Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.883
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Int Immunopharmacol ; 142(Pt A): 113097, 2024 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-39260311

RESUMO

Hydroxyl Safflower Yellow A (HSYA) is the primary bioactive compound derived from Safflower, which has been scientifically proven to possess anti-inflammatory, anti-apoptotic, and ameliorative properties against mitochondrial damage during acute myocardial ischemia-reperfusion injury (MIRI); however, its effects during the recovery stage remain unknown. Angiogenesis plays a crucial role in the rehabilitation process. AIM OF THE STUDY: The objective of this study was to investigate the long-term angiogenic effect of HSYA and its contribution to recovery after myocardial ischemia, as well as explore its underlying mechanism using non-targeted metabolomics and network pharmacology. MATERIALS AND METHODS: The MIRI model in rat was established by ligating the left anterior descending branch of the coronary artery. The effect of HSYA was assessed based on myocardial infarction volume and histopathology. Immunofluorescence staining was employed to evaluate angiogenesis, while ELISA was used to detect markers of myocardial injury. Additionally, a rat myocardial microvascular endothelial cell (CMECs) injury model was established using oxygen-glucose deprivation/reoxygenation (OGD/R), followed by scratch assays, migration assays, and tube formation experiments to assess angiogenesis. Western blot analysis was conducted to validate the underlying mechanism. RESULTS: Our findings provide compelling evidence for the therapeutic efficacy of HSYA in reducing myocardial infarction size, facilitating cardiac functional recovery, and reversing pathological alterations within the heart. Furthermore, we elucidate that HSYA exerts its effects on promoting migration and generation of myocardial microvascular endothelial cells through activation of the HIF-1α-VEGFA-Notch1 signaling pathway. CONCLUSION: These results underscore how HSYA enhances cardiac function via angiogenesis promotion and activation of the aforementioned signaling cascade.


Assuntos
Chalcona , Subunidade alfa do Fator 1 Induzível por Hipóxia , Traumatismo por Reperfusão Miocárdica , Neovascularização Fisiológica , Quinonas , Ratos Sprague-Dawley , Receptor Notch1 , Transdução de Sinais , Fator A de Crescimento do Endotélio Vascular , Animais , Chalcona/análogos & derivados , Chalcona/farmacologia , Chalcona/uso terapêutico , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/patologia , Quinonas/farmacologia , Quinonas/uso terapêutico , Transdução de Sinais/efeitos dos fármacos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Masculino , Receptor Notch1/metabolismo , Ratos , Neovascularização Fisiológica/efeitos dos fármacos , Fator A de Crescimento do Endotélio Vascular/metabolismo , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Modelos Animais de Doenças , Células Cultivadas , Carthamus tinctorius , Infarto do Miocárdio/tratamento farmacológico , Infarto do Miocárdio/patologia , Infarto do Miocárdio/metabolismo , Angiogênese
2.
Org Biomol Chem ; 22(35): 7187-7193, 2024 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-39158153

RESUMO

L-Cysteine (Cys)-activatable photosensitizer 3 was designed and synthesized based on hypocrellin B (1). Cys is a novel tumor-associated biomarker. 3 exhibited negligible photosensitizing ability without Cys. However, when 1 was released from 3 by reaction with Cys, the photosensitizing activity was restored. Furthermore, 3 showed selective and effective photo-cytotoxicity against only cancer cells such as HeLa and A549 cells that highly express Cys when irradiated with 660 nm light, which is inside the phototherapeutic window.


Assuntos
Antineoplásicos , Cisteína , Perileno , Fármacos Fotossensibilizantes , Quinonas , Humanos , Quinonas/química , Quinonas/farmacologia , Quinonas/síntese química , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/síntese química , Perileno/química , Perileno/análogos & derivados , Perileno/farmacologia , Perileno/síntese química , Cisteína/química , Células HeLa , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Células A549 , Estrutura Molecular , Ensaios de Seleção de Medicamentos Antitumorais , Sobrevivência Celular/efeitos dos fármacos , Fotoquimioterapia
3.
Phytomedicine ; 134: 155956, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39216301

RESUMO

BACKGROUND: Alcoholic liver disease (ALD) significantly contributes to global liver-related morbidity and mortality. Natural products play a crucial role in the prevention and treatment of ALD. Hydroxysafflor yellow A (HSYA), a unique and primary component of Safflower (Carthamus tinctorius l.), exhibits diverse pharmacological activities. However, the impact and mechanism of HSYA on ALD have not been fully elucidated. PURPOSE: The purpose of this study was to employ an integrative pharmacology approach to assess the multi-targeted mechanism of HSYA against ALD. METHODS: Network pharmacology and molecular docking techniques were used to analyze the potential therapeutic signaling pathways and targets of HSYA against ALD. An ALD model in zebrafish larvae was established. Larvae were pretreated with HSYA and then exposed to ethanol. Liver injury was measured by fluorescence expression analysis in the liver-specific transgenic zebrafish line Tg (fabp10a:DsRed) and liver tissue H&E staining. Liver steatosis was determined by whole-mount oil red O staining and TG level. Additionally, an ethanol-induced hepatocyte injury model was established in vitro to observe hepatocyte damage (cell viability, ALT level), lipid accumulation (oil red O staining, TC and TG), and oxidative stress (ROS, MDA, GPx and SOD) in HepG2 cells treated with or without HSYA. Finally, qRT-PCR combined with network pharmacology and molecular docking was employed to validate the effects of HSYA on targets. RESULTS: HSYA exhibited a significant, dose-dependent improvement in ethanol-induced liver injury in zebrafish larvae and HepG2 cells. Network pharmacology analysis revealed that HSYA may exert pharmacological effects against ALD through 341 potential targets. These targets are involved in various signaling pathways, including lipid metabolism and atherosclerosis, PI3K-Akt signaling pathway, MAPK signaling pathway, and ALD itself. Molecular docking studies displayed that HSYA had a strong binding affinity toward the domains of IL1B, IL6, TNF, PPARA, PPARG, HMGCR and ADH5. qRT-PCR assays demonstrated that HSYA effectively reversed the ethanol-induced aberrant gene expression of SREBF1, FASN, ACACA, CPT1A, PPARA, IL1B, IL6, TNFα, ADH5, and ALDH2 in vivo and in vitro. CONCLUSION: This study offers a comprehensive investigation into the anti-ALD mechanisms of HSYA using an integrative pharmacology approach. The potential targets of HSYA may be implicated in enhancing ethanol catabolism, reducing lipid accumulation, mitigating oxidative stress, and inhibiting inflammatory response.


Assuntos
Chalcona , Hepatopatias Alcoólicas , Simulação de Acoplamento Molecular , Farmacologia em Rede , Quinonas , Peixe-Zebra , Animais , Hepatopatias Alcoólicas/tratamento farmacológico , Chalcona/farmacologia , Chalcona/análogos & derivados , Chalcona/química , Quinonas/farmacologia , Quinonas/química , Humanos , Carthamus tinctorius/química , Etanol , Animais Geneticamente Modificados , Transdução de Sinais/efeitos dos fármacos , Hepatócitos/efeitos dos fármacos , Modelos Animais de Doenças , Larva/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Células Hep G2
4.
Food Funct ; 15(18): 8973-8997, 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-39189379

RESUMO

Quinones represent a class of crude organic compounds ubiquitously distributed in nature. Their distinctive quinone-type structure confers upon them unique properties and applications. Quinones demonstrate significant biological activities, including antioxidant, antimicrobial, and antitumor properties. Additionally, they demonstrate noteworthy physicochemical characteristics, including excellent dyeing properties and stability. Given their diverse qualities, quinones hold significant promise for applications in industrial manufacturing, healthcare, and food production, thus garnering considerable attention in recent years. While there is a growing body of research on quinones, the existing literature falls short of providing a comprehensive review encompassing recent advancements in this field along with established knowledge. This paper offers a comprehensive review of research progress for quinones, encompassing structural classification, source synthesis, extraction methods, properties, functions, and specific applications. It serves as a reference and theoretical foundation for the further development and utilization of quinones.


Assuntos
Anti-Infecciosos , Antioxidantes , Quinonas , Quinonas/química , Quinonas/farmacologia , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Antioxidantes/farmacologia , Antioxidantes/química , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/química
5.
Cells ; 13(15)2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39120303

RESUMO

Human NAD(P)H-quinone oxidoreductase1 (HNQO1) is a two-electron reductase antioxidant enzyme whose expression is driven by the NRF2 transcription factor highly active in the prooxidant milieu found in human malignancies. The resulting abundance of NQO1 expression (up to 200-fold) in cancers and a barely detectable expression in body tissues makes it a selective marker of neoplasms. NQO1 can catalyze the repeated futile redox cycling of certain natural and synthetic quinones to their hydroxyquinones, consuming NADPH and generating rapid bursts of cytotoxic reactive oxygen species (ROS) and H2O2. A greater level of this quinone bioactivation due to elevated NQO1 content has been recognized as a tumor-specific therapeutic strategy, which, however, has not been clinically exploited. We review here the natural and new quinones activated by NQO1, the catalytic inhibitors, and the ensuing cell death mechanisms. Further, the cancer-selective expression of NQO1 has opened excellent opportunities for distinguishing cancer cells/tissues from their normal counterparts. Given this diagnostic, prognostic, and therapeutic importance, we and others have engineered a large number of specific NQO1 turn-on small molecule probes that remain latent but release intense fluorescence groups at near-infrared and other wavelengths, following enzymatic cleavage in cancer cells and tumor masses. This sensitive visualization/quantitation and powerful imaging technology based on NQO1 expression offers promise for guided cancer surgery, and the reagents suggest a theranostic potential for NQO1-targeted chemotherapy.


Assuntos
NAD(P)H Desidrogenase (Quinona) , Neoplasias , Humanos , NAD(P)H Desidrogenase (Quinona)/metabolismo , NAD(P)H Desidrogenase (Quinona)/genética , Neoplasias/tratamento farmacológico , Neoplasias/diagnóstico por imagem , Neoplasias/patologia , Neoplasias/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Animais , Quinonas/farmacologia , Quinonas/metabolismo , Terapia de Alvo Molecular
6.
J Biochem Mol Toxicol ; 38(9): e23797, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39180369

RESUMO

Osteoporosis is a common condition worldwide, affecting millions of people. Women are more commonly affected than men, and the risk increases with age. Inflammatory reaction plays a crucial role in the expansion of osteoporosis. Osteoporosis is characterized by a gradual decline in bone density and bone tissue quality, which increases fragility and raises the risk of fractures. We scrutinized the anti-osteoporosis effect of hydroxysafflor yellow A (HYA) against glucocorticoid-induced osteoporosis (GIOP) in rats. In-silico study was carried out on EGFR receptor (PDBID: 1m17), Estrogen Alpha (PDB id: 2IOG), MTOR (PDB id: 4FA6), RANKL (PDB id: 1S55), and VEGFR2 (PDB id: 1YWN) protein. For this investigation, Sprague-Dawley (SD) rats were used, and they received an oral dose of HYA (5, 10, and 20 mg/kg, b.w.) along with a subcutaneous injection of dexamethasone (0.1 mg/kg/day) to induce osteoporosis. The biomechanical, bone parameters, antioxidant, cytokines, inflammatory, nutrients, hormones, and urine parameters were estimated. HYA treatment significantly suppressed the body weight and altered the organ weight. HYA treatment remarkably suppressed the level of alkaline phosphatase, acid phosphatase, and improved the level of bone mineral density (total, proximal, mild, and dis). HYA treatment restored the level of calcium (Ca), phosphorus (P), estradiol (E2), and parathyroid hormone near to the normal level. HYA treatment remarkably altered the level of biomechanical parameters, antioxidant, cytokines, urine, and inflammatory parameters. HYA treatment altered the level of osteoprotegerin (OPG), receptor activator of nuclear factor kappa beta (RANKL) and RANKL/OPG ratio. The result clearly showed the anti-osteoporosis effect of HYA against GIOP-induced osteoporosis in rats via alteration of antioxidant, cytokines, inflammatory, and bone protective parameters.


Assuntos
Chalcona , Glucocorticoides , Osteoporose , Quinonas , Ratos Sprague-Dawley , Animais , Osteoporose/induzido quimicamente , Osteoporose/prevenção & controle , Osteoporose/metabolismo , Osteoporose/tratamento farmacológico , Ratos , Quinonas/farmacologia , Chalcona/análogos & derivados , Chalcona/farmacologia , Glucocorticoides/efeitos adversos , Anti-Inflamatórios/farmacologia , Densidade Óssea/efeitos dos fármacos , Masculino , Feminino , Dexametasona/farmacologia
7.
Phytomedicine ; 133: 155885, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39096544

RESUMO

BACKGROUND: Endothelial dysfunction (ED), characterized by markedly reduced nitric oxide (NO) bioavailability, vasoconstriction, and a shift toward a proinflammatory and prothrombotic state, is an important contributor to hypertension, atherosclerosis, and other cardiovascular diseases. Adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) is widely involved in cardiovascular development. Przewaquinone A (PA), a lipophilic diterpene quinone extracted from Salvia przewalskii Maxim, inhibits vascular contraction. PURPOSE: Herein, the goal was to explore the protective effect of PA on ED in vivo and in vitro, as well as the underlying mechanisms. METHODS: A human umbilical vein endothelial cell (HUVEC) model of ED induced by angiotensin II (AngII) was used for in vitro observations. Levels of AMPK, endothelial nitric oxide synthase (eNOS), vascular cell adhesion molecule-1 (VCAM-1), nitric oxide (NO), and endothelin-1 (ET-1) were detected by western blotting and ELISA. A mouse model of hypertension was established by continuous infusion of AngII (1000 ng/kg/min) for 4 weeks using osmotic pumps. Following PA and/or valsartan administration, NO and ET-1 levels were measured. The levels of AMPK signaling-related proteins in the thoracic aorta were evaluated by immunohistochemistry. Systolic blood pressure (SBP), diastolic blood pressure (DBP), and mean arterial pressure (MAP) were measured using the tail cuff method. Isolated aortic vascular tone measurements were used to evaluate the vasodilatory function in mice. Molecular docking, molecular dynamics, and surface plasmon resonance imaging (SPRi) were used to confirm AMPK and PA interactions. RESULTS: PA inhibited AngII-induced vasoconstriction and vascular adhesion as well as activated AMPK signaling in a dose-dependent manner. Moreover, PA markedly suppressed blood pressure, activated vasodilation in mice following AngII stimulation, and promoted the activation of AMPK signaling. Furthermore, molecular simulations and SPRi revealed that PA directly targeted AMPK. AMPK inhibition partly abolished the protective effects of PA against endothelial dysfunction. CONCLUSION: PA activates AMPK and ameliorates endothelial dysfunction during hypertension.


Assuntos
Proteínas Quinases Ativadas por AMP , Angiotensina II , Endotélio Vascular , Células Endoteliais da Veia Umbilical Humana , Hipertensão , Camundongos Endogâmicos C57BL , Óxido Nítrico Sintase Tipo III , Óxido Nítrico , Angiotensina II/farmacologia , Animais , Humanos , Proteínas Quinases Ativadas por AMP/metabolismo , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Masculino , Óxido Nítrico Sintase Tipo III/metabolismo , Hipertensão/tratamento farmacológico , Endotélio Vascular/efeitos dos fármacos , Óxido Nítrico/metabolismo , Camundongos , Salvia/química , Endotelina-1/metabolismo , Molécula 1 de Adesão de Célula Vascular/metabolismo , Quinonas/farmacologia , Simulação de Acoplamento Molecular , Pressão Sanguínea/efeitos dos fármacos , Modelos Animais de Doenças
8.
Phytomedicine ; 132: 155830, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38959553

RESUMO

BACKGROUND: Liver fibrosis is a prevalent pathological process in chronic liver diseases characterized by excessive extracellular matrix (ECM) deposition and abnormal angiogenesis. Notably, hepatic stellate cells (HSCs) are the primary source of ECM. Activated HSCs not only secrete numerous pro-fibrotic cytokines but also are endowed with a pro-angiogenic phenotype to promote pathological angiogenesis. Therefore, targeted modulation of HSCs has emerged as a pivotal strategy for addressing liver fibrosis. Hydroxysafflor yellow A (HSYA) is a homology of medicine and food colourant with good pharmacological activity. However, the precise mechanisms of HSYA against liver fibrosis remain unclear. PURPOSE: The objective of this study was to elucidate the impact of HSYA on liver fibrosis and pathological angiogenesis, as well as the underlying mechanisms in vitro and in vivo studies. METHODS: The efficacy and mechanisms of HSYA on TGF-ß1-induced HSCs and VEGFA-induced endothelial cells were investigated by MTT assay, EdU cell proliferation assay, cell scratch assay, Elisa assay, immunofluorescence assay, molecular docking, cell transfection assay, western blot analysis and RT-qPCR analysis. In CCl4-induced liver fibrosis mice model, H&E, Masson, and Sirius red staining were used to observe histopathology. Serum transaminase activity and liver biochemical indexes were tested by biochemical kit. Immunohistochemical, fluorescence in situ hybridization (FISH), western blot analysis and RT-qPCR analysis were implemented to determine the mechanism of HSYA in vivo. RESULTS: Herein, our findings confirmed that HSYA inhibited the proliferation, migration and activation of HSCs, as evidenced by a reduction in cell viability, relative migration rate, EdU staining intensity, and pro-fibrotic mRNAs and proteins expression in vitro. Mechanistically, HSYA played an anti-fibrotic and anti-angiogenic role by partially silencing PDGFRB in activated HSCs, thereby disrupting PDGFRB/MEK/ERK signal transduction and inhibiting the expression of HIF-1α, VEGFA and VEGFR2 proteins. Importantly, PDGFRB was a target gene of miR-29a-3p. Treatment with HSYA reversed the down-regulation of miR-29a-3p and antagonized PDGFRB signaling pathway in TGF-ß1-induced HSCs transfected with miR-29a-3p inhibitor. Consistent with our in vitro study, HSYA exhibited a good hepatoprotective effect in CCl4-induced liver fibrosis mice by reducing serum ALT and AST levels, decreasing the contents of four fibrosis indicators (HA, PIIIP, ColIV and LN) and hydroxyproline, and inhibiting the TGF-ß1/TGFBR signaling pathway. In terms of mechanisms, HSYA alleviated pathological angiogenesis in fibrotic liver by deactivating PDGFRB signaling pathway and impairing the positive expression of CD31. Subsequently, FISH results further corroborated HSYA affected the activation of HSCs and angiogenesis achieved by the concurrent upregulation of miR-29a-3p and downregulation of α-SMA and VEGFA. Additionally, treatment with HSYA also forged a link between HSCs and endothelial cells, as supported by inhibiting the aberrant proliferation of endothelial cells. CONCLUSION: Fundamentally, the current study has illustrated that HSYA ameliorates liver fibrosis by repressing HSCs-mediated pro-fibrotic and pro-angiogenic processes, which is contingent upon the regulatory effect of HSYA on the miR-29a-3p/PDGFRB axis. These findings provide compelling evidence bolstering the potential of HSYA as a therapeutic agent in liver fibrosis.


Assuntos
Inibidores da Angiogênese , Chalcona , Células Estreladas do Fígado , Cirrose Hepática , MicroRNAs , Quinonas , Animais , Cirrose Hepática/tratamento farmacológico , Chalcona/análogos & derivados , Chalcona/farmacologia , Quinonas/farmacologia , Células Estreladas do Fígado/efeitos dos fármacos , Células Estreladas do Fígado/metabolismo , MicroRNAs/metabolismo , MicroRNAs/genética , Camundongos , Masculino , Inibidores da Angiogênese/farmacologia , Proliferação de Células/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Receptor beta de Fator de Crescimento Derivado de Plaquetas/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Neovascularização Patológica/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos , Fator de Crescimento Transformador beta1/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Antifibróticos/farmacologia , Movimento Celular/efeitos dos fármacos
9.
Stem Cell Res Ther ; 15(1): 217, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39020406

RESUMO

BACKGROUND: Intrauterine adhesions (IUAs) jeopardise uterine function in women, which is a great challenge in the clinic. Previous studies have shown that endometrial perivascular cells (En-PSCs) can improve the healing of scarred uteri and that hydroxysafflor yellow A (HSYA) promotes angiogenesis. The purpose of this study was to observe whether the combination of En-PSCs with HSYA could improve the blood supply and fertility in the rat uterus after full-thickness injury. METHODS: En-PSCs were sorted by flow cytometry, and the effect of HSYA on the proliferation and angiogenesis of the En-PSCs was detected using CCK-8 and tube formation assays. Based on a previously reported rat IUA model, the rat uteri were sham-operated, spontaneously regenerated, or treated with collagen-loaded PBS, collagen-loaded HSYA, collagen-loaded En-PSCs, or collagen-loaded En-PSCs with HSYA, and then collected at both 30 and 90 days postsurgery. HE staining and Masson staining were used to evaluate uterine structure and collagen fibre deposition, and immunohistochemical staining for α-SMA and vWF was used to evaluate myometrial regeneration and neovascularization in each group. A fertility assay was performed to detect the recovery of pregnancy function in each group. RNA-seq was performed to determine the potential mechanism underlying En-PSCs/HSYA treatment. Immunofluorescence, tube formation assays, and Western blot were used to validate the molecular mechanism involved. RESULTS: The transplantation of Collagen/En-PSCs/HSYA markedly promoted uterine repair in rats with full-thickness injury by reducing fibrosis, increasing endometrial thickness, regenerating myometrium, promoting angiogenesis, and facilitated live births. RNA sequencing results suggested that En-PSCs/HSYA activated the NRG1/ErbB4 signaling pathway. In vitro tube formation experiments revealed that the addition of an ErbB inhibitor diminished the tube formation ability of cocultured En-PSCs and HUVECs. Western blot results further showed that elevated levels of NRG1 and ErbB4 proteins were detected in the Collagen/En-PSCs/HSYA group compared to the Collagen/En-PSCs group. These collective results suggested that the beneficial effects of the transplantation of Collagen/En-PSCs/HSYA might be attributed to the modulation of the NRG1/ErbB4 signaling pathway. CONCLUSIONS: The combination of En-PSCs/HSYA facilitated morphological and functional repair in rats with full-thickness uterine injury and may promote endometrial angiogenesis by regulating the NRG1/ErbB4 signaling pathway.


Assuntos
Chalcona , Endométrio , Quinonas , Útero , Animais , Feminino , Ratos , Endométrio/efeitos dos fármacos , Endométrio/metabolismo , Humanos , Útero/efeitos dos fármacos , Útero/metabolismo , Chalcona/análogos & derivados , Chalcona/farmacologia , Quinonas/farmacologia , Quinonas/uso terapêutico , Ratos Sprague-Dawley , Neovascularização Fisiológica/efeitos dos fármacos , Células-Tronco/metabolismo , Células-Tronco/efeitos dos fármacos , Transplante de Células-Tronco/métodos , Proliferação de Células/efeitos dos fármacos , Regeneração/efeitos dos fármacos
10.
ACS Appl Bio Mater ; 7(8): 5423-5436, 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39069738

RESUMO

Nanofibers have emerged as a highly effective method for drug delivery, attributed to their remarkable porosity and ability to regulate drug release rates while minimizing toxicity and side effects. In this study, we successfully loaded the natural anticancer drugs curcumin (CUR) and hypocrellin A (HA) into pure poly(l-lactic acid) (PLLA) and PLLA-silk protein (PS) composite nanofibers through electrospinning technology. This result was confirmed through comprehensive analysis involving SEM, FTIR, XRD, DSC, TG, zeta potential, and pH stability analysis. The encapsulation efficiency of all samples exceeded 85%, demonstrating the effectiveness of the loading process. Additionally, the drug release doses were significantly higher in the composites compared to pure PLLA, owing to the enhanced crystallinity and stability of the silk proteins. Importantly, the composite nanofibers exhibited excellent pH stability in physiological and acidic environments. Furthermore, the drug-loaded composite nanofibers displayed strong inhibitory effects on cancer cells, with approximately 28% (HA) and 37% (CUR) inhibition of cell growth and differentiation within 72 h, while showing minimal impact on normal cells. This research highlights the potential for controlling drug release through the manipulation of fiber diameter and crystallinity, paving the way for wider applications of electrospun green nanomaterials in the field of medicine.


Assuntos
Antineoplásicos , Proliferação de Células , Curcumina , Liberação Controlada de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Fibroínas , Nanofibras , Tamanho da Partícula , Perileno , Fenol , Poliésteres , Quinonas , Curcumina/química , Curcumina/farmacologia , Nanofibras/química , Fibroínas/química , Humanos , Antineoplásicos/química , Antineoplásicos/farmacologia , Poliésteres/química , Quinonas/química , Quinonas/farmacologia , Proliferação de Células/efeitos dos fármacos , Fenol/química , Perileno/química , Perileno/análogos & derivados , Perileno/farmacologia , Teste de Materiais , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Preparações de Ação Retardada/química , Sobrevivência Celular/efeitos dos fármacos , Linhagem Celular Tumoral
11.
Phytomedicine ; 132: 155814, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38878526

RESUMO

BACKGROUND: Alcohol-associated liver disease (ALD) is a prevalent liver ailment. It has escalated into a significant public health issue, imposing substantial burdens on medical, economic, and social domains. Currently, oxidative stress, inflammation, and apoptosis are recognized as crucial culprits in improving ALD. Consequently, mitigating these issues has emerged as a promising avenue for enhancing ALD. Hydroxysafflor yellow A (HSYA) is the main ingredient in safflower, showing excellent antioxidative stress, anti-inflammatory, and anti-apoptosis traits. However, there are limited investigations into the mechanisms by which HSYA ameliorates ALD PURPOSE: We investigated whether HSYA, a significant constituent of Asteraceae safflower, exerts antioxidant stress and attenuates inflammation and anti-apoptotic effects through PI3K/Akt and STAT3/NF-κB pathways, thereby ameliorating ALD METHODS: We established two experimental models: an ethanol-induced liver damage mouse model in vivo and a HepG2 cell alcohol injury model in vitro RESULTS: The results demonstrated that HSYA effectively ameliorated liver tissue damage, reduced levels of ALT, AST, LDL-C, TG, TC, and MDA, enhanced HDL-C levels, SOD and GSH activities, reduced ROS accumulation in cells, and activated the Nrf2 pathway, a transcription factor involved in antioxidant defense. By regulating the PI3K/Akt and STAT3/NF-κB pathways, HSYA exhibits notable antioxidative stress, anti-inflammatory, and anti-apoptotic effects, effectively impeding ALD's advancement. To further confirm the regulatory effect of HSYA on PI3K/Akt and downstream signaling pathways, the PI3K activator 740 Y-P was used and was found to reverse the downregulation of PI3K by HSYA CONCLUSION: This study supports the effectiveness of HSYA in reducing ALD by regulating the PI3K/Akt and STAT3/NF-κB pathways, indicating its potential medicinal value.


Assuntos
Chalcona , NF-kappa B , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Quinonas , Fator de Transcrição STAT3 , Transdução de Sinais , Chalcona/farmacologia , Chalcona/análogos & derivados , Animais , Fator de Transcrição STAT3/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Quinonas/farmacologia , NF-kappa B/metabolismo , Humanos , Fosfatidilinositol 3-Quinases/metabolismo , Masculino , Células Hep G2 , Camundongos , Estresse Oxidativo/efeitos dos fármacos , Antioxidantes/farmacologia , Etanol , Hepatopatias Alcoólicas/tratamento farmacológico , Camundongos Endogâmicos C57BL , Apoptose/efeitos dos fármacos , Modelos Animais de Doenças , Fígado/efeitos dos fármacos
12.
Biochem Pharmacol ; 226: 116398, 2024 08.
Artigo em Inglês | MEDLINE | ID: mdl-38944395

RESUMO

Glioblastoma (GBM) is a primary intracranial malignant tumor with the highest mortality and morbidity among all malignant central nervous system tumors. Tanshinone IIA is a fat-soluble active ingredient obtained from Salvia miltiorrhiza, which has an inhibitory effect against various cancers. We designed and synthesized a novel L-shaped ortho-quinone analog TE5 with tanshinone IIA as the lead compound and tested its antitumor activity against GBM. The results indicated that TE5 effectively inhibited the proliferation, migration, and invasion of GBM cells, and demonstrated low toxicity in vitro. We found that TE5 may bind to androgen receptors and promote their degradation through the proteasome. Inhibition of the PI3K/AKT signaling pathway was also observed in TE5 treated GBM cells. Additionally, TE5 arrested the cell cycle at the G2/M phase and induced mitochondria-dependent apoptosis. In vivo experiments further confirmed the anti-tumor activity, safety, and effect on androgen receptor level of TE5 in animal models of GBM. Our results suggest that TE5 may be a potential therapeutic drug to treat GBM.


Assuntos
Glioblastoma , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Receptores Androgênicos , Transdução de Sinais , Animais , Humanos , Masculino , Camundongos , Abietanos/farmacologia , Antineoplásicos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Progressão da Doença , Glioblastoma/tratamento farmacológico , Glioblastoma/metabolismo , Glioblastoma/patologia , Camundongos Endogâmicos BALB C , Camundongos Nus , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Quinonas/farmacologia , Quinonas/síntese química , Quinonas/química , Receptores Androgênicos/metabolismo , Transdução de Sinais/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
13.
Inflammopharmacology ; 32(4): 2395-2411, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38858336

RESUMO

Quinone-containing compounds have risen as promising anti-inflammatory targets; however, very little research has been directed to investigate their potentials. Accordingly, the current study aimed to design and synthesize group of quinones bearing different substituents to investigate the effect of these functionalities on the anti-inflammatory activities of this important scaffold. The choice of these substituents was carefully done, varying from a directly attached heterocyclic ring to different aromatic moieties linked through a nitrogen spacer. Both in vitro and in vivo anti-inflammatory activities of the synthesized compounds were assessed relative to the positive standards: celecoxib and indomethacin. The in vitro enzymatic and transcription inhibitory actions of all the synthesized compounds were tested against cyclooxygenase-2 (COX-2), cyclooxygenase-1 (COX-1), and 5-lipoxygenase (LOX) and the in vivo gene expression of Interleukin-1, interleukin 10, and Tumor Necrosis Factor-α (TNF-α) were determined. The IC50 against COX-1 and COX-2 enzymes obtained by the immunoassay test revealed promising activities of sixteen compounds with selectivity indices higher than 100-fold COX-2 selectivity. Out of those, four compounds revealed selectivity indices comparable to celecoxib as a reference drug. Furthermore, all the tested compounds inhibited LOX with an IC50 in the range of 1.59-3.11 µM superior to that of the reference drug used; zileuton (IC50 = 3.50 µM). Consequently, these results highlight the promising LOX inhibitory activity of the tested compounds. The obtained in vivo paw edema results showed high inhibitory percentage for the compounds 9a, 9b, and 11a with the significant lower TNF-α relative mRNA expression for compounds 5a, 5d, 9a, 9b, 12d, and 12e. Finally, in silico docking of the most active compounds (5b, 5d, 9a, 9b) against COX2 enzymes presented an acceptable justification of the obtained in vitro inhibitory activities. As a conclusion, Compounds 5b, 5d, 9a, 9b, and 11b showed promising results and thus deserves further investigation.


Assuntos
Anti-Inflamatórios , Ciclo-Oxigenase 2 , Edema , Inibidores de Lipoxigenase , Quinonas , Animais , Inibidores de Lipoxigenase/farmacologia , Ratos , Ciclo-Oxigenase 2/metabolismo , Edema/tratamento farmacológico , Quinonas/farmacologia , Anti-Inflamatórios/farmacologia , Masculino , Inibidores de Ciclo-Oxigenase/farmacologia , Relação Estrutura-Atividade , Simulação de Acoplamento Molecular/métodos , Araquidonato 5-Lipoxigenase/metabolismo , Ratos Wistar , Ciclo-Oxigenase 1/metabolismo , Inibidores de Ciclo-Oxigenase 2/farmacologia , Carragenina
14.
Phytomedicine ; 132: 155812, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38905845

RESUMO

BACKGROUND: Inflammatory bowel disease (IBD) represents a significant global health challenge, and there is an urgent need to explore novel therapeutic interventions. Natural products have demonstrated highly promising effectiveness in the treatment of IBD. PURPOSE: This study systematically reviews the latest research advancements in leveraging natural products for IBD treatment. METHODS: This manuscript strictly adheres to the PRISMA guidelines. Relevant literature on the effects of natural products on IBD was retrieved from the PubMed, Web of Science and Cochrane Library databases using the search terms "natural product," "inflammatory bowel disease," "colitis," "metagenomics", "target identification", "drug delivery systems", "polyphenols," "alkaloids," "terpenoids," and so on. The retrieved data were then systematically summarized and reviewed. RESULTS: This review assessed the different effects of various natural products, such as polyphenols, alkaloids, terpenoids, quinones, and others, in the treatment of IBD. While these natural products offer promising avenues for IBD management, they also face challenges in terms of clinical translation and drug discovery. The advent of metagenomics, single-cell sequencing, target identification techniques, drug delivery systems, and other cutting-edge technologies heralds a new era in overcoming these challenges. CONCLUSION: This paper provides an overview of current research progress in utilizing natural products for the treatment of IBD, exploring how contemporary technological innovations can aid in discovering and harnessing bioactive natural products for the treatment of IBD.


Assuntos
Produtos Biológicos , Doenças Inflamatórias Intestinais , Humanos , Produtos Biológicos/uso terapêutico , Produtos Biológicos/farmacologia , Doenças Inflamatórias Intestinais/tratamento farmacológico , Alcaloides/uso terapêutico , Alcaloides/farmacologia , Polifenóis/farmacologia , Polifenóis/uso terapêutico , Sistemas de Liberação de Medicamentos , Terpenos/uso terapêutico , Animais , Fitoterapia , Descoberta de Drogas , Quinonas/uso terapêutico , Quinonas/farmacologia
15.
Biomater Adv ; 161: 213891, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38781738

RESUMO

An antitumour chemo-photodynamic therapy nanoplatform was constructed based on phospholipid-coated NaYF4: Yb/Er upconversion nanoparticles (UCNPs). In this work, the amphiphilic block copolymer DSPE-PEG2000 was combined with the surface ligand oleic acid of the UCNPs through hydrophobic interaction to form liposomes with a dense hydrophobic layer in which the photosensitizer hypocrellin B (HB) was assembled. The coated HB formed J-aggregates, which caused a large redshift in the absorption spectrum and improved the quantum efficiency of energy transfer. Furthermore, MnO2 nanosheets grew in-situ on the liposomes through OMn coordination. Therefore, a multifunctional tumour microenvironment (TME)-responsive theranostic nanoplatform integrating photodynamic therapy (PDT) and chemodynamic therapy (CDT) was successfully developed. The results showed that this NIR-mediated chemo-photodynamic therapy nanoplatform was highly efficient for oncotherapy.


Assuntos
Compostos de Manganês , Nanopartículas , Óxidos , Perileno , Fotoquimioterapia , Fármacos Fotossensibilizantes , Quinonas , Fotoquimioterapia/métodos , Perileno/análogos & derivados , Perileno/farmacologia , Perileno/química , Perileno/administração & dosagem , Humanos , Quinonas/química , Quinonas/farmacologia , Nanopartículas/química , Nanopartículas/uso terapêutico , Óxidos/química , Óxidos/farmacologia , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/uso terapêutico , Fármacos Fotossensibilizantes/administração & dosagem , Compostos de Manganês/química , Compostos de Manganês/farmacologia , Animais , Fenol/química , Fenol/farmacologia , Lipossomos/química , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/administração & dosagem , Antineoplásicos/uso terapêutico , Camundongos , Linhagem Celular Tumoral , Microambiente Tumoral/efeitos dos fármacos
16.
Eur J Med Chem ; 272: 116448, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38704936

RESUMO

Colorectal cancer (CRC) is trending to be a major health problem throughout the world. Therapeutics with dual modes of action have shown latent capacity to create ideal anti-tumor activity. Signal transducer and activator of transcription 3 (STAT3) has been proved to be a potential target for the development of anti-colon cancer drug. In addition, modulation of tumor redox homeostasis through deploying exogenous reactive oxygen species (ROS)-enhancing agents has been widely applied as anti-tumor strategy. Thus, simultaneously targeting STAT3 and modulation ROS balance would offer a fresh avenue to combat CRC. In this work, we designed and synthesized a novel series of isoxazole-fused quinones, which were evaluated for their preliminary anti-proliferative activity against HCT116 cells. Among these quinones, compound 41 exerted excellent in vitro anti-tumor effect against HCT116 cell line with an IC50 value of 10.18 ± 0.4 nM. Compound 41 was proved to bind to STAT3 by using Bio-Layer Interferometry (BLI) assay, and can significantly inhibit phosphorylation of STAT3. It also elevated ROS of HCT116 cells by acting as a substrate of NQO1. Mitochondrial dysfunction, apoptosis, and cell cycle arrest, which was caused by compound 41, might be partially due to the inhibition of STAT3 phosphorylation and ROS production induced by 41. Moreover, it exhibited ideal anti-tumor activity in human colorectal cancer xenograft model and good safety profiles in vivo. Overall, this study provided a novel quinone derivative 41 with excellent anti-tumor activity by inhibiting STAT3 and elevating ROS level, and gave insights into designing novel anti-tumor therapeutics by simultaneously modulation of STAT3 and ROS.


Assuntos
Antineoplásicos , Apoptose , Proliferação de Células , Neoplasias Colorretais , Ensaios de Seleção de Medicamentos Antitumorais , Isoxazóis , Quinonas , Espécies Reativas de Oxigênio , Fator de Transcrição STAT3 , Fator de Transcrição STAT3/antagonistas & inibidores , Fator de Transcrição STAT3/metabolismo , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Espécies Reativas de Oxigênio/metabolismo , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/patologia , Neoplasias Colorretais/metabolismo , Proliferação de Células/efeitos dos fármacos , Relação Estrutura-Atividade , Animais , Isoxazóis/farmacologia , Isoxazóis/química , Isoxazóis/síntese química , Quinonas/farmacologia , Quinonas/química , Quinonas/síntese química , Apoptose/efeitos dos fármacos , Estrutura Molecular , Camundongos , Relação Dose-Resposta a Droga , Células HCT116 , Camundongos Nus , Camundongos Endogâmicos BALB C
17.
J Ethnopharmacol ; 331: 118281, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38701934

RESUMO

Lung cancer causes the most cancer deaths and needs new treatment strategies urgently. Salvia miltiorrhiza is a classical Chinese herb and a strong candidate for tumor treatment. The study found that the aqueous extract of Salvia miltiorrhiza (DSAE), ethanol extract of Salvia miltiorrhiza (DSEE), and its active components danshensu (DSS) and dihydrotanshinone I (DHI), exhibited antineoplastic effects in vivo and in vitro. Meanwhile, DSAE, DSEE, DSS, and DHI reduced glycolysis metabolites (ATP, lactate, and pyruvate contents) production, decreased aerobic glycolysis enzymes, and inhibited Seahorse indexes (OCR and ECAR) in Lewis lung cancer cells (LLC). Data suggests that aerobic glycolysis could be inhibited by Salvia miltiorrhiza and its components. The administration of DSS and DHI further reduced the level of HKII in lung cancer cell lines that had been inhibited with HK-II antagonists (2-deoxyglucose, 2-DG; 3-bromo-pyruvate, 3-BP) or knocked down with siRNA, thereby exerting an anti-lung cancer effect. Although DSS and DHI decreased the level of HKII in HKII-Knock-In lung cancer cell line, their anti-lung cancer efficacy remained limited due to the persistent overexpression of HKII in these cells. Reiterating the main points, we have discovered that the anti-lung cancer effects of Salvia miltiorrhiza may be attributed to its ability to regulate HKII expression levels, thereby inhibiting aerobic glycolysis. This study not only provides a new research paradigm for the treatment of cancer by Salvia miltiorrhiza, but also highlights the important link between glucose metabolism and the effect of Salvia Miltiorrhiza.


Assuntos
Antineoplásicos Fitogênicos , Glicólise , Neoplasias Pulmonares , Salvia miltiorrhiza , Salvia miltiorrhiza/química , Glicólise/efeitos dos fármacos , Animais , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Antineoplásicos Fitogênicos/farmacologia , Antineoplásicos Fitogênicos/isolamento & purificação , Linhagem Celular Tumoral , Humanos , Extratos Vegetais/farmacologia , Camundongos Endogâmicos C57BL , Carcinoma Pulmonar de Lewis/tratamento farmacológico , Carcinoma Pulmonar de Lewis/metabolismo , Carcinoma Pulmonar de Lewis/patologia , Camundongos , Masculino , Fenantrenos/farmacologia , Fenantrenos/isolamento & purificação , Medicamentos de Ervas Chinesas/farmacologia , Quinonas/farmacologia , Furanos , Lactatos
18.
Sci Rep ; 14(1): 10942, 2024 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-38740839

RESUMO

Pradimicin U is a new dihydrobenzo[a]naphthacenequinone compound found to be active on a screen designed to investigate compounds with antimicrobial activity, produced by the actinomycete designated strain FMUSA5-5T. The strain was isolated from a bio-fertilizer of Musa spp. collected from Suphanburi province, Thailand. The chemotaxonomic characteristics and 16S rRNA gene analysis revealed that strain FMUSA5-5T is a member of the genus Nonomuraea. Low genome-based taxonomic criteria, average nucleotide identity (ANI) (82.8-88.3%), average amino-acid identity (AAI) (79.4-87.3%), and digital DNA-DNA hybridization (dDDH) (29.5-38.5%) values and several phenotypic differences between strain FMUSA5-5T and its closest type strains of the genus Nonomuraea indicated that strain FMUSA5-5T represents a novel species of the genus Nonomuraea and the name Nonomuraea composti sp. nov. is proposed for the strain. The crude extract from the culture broth of strain FMUSA5-5T displayed promising antimicrobial activity against several pathogens and led to the isolation of a novel secondary metabolite, pradimicin U. Interestingly, this compound displayed a broad spectrum of biological activities such as antimalarial activity against Plasmodium falciparum K1 (IC50 value = 3.65 µg/mL), anti-Mycobacterium tuberculosis H37Ra (MIC value = 25.0 µg/mL), anti-Alternaria brassicicola BCC 42724 (MIC value = 25.0 µg/mL), anti-Bacillus cereus ATCC 11778 and anti-Staphylococcus aureus ATCC 29213 (MIC values = 6.25 and 1.56 µg/mL, respectively). Moreover, the compound possessed strong anti-human small cell lung cancer (NCI-H187) activity with IC50 value of 5.69 µg/mL, while cytotoxicity against human breast cancer (MCF-7) and Vero cells was very weak (IC50 values of 52.49 and 21.84 µg/mL, respectively).


Assuntos
Actinobacteria , Naftacenos , Quinonas , Naftacenos/isolamento & purificação , Naftacenos/farmacologia , Quinonas/isolamento & purificação , Quinonas/farmacologia , Actinobacteria/química , Actinobacteria/classificação , Actinobacteria/citologia , Actinobacteria/isolamento & purificação , Fertilizantes , Musa/microbiologia , Metabolismo Secundário , Antioxidantes/isolamento & purificação , Antioxidantes/farmacologia , Linhagem Celular Tumoral , Humanos , Antifúngicos/isolamento & purificação , Antifúngicos/farmacologia , Antibacterianos/isolamento & purificação , Antibacterianos/farmacologia
19.
Fitoterapia ; 175: 105961, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38626855

RESUMO

Two unprecedented quinone compounds Rubiaxylm A (1) and Rubiaxylm B (2), along with fifteen known anthraquinones (3-17) were isolated and characterized from the roots of Rubia tibetica in Tibetan medicine. Their structures were identified through comprehensive analyses of 1D/2D NMR as well as HR-ESIMS data. Furthermore, all separated compounds were evaluated for their cytotoxic activity on A549, Caco-2, MDA-MB-231 and Skov-3 cell lines. In particular, compound 2 effectively inhibited MDA-MB-231 cells with an IC50 value of 8.15 ± 0.20 µM. Subsequently, the anti-tumor mechanism of 2 was investigated by flow cytometry, JC-1 staining, cell scratching and cell colony. These results indicated that compound 2 could inhibit the proliferation of MDA-MB-231 cells by arresting cells in the G1 phase.


Assuntos
Antineoplásicos Fitogênicos , Medicina Tradicional Tibetana , Compostos Fitoquímicos , Raízes de Plantas , Rubia , Humanos , Antineoplásicos Fitogênicos/farmacologia , Antineoplásicos Fitogênicos/isolamento & purificação , Estrutura Molecular , Linhagem Celular Tumoral , Rubia/química , Raízes de Plantas/química , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/isolamento & purificação , Antraquinonas/farmacologia , Antraquinonas/isolamento & purificação , Antraquinonas/química , Tibet , Quinonas/farmacologia , Quinonas/isolamento & purificação , Quinonas/química
20.
Chem Pharm Bull (Tokyo) ; 72(4): 389-392, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38644164

RESUMO

Chagas disease, a neglected tropical disease caused by the protozoan Trypanosoma cruzi poses a significant health challenge in rural areas of Latin America. The current pharmacological options exhibit notable side effects, demand prolonged administration, and display limited efficacy. Consequently, there is an urgent need to develop drugs that are safe and clinically effective. Previously, we identified a quinone compound (designated as compound 2) with potent antiprotozoal activity, based on the chemical structure of komaroviquinone, a natural product renowned for its antitrypanosomal effects. However, compound 2 was demonstrated considerably unstable to light. In this study, we elucidated the structure of the light-induced degradation products of compound 2 and probed the correlation between the quinone ring's substituents and its susceptibility to light. Our findings led to the discovery of quinones with significantly enhanced light stability, some of which exhibiting antitrypanosomal activity. The most promising compound was evaluated for drug efficacy in a mouse model of Chagas disease, revealing where a notable reduction in blood parasitemia.


Assuntos
Doença de Chagas , Quinonas , Tripanossomicidas , Trypanosoma cruzi , Doença de Chagas/tratamento farmacológico , Animais , Trypanosoma cruzi/efeitos dos fármacos , Camundongos , Tripanossomicidas/farmacologia , Tripanossomicidas/química , Quinonas/química , Quinonas/farmacologia , Testes de Sensibilidade Parasitária , Estrutura Molecular , Luz , Modelos Animais de Doenças , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA