lysine acetylsalicylate, in which full survival of PQ-intoxicated rats was also achieved, open the door for new preventative and therapeutic strategies that may lead to safer use of this effective pesticide.


Assuntos
Antídotos/farmacologia , Apoptose/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Herbicidas/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Paraquat/toxicidade , Quinona Redutases/antagonistas & inibidores , Animais , Humanos
14.
Br J Pharmacol ; 168(1): 46-59, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22289031

RESUMO

BACKGROUND AND PURPOSE The mechanisms of paraquat (PQ)-induced toxicity are poorly understood and PQ poisoning is often fatal due to a lack of effective antidotes. In this study we report the effects of N-[2-(2-methoxy-6H-dipyrido{2,3-a:3,2-e}pyrrolizin-11-yl)ethyl]-2-furamide (NMDPEF), a melatonin-related inhibitor of quinone oxidoreductase2 (QR2) on the toxicity of PQ in vitro & in vivo. EXPERIMENTAL APPROACH Prevention of PQ-induced toxicity was tested in different cells, including primary pneumocytes and astroglial U373 cells. Cell death and reactive oxygen species (ROS) were analysed by flow cytometry and fluorescent probes. QR2 silencing was achieved by lentiviral shRNAs. PQ (30 mg·kg(-1)) and NMDPEF were administered i.p. to Wistar rats and animals were monitored for 28 days. PQ toxicity in the substantia nigra (SN) was tested by a localized microinfusion and electrocorticography. QR2 activity was measured by fluorimetry of N-benzyldihydronicotinamide oxidation. KEY RESULTS NMDPEF potently antagonized non-apoptotic PQ-induced cell death, ROS generation and inhibited cellular QR2 activity. In contrast, the cytoprotective effect of melatonin and apocynin was limited and transient compared with NMDPEF. Silencing of QR2 attenuated PQ-induced cell death and reduced the efficacy of NMDPEF. Significantly, NMDPEF (4.5 mg·kg(-1)) potently antagonized PQ-induced systemic toxicity and animal mortality. Microinfusion of NMDPEF into SN prevented severe behavioural and electrocortical effects of PQ which correlated with inhibition of malondialdehyde accumulation in cells and tissues. CONCLUSIONS AND IMPLICATIONS NMDPEF protected against PQ-induced toxicity in vitro and in vivo, suggesting a key role for QR2 in the regulation of oxidative stress.


Assuntos
Antídotos/farmacologia , Apoptose/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Herbicidas/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Paraquat/toxicidade , Quinona Redutases/antagonistas & inibidores , Células Epiteliais Alveolares/efeitos dos fármacos , Células Epiteliais Alveolares/patologia , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/patologia , Células Cultivadas , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Técnicas de Silenciamento de Genes , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Malondialdeído/metabolismo , Glândulas Mamárias Humanas/metabolismo , Glândulas Mamárias Humanas/patologia , Camundongos , Quinona Redutases/efeitos dos fármacos , Quinona Redutases/genética , Quinona Redutases/metabolismo , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo , Substância Negra/efeitos dos fármacos , Substância Negra/patologia
15.
FASEB J ; 27(2): 601-11, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23104984

RESUMO

It is well established that exposure of mammalian cells to hydrogen sulfide (H(2)S) suppresses mitochondrial function by inhibiting cytochrome-c oxidase (CcOX; complex IV). However, recent experimental data show that administration of H(2)S to mammalian cells can serve as an electron donor and inorganic source of energy. The aim of our study was to investigate the role of endogenously produced H(2)S in the regulation of mitochondrial electron transport and oxidative phosphorylation in isolated liver mitochondria and in the cultured murine hepatoma cell line Hepa1c1c7. Low concentrations of H(2)S (0.1-1 µM) elicited a significant increase in mitochondrial function, while higher concentrations of H(2)S (3-30 µM) were inhibitory. The positive bioenergetic effect of H(2)S required a basal activity of the Krebs cycle and was most pronounced at intermediate concentrations of succinate. 3-mercaptopyruvate (3-MP), the substrate of the mitochondrial enzyme 3-mercaptopyruvate sulfurtransferase (3-MST) stimulated mitochondrial H(2)S production and enhanced mitochondrial electron transport and cellular bioenergetics at low concentrations (10-100 nM), while at higher concentrations, it inhibited cellular bioenergetics. SiRNA silencing of 3-MST reduced basal bioenergetic parameters and prevented the stimulating effect of 3-MP on mitochondrial bioenergetics. Silencing of sulfide quinone oxidoreductase (SQR) also reduced basal and 3-MP-stimulated bioenergetic parameters. We conclude that an endogenous intramitochondrial H(2)S-producing pathway, governed by 3-MST, complements and balances the bioenergetic role of Krebs cycle-derived electron donors. This pathway may serve a physiological role in the maintenance of mitochondrial electron transport and cellular bioenergetics.


Assuntos
Sulfeto de Hidrogênio/metabolismo , Mitocôndrias Hepáticas/metabolismo , Sulfurtransferases/metabolismo , Animais , Sequência de Bases , Linhagem Celular , Ciclo do Ácido Cítrico , Cisteína/análogos & derivados , Cisteína/metabolismo , Transporte de Elétrons , Metabolismo Energético , Masculino , Camundongos , Modelos Biológicos , Fosforilação Oxidativa , Quinona Redutases/antagonistas & inibidores , Quinona Redutases/genética , Quinona Redutases/metabolismo , RNA Interferente Pequeno/genética , Ratos , Ratos Sprague-Dawley , Sulfurtransferases/antagonistas & inibidores , Sulfurtransferases/genética
16.
J Med Chem ; 55(8): 3934-44, 2012 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-22494098

RESUMO

Recent studies have revealed that compounds believed to be highly selective frequently address multiple target proteins. We investigated the protein interaction profile of the widely prescribed thrombin inhibitor dabigatran (1), resulting in the identification and subsequent characterization of an additional target enzyme. Our findings are based on an unbiased functional proteomics approach called capture compound mass spectrometry (CCMS) and were confirmed by independent biological assays. 1 was shown to specifically bind ribosyldihydronicotinamide dehydrogenase (NQO2), a detoxification oxidoreductase. Molecular dockings predicted and biological experiments confirmed that dabigatran ethyl ester (2) inhibits NQO2 even more effectively than the parent 1 itself. Our data show that 1 and 2 are inhibitors of NQO2, thereby revealing a possible new aspect in the mode of action of 1. We present a workflow employing chemical proteomics, molecular modeling, and functional assays by which a compound's protein-interaction profile can be determined and used to tune the binding affinity.


Assuntos
Benzimidazóis/farmacologia , Inibidores Enzimáticos/farmacologia , Piridinas/farmacologia , Quinona Redutases/antagonistas & inibidores , beta-Alanina/análogos & derivados , Anticoagulantes/farmacologia , Benzimidazóis/química , Dabigatrana , Inibidores Enzimáticos/química , Células Hep G2 , Humanos , Células K562 , Espectrometria de Massas , Modelos Químicos , Ligação Proteica , Proteômica/métodos , Piridinas/química , Trombina/antagonistas & inibidores , beta-Alanina/química , beta-Alanina/farmacologia
17.
Biochemistry ; 51(1): 149-58, 2012 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-22122402

RESUMO

In mitochondria, complex I (NADH:quinone oxidoreductase) couples electron transfer to proton translocation across an energy-transducing membrane. It contains a flavin mononucleotide to oxidize NADH, and an unusually long series of iron-sulfur (FeS) clusters that transfer the electrons to quinone. Understanding electron transfer in complex I requires spectroscopic and structural data to be combined to reveal the properties of individual clusters and of the ensemble. EPR studies on complex I from Bos taurus have established that five clusters (positions 1, 2, 3, 5, and 7 along the seven-cluster chain extending from the flavin) are (at least partially) reduced by NADH. The other three clusters, positions 4 and 6 plus a cluster on the other side of the flavin, are not observed in EPR spectra from the NADH-reduced enzyme: they may remain oxidized, have unusual or coupled spin states, or their EPR signals may be too fast relaxing. Here, we use Mössbauer spectroscopy on (57)Fe-labeled complex I from the mitochondria of Yarrowia lipolytica to show that the cluster ensemble is only partially reduced in the NADH-reduced enzyme. The three EPR-silent clusters are oxidized, and only the terminal 4Fe cluster (position 7) is fully reduced. Together with the EPR analyses, our results reveal an alternating profile of higher and lower potential clusters between the two active sites in complex I; they are not consistent with the consensus picture of a set of isopotential clusters. The implications for intramolecular electron transfer along the extended chain of cofactors in complex I are discussed.


Assuntos
Complexo I de Transporte de Elétrons/química , Proteínas Ferro-Enxofre/química , Quinona Redutases/química , Espectroscopia de Mossbauer , Domínio Catalítico , Espectroscopia de Ressonância de Spin Eletrônica , Transporte de Elétrons , Complexo I de Transporte de Elétrons/antagonistas & inibidores , Compostos Férricos/química , Compostos Ferrosos/química , Proteínas Fúngicas/química , Proteínas Ferro-Enxofre/metabolismo , Proteínas Mitocondriais/química , Oxirredução , Quinona Redutases/antagonistas & inibidores , Quinona Redutases/metabolismo , Espectroscopia de Mossbauer/métodos , Yarrowia/enzimologia , Yarrowia/metabolismo
18.
Fitoterapia ; 83(2): 281-5, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22119764

RESUMO

The ethylacetate and n-butanol fractions of ethanolic extract of Platanus orientalis leaves led to the isolation of new acylated flavonol glycoside as 3',5,7-trihydroxy-4'-methoxyflavonol 3-[O-2-O-(2,4-Dihydroxy)-E-cinnamoyl-α-L-rhamnopyranosyl-(1→6)-ß-D-glucopyranosyl (1→2)]-ß-D-glucopyranoside, along with seven known compounds. All the compounds were characterized by NMR including 2D NMR techniques. The isolates were evaluated for NF-κB, nitric oxide (NO), aromatase and QR2 chemoprevention activities and some of them appeared to be modestly active.


Assuntos
Flavonóis/farmacologia , Glicosídeos/farmacologia , Magnoliopsida/química , Extratos Vegetais/farmacologia , Acilação , Aromatase/metabolismo , Linhagem Celular , Quimioprevenção , Feminino , Flavonóis/química , Flavonóis/isolamento & purificação , Glicosídeos/química , Glicosídeos/isolamento & purificação , Humanos , Espectroscopia de Ressonância Magnética , Estrutura Molecular , NF-kappa B/metabolismo , Óxido Nítrico/metabolismo , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Folhas de Planta/química , Plantas Medicinais/química , Quinona Redutases/antagonistas & inibidores , Quinona Redutases/metabolismo
19.
J Med Chem ; 55(1): 367-77, 2012 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-22206487

RESUMO

A variety of ammosamide B analogues have been synthesized and evaluated as inhibitors of quinone reductase 2 (QR2). The potencies of the resulting series of QR2 inhibitors range from 4.1 to 25,200 nM. The data provide insight into the structural parameters necessary for QR2 inhibitory activity. The natural product ammosamide B proved to be a potent QR2 inhibitor, and the potencies of the analogues generally decreased as their structures became more distinct from that of ammosamide B. Methylation of the 8-amino group of ammosamide B was an exception, resulting in an increase in quinone reductase 2 inhibitory activity from an IC(50) of 61 nM to IC(50) 4.1 nM.


Assuntos
Amidas/síntese química , Antineoplásicos/síntese química , Compostos Heterocíclicos com 3 Anéis/síntese química , Pirróis/síntese química , Quinolinas/síntese química , Quinona Redutases/antagonistas & inibidores , Amidas/química , Amidas/farmacologia , Antineoplásicos/química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Cristalografia por Raios X , Desenho de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Compostos Heterocíclicos com 3 Anéis/química , Compostos Heterocíclicos com 3 Anéis/farmacologia , Humanos , Modelos Moleculares , Estrutura Molecular , Pirróis/química , Pirróis/farmacologia , Quinolinas/química , Quinolinas/farmacologia , Relação Estrutura-Atividade
20.
Mol Cancer Ther ; 11(1): 194-203, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22090421

RESUMO

The National Cancer Institute chemical database has been screened using in silico docking to identify novel nanomolar inhibitors of NRH:quinone oxidoreductase 2 (NQO2). The inhibitors identified from the screen exhibit a diverse range of scaffolds and the structure of one of the inhibitors, NSC13000 cocrystalized with NQO2, has been solved. This has been used to aid the generation of a structure-activity relationship between the computationally derived binding affinity and experimentally measured enzyme inhibitory potency. Many of the compounds are functionally active as inhibitors of NQO2 in cells at nontoxic concentrations. To show this, advantage was taken of the NQO2-mediated toxicity of the chemotherapeutic drug CB1954. The toxicity of this drug is substantially reduced when the function of NQO2 is inhibited, and many of the compounds achieve this in cells at nanomolar concentrations. The NQO2 inhibitors also attenuated TNFα-mediated, NF-кB-driven transcriptional activity. The link between NQO2 and the regulation of NF-кB was confirmed by using short interfering RNA to NQO2 and by the observation that NRH, the cofactor for NQO2 enzyme activity, could regulate NF-кB activity in an NQO2-dependent manner. NF-кB is a potential therapeutic target and this study reveals an underlying mechanism that may be usable for developing new anticancer drugs.


Assuntos
NF-kappa B/metabolismo , Quinona Redutases/antagonistas & inibidores , Quinona Redutases/metabolismo , Animais , Aziridinas/farmacologia , Aziridinas/toxicidade , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Feminino , Humanos , Leucemia Mielogênica Crônica BCR-ABL Positiva/metabolismo , Macrófagos , Camundongos , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Quinona Redutases/genética , Interferência de RNA , RNA Interferente Pequeno , Transdução de Sinais , Relação Estrutura-Atividade , Transcrição Gênica/efeitos dos fármacos , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA