Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 300(8): 107505, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38944122

RESUMO

Archaeosine (G+) is an archaea-specific tRNA modification synthesized via multiple steps. In the first step, archaeosine tRNA guanine transglucosylase (ArcTGT) exchanges the G15 base in tRNA with 7-cyano-7-deazaguanine (preQ0). In Euryarchaea, preQ015 in tRNA is further modified by archaeosine synthase (ArcS). Thermococcus kodakarensis ArcS catalyzes a lysine-transfer reaction to produce preQ0-lysine (preQ0-Lys) as an intermediate. The resulting preQ0-Lys15 in tRNA is converted to G+15 by a radical S-adenosyl-L-methionine enzyme for archaeosine formation (RaSEA), which forms a complex with ArcS. Here, we focus on the substrate tRNA recognition mechanism of ArcS. Kinetic parameters of ArcS for lysine and tRNA-preQ0 were determined using a purified enzyme. RNA fragments containing preQ0 were prepared from Saccharomyces cerevisiae tRNAPhe-preQ015. ArcS transferred 14C-labeled lysine to RNA fragments. Furthermore, ArcS transferred lysine to preQ0 nucleoside and preQ0 nucleoside 5'-monophosphate. Thus, the L-shaped structure and the sequence of tRNA are not essential for the lysine-transfer reaction by ArcS. However, the presence of D-arm structure accelerates the lysine-transfer reaction. Because ArcTGT from thermophilic archaea recognizes the common D-arm structure, we expected the combination of T. kodakarensis ArcTGT and ArcS and RaSEA complex would result in the formation of preQ0-Lys15 in all tRNAs. This hypothesis was confirmed using 46 T. kodakarensis tRNA transcripts and three Haloferax volcanii tRNA transcripts. In addition, ArcTGT did not exchange the preQ0-Lys15 in tRNA with guanine or preQ0 base, showing that formation of tRNA-preQ0-Lys by ArcS plays a role in preventing the reverse reaction in G+ biosynthesis.


Assuntos
Proteínas Arqueais , Lisina , Thermococcus , Thermococcus/metabolismo , Thermococcus/genética , Thermococcus/enzimologia , Lisina/metabolismo , Lisina/química , Proteínas Arqueais/metabolismo , Proteínas Arqueais/genética , Proteínas Arqueais/química , RNA de Transferência/metabolismo , RNA de Transferência/genética , RNA de Transferência/química , RNA Arqueal/metabolismo , RNA Arqueal/genética , RNA Arqueal/química , Guanina/metabolismo , Guanina/química , Guanina/análogos & derivados , Especificidade por Substrato , Cinética , Nucleosídeos/metabolismo , Nucleosídeos/química , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Guanosina/análogos & derivados
2.
Proteins ; 85(1): 103-116, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27802572

RESUMO

The tunneling-fold (T-fold) structural superfamily has emerged as a versatile protein scaffold of diverse catalytic activities. This is especially evident in the pathways to the 7-deazaguanosine modified nucleosides of tRNA queuosine and archaeosine. Four members of the T-fold superfamily have been confirmed in these pathways and here we report the crystal structure of a fifth enzyme; the recently discovered amidinotransferase QueF-Like (QueF-L), responsible for the final step in the biosynthesis of archaeosine in the D-loop of tRNA in a subset of Crenarchaeota. QueF-L catalyzes the conversion of the nitrile group of the 7-cyano-7-deazaguanine (preQ0 ) base of preQ0 -modified tRNA to a formamidino group. The structure, determined in the presence of preQ0 , reveals a symmetric T-fold homodecamer of two head-to-head facing pentameric subunits, with 10 active sites at the inter-monomer interfaces. Bound preQ0 forms a stable covalent thioimide bond with a conserved active site cysteine similar to the intermediate previously observed in the nitrile reductase QueF. Despite distinct catalytic functions, phylogenetic distributions, and only 19% sequence identity, the two enzymes share a common preQ0 binding pocket, and likely a common mechanism of thioimide formation. However, due to tight twisting of its decamer, QueF-L lacks the NADPH binding site present in QueF. A large positively charged molecular surface and a docking model suggest simultaneous binding of multiple tRNA molecules and structure-specific recognition of the D-loop by a surface groove. The structure sheds light on the mechanism of nitrile amidation, and the evolution of diverse chemistries in a common fold. Proteins 2016; 85:103-116. © 2016 Wiley Periodicals, Inc.


Assuntos
Amidinotransferases/química , Proteínas Arqueais/química , Guanosina/análogos & derivados , Pirimidinonas/química , Pyrobaculum/enzimologia , Pirróis/química , Processamento Pós-Transcricional do RNA , Amidinotransferases/genética , Amidinotransferases/metabolismo , Sequência de Aminoácidos , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , Domínio Catalítico , Clonagem Molecular , Cristalografia por Raios X , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Guanosina/química , Guanosina/metabolismo , Simulação de Acoplamento Molecular , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Subunidades Proteicas/química , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Pirimidinonas/metabolismo , Pyrobaculum/genética , Pirróis/metabolismo , RNA Arqueal/química , RNA Arqueal/genética , RNA Arqueal/metabolismo , RNA de Transferência/química , RNA de Transferência/genética , RNA de Transferência/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Especificidade por Substrato
3.
RNA ; 22(2): 216-24, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26647461

RESUMO

Prokaryotes are frequently exposed to potentially harmful invasive nucleic acids from phages, plasmids, and transposons. One method of defense is the CRISPR-Cas adaptive immune system. Diverse CRISPR-Cas systems form distinct ribonucleoprotein effector complexes that target and cleave invasive nucleic acids to provide immunity. The Type III-B Cmr effector complex has been found to target the RNA and DNA of the invader in the various bacterial and archaeal organisms where it has been characterized. Interestingly, the gene encoding the Csx1 protein is frequently located in close proximity to the Cmr1-6 genes in many genomes, implicating a role for Csx1 in Cmr function. However, evidence suggests that Csx1 is not a stably associated component of the Cmr effector complex, but is necessary for DNA silencing by the Cmr system in Sulfolobus islandicus. To investigate the function of the Csx1 protein, we characterized the activity of recombinant Pyrococcus furiosus Csx1 against various nucleic acid substrates. We show that Csx1 is a metal-independent, endoribonuclease that acts selectively on single-stranded RNA and cleaves specifically after adenosines. The RNA cleavage activity of Csx1 is dependent upon a conserved HEPN motif located within the C-terminal domain of the protein. This motif is also key for activity in other known ribonucleases. Collectively, the findings indicate that invader silencing by Type III-B CRISPR-Cas systems relies both on RNA and DNA nuclease activities from the Cmr effector complex as well as on the affiliated, trans-acting Csx1 endoribonuclease.


Assuntos
Proteínas Associadas a CRISPR/química , Sistemas CRISPR-Cas , Endorribonucleases/química , Pyrococcus furiosus/genética , RNA Arqueal/química , Adenosina/metabolismo , Motivos de Aminoácidos , Proteínas Arqueais , Sequência de Bases , Proteínas Associadas a CRISPR/genética , Proteínas Associadas a CRISPR/imunologia , Endorribonucleases/genética , Endorribonucleases/imunologia , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Pyrococcus furiosus/imunologia , RNA Arqueal/genética , RNA Arqueal/imunologia , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Sulfolobus/genética , Sulfolobus/imunologia
4.
Biochemistry ; 54(23): 3569-72, 2015 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-26052987

RESUMO

TYW1 catalyzes the formation of 4-demethylwyosine via the condensation of N-methylguanosine (m¹G) with carbons 2 and 3 of pyruvate. In this study, labeled transfer ribonucleic acid (tRNA) and pyruvate were utilized to determine the site of hydrogen atom abstraction and regiochemistry of the pyruvate addition. tRNA containing a ²H-labeled m¹G methyl group was used to identify the methyl group of m¹G as the site of hydrogen atom abstraction by 5'-deoxyadenosyl radical. [2-¹³C1-3,3,3-²H3]Pyruvate was used to demonstrate retention of all the pyruvate protons, indicating that C2 of pyruvate forms the bridging carbon of the imidazoline ring and C3 the methyl.


Assuntos
Proteínas Arqueais/metabolismo , Biocatálise , Carboxiliases/metabolismo , Guanosina/análogos & derivados , Proteínas Ferro-Enxofre/metabolismo , Modelos Moleculares , S-Adenosilmetionina/metabolismo , Proteínas Arqueais/química , Radioisótopos de Carbono , Carboxiliases/química , Domínio Catalítico , Deutério , Radicais Livres/química , Radicais Livres/metabolismo , Guanosina/química , Guanosina/metabolismo , Proteínas Ferro-Enxofre/química , Mathanococcus/enzimologia , Metilação , Ácido Pirúvico/química , Ácido Pirúvico/metabolismo , RNA Arqueal/química , RNA Arqueal/metabolismo , RNA de Transferência de Fenilalanina/química , RNA de Transferência de Fenilalanina/metabolismo , S-Adenosilmetionina/química , Estereoisomerismo
5.
Nat Struct Mol Biol ; 18(11): 1268-74, 2011 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-22002222

RESUMO

The archaeal AUA-codon specific tRNA(Ile) contains 2-agmatinylcytidine (agm(2)C or agmatidine) at the anticodon wobble position (position 34). The formation of this essential modification is catalyzed by tRNA(Ile)-agm(2)C synthetase (TiaS) using agmatine and ATP as substrates. TiaS has a previously unknown catalytic domain, which we have named the Thr18-Cyt34 kinase domain (TCKD). Biochemical analyses of Archaeoglobus fulgidus TiaS and its mutants revealed that the TCKD first hydrolyzes ATP into AMP and pyrophosphate, then phosphorylates the C2 position of C34 with the γ-phosphate. Next, the amino group of agmatine attacks this position to release the phosphate and form agm(2)C. Notably, the TCKD also autophosphorylates the Thr18 of TiaS, which may be involved in agm(2)C formation. Thus, the unique kinase domain of TiaS catalyzes dual phosphorylation of protein and RNA substrates.


Assuntos
Agmatina/química , Proteínas Arqueais/metabolismo , Archaeoglobus fulgidus/enzimologia , Citidina/química , Isoleucina-tRNA Ligase/metabolismo , RNA Arqueal/química , RNA de Transferência de Isoleucina/química , Trifosfato de Adenosina/química , Trifosfato de Adenosina/metabolismo , Agmatina/metabolismo , Proteínas Arqueais/química , Proteínas Arqueais/genética , Archaeoglobus fulgidus/genética , Citidina/metabolismo , Isoleucina-tRNA Ligase/química , Isoleucina-tRNA Ligase/genética , Modelos Moleculares , Estrutura Molecular , Estrutura Terciária de Proteína , RNA Arqueal/metabolismo , RNA de Transferência de Isoleucina/metabolismo
6.
Proc Natl Acad Sci U S A ; 106(37): 15616-21, 2009 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-19717466

RESUMO

S-adenosylmethionine (AdoMet) is a methyl donor used by a wide variety of methyltransferases, and it is also used as the source of an alpha-amino-alpha-carboxypropyl ("acp") group by several enzymes. tRNA-yW synthesizing enzyme-2 (TYW2) is involved in the biogenesis of a hypermodified nucleotide, wybutosine (yW), and it catalyzes the transfer of the "acp" group from AdoMet to the C7 position of the imG-14 base, a yW precursor. This modified nucleoside yW is exclusively located at position 37 of eukaryotic tRNA(Phe), and it ensures the anticodon-codon pairing on the ribosomal decoding site. Although this "acp" group has a significant role in preventing decoding frame shifts, the mechanism of the "acp" group transfer by TYW2 remains unresolved. Here we report the crystal structures and functional analyses of two archaeal homologs of TYW2 from Pyrococcus horikoshii and Methanococcus jannaschii. The in vitro mass spectrometric and radioisotope-labeling analyses confirmed that these archaeal TYW2 homologues have the same activity as yeast TYW2. The crystal structures verified that the archaeal TYW2 contains a canonical class-I methyltransferase (MTase) fold. However, their AdoMet-bound structures revealed distinctive AdoMet-binding modes, in which the "acp" group, instead of the methyl group, of AdoMet is directed to the substrate binding pocket. Our findings, which were confirmed by extensive mutagenesis studies, explain why TYW2 transfers the "acp" group, and not the methyl group, from AdoMet to the nucleobase.


Assuntos
Nucleosídeos/biossíntese , S-Adenosilmetionina/metabolismo , tRNA Metiltransferases/química , tRNA Metiltransferases/metabolismo , Domínio Catalítico , Cristalografia por Raios X , Mathanococcus/enzimologia , Mathanococcus/genética , Modelos Moleculares , Pyrococcus horikoshii/enzimologia , Pyrococcus horikoshii/genética , Processamento Pós-Transcricional do RNA , RNA Arqueal/química , RNA Arqueal/metabolismo , RNA de Transferência de Fenilalanina/química , RNA de Transferência de Fenilalanina/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Eletricidade Estática , tRNA Metiltransferases/genética
7.
J Mol Biol ; 375(4): 1064-75, 2008 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-18068186

RESUMO

The conserved cytidine residue at position 56 of tRNA contributes to the maintenance of the L-shaped tertiary structure. aTrm56 catalyzes the 2'-O-methylation of the cytidine residue in archaeal tRNA, using S-adenosyl-L-methionine. Based on the amino acid sequence, aTrm56 is the most distant member of the SpoU family. Here, we determined the crystal structure of Pyrococcus horikoshii aTrm56 complexed with S-adenosyl-L-methionine at 2.48 A resolution. aTrm56 consists of the SPOUT domain, which contains the characteristic deep trefoil knot, and a unique C-terminal beta-hairpin. aTrm56 forms a dimer. The S-adenosyl-L-methionine binding and dimerization of aTrm56 were similar to those of the other SpoU members. A structure-based sequence alignment revealed that aTrm56 conserves only motif II, among the four signature motifs. However, an essential Arg16 residue is located at a novel position within motif I. Biochemical assays showed that aTrm56 prefers the L-shaped tRNA to the lambda form as its substrate.


Assuntos
Citidina/análogos & derivados , Citidina/química , RNA Arqueal/química , RNA de Transferência/química , tRNA Metiltransferases/química , tRNA Metiltransferases/genética , Motivos de Aminoácidos , Sequência de Aminoácidos , Sítios de Ligação , Cristalografia por Raios X , Dimerização , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Metilação , Modelos Químicos , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Ligação Proteica , Conformação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Pyrococcus horikoshii/enzimologia , RNA Arqueal/genética , RNA Arqueal/metabolismo , RNA de Transferência/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , S-Adenosilmetionina/metabolismo , Homologia de Sequência de Aminoácidos , tRNA Metiltransferases/metabolismo
8.
Nucleic Acids Res ; 34(20): 5800-14, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-17053098

RESUMO

The ribosomal stalk complex, consisting of one molecule of L10 and four or six molecules of L12, is attached to 23S rRNA via protein L10. This complex forms the so-called 'L12 stalk' on the 50S ribosomal subunit. Ribosomal protein L11 binds to the same region of 23S rRNA and is located at the base of the 'L12 stalk'. The 'L12 stalk' plays a key role in the interaction of the ribosome with translation factors. In this study stalk complexes from mesophilic and (hyper)thermophilic species of the archaeal genus Methanococcus and from the Archaeon Sulfolobus solfataricus, as well as from the Bacteria Escherichia coli, Geobacillus stearothermophilus and Thermus thermophilus, were overproduced in E.coli and purified under non-denaturing conditions. Using filter-binding assays the affinities of the archaeal and bacterial complexes to their specific 23S rRNA target site were analyzed at different pH, ionic strength and temperature. Affinities of both archaeal and bacterial complexes for 23S rRNA vary by more than two orders of magnitude, correlating very well with the growth temperatures of the organisms. A cooperative effect of binding to 23S rRNA of protein L11 and the L10/L12(4) complex from mesophilic and thermophilic Archaea was shown to be temperature-dependent.


Assuntos
Archaea/genética , Bactérias/genética , RNA Ribossômico 23S/química , Proteínas Ribossômicas/metabolismo , Proteínas Arqueais/metabolismo , Proteínas de Bactérias/metabolismo , Sequência de Bases , Sítios de Ligação , Dados de Sequência Molecular , Ligação Proteica , RNA Arqueal/química , RNA Arqueal/metabolismo , RNA Ribossômico 23S/metabolismo , Proteína Ribossômica L10 , Temperatura
9.
Science ; 312(5782): 1950-4, 2006 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-16809540

RESUMO

Glutaminyl-transfer RNA (Gln-tRNA(Gln)) in archaea is synthesized in a pretranslational amidation of misacylated Glu-tRNA(Gln) by the heterodimeric Glu-tRNA(Gln) amidotransferase GatDE. Here we report the crystal structure of the Methanothermobacter thermautotrophicus GatDE complexed to tRNA(Gln) at 3.15 angstroms resolution. Biochemical analysis of GatDE and of tRNA(Gln) mutants characterized the catalytic centers for the enzyme's three reactions (glutaminase, kinase, and amidotransferase activity). A 40 angstrom-long channel for ammonia transport connects the active sites in GatD and GatE. tRNA(Gln) recognition by indirect readout based on shape complementarity of the D loop suggests an early anticodon-independent RNA-based mechanism for adding glutamine to the genetic code.


Assuntos
Código Genético , Glutamina/metabolismo , Methanobacteriaceae/enzimologia , Transferases de Grupos Nitrogenados/química , Transferases de Grupos Nitrogenados/metabolismo , RNA Arqueal/química , RNA de Transferência de Glutamina/química , Acilação , Trifosfato de Adenosina/metabolismo , Amônia/metabolismo , Anticódon , Sítios de Ligação , Domínio Catalítico , Simulação por Computador , Cristalografia por Raios X , Dimerização , Ligação de Hidrogênio , Magnésio/metabolismo , Methanobacteriaceae/genética , Modelos Moleculares , Mutação , Conformação de Ácido Nucleico , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , RNA Arqueal/metabolismo , RNA de Transferência de Glutamina/metabolismo
10.
Structure ; 13(10): 1397-8, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16216568
11.
RNA ; 11(7): 1051-63, 2005 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15987815

RESUMO

We identified the first archaeal tRNA ribose 2'-O-methylase, aTrm56, belonging to the Cluster of Orthologous Groups (COG) 1303 that contains archaeal genes only. The corresponding protein exhibits a SPOUT S-adenosylmethionine (AdoMet)-dependent methyltransferase domain found in bacterial and yeast G18 tRNA 2'-O-methylases (SpoU, Trm3). We cloned the Pyrococcus abyssi PAB1040 gene belonging to this COG, expressed and purified the corresponding protein, and showed that in vitro, it specifically catalyzes the AdoMet-dependent 2'-O-ribose methylation of C at position 56 in tRNA transcripts. This tRNA methylation is present only in archaea, and the gene for this enzyme is present in all the archaeal genomes sequenced up to now, except in the crenarchaeon Pyrobaculum aerophilum. In this archaea, the C56 2'-O-methylation is provided by a C/D sRNP. Our work is the first demonstration that, within the same kingdom, two different mechanisms are used to modify the same nucleoside in tRNAs.


Assuntos
Citosina/metabolismo , RNA Arqueal/metabolismo , RNA Nucleolar Pequeno/metabolismo , RNA de Transferência/química , tRNA Metiltransferases/química , tRNA Metiltransferases/metabolismo , Sequência de Aminoácidos , Catálise , Clonagem Molecular , Sequência Consenso , Escherichia coli/genética , Genoma Arqueal , Glutationa Transferase/metabolismo , Cinética , Dados de Sequência Molecular , Peso Molecular , Fases de Leitura Aberta , Filogenia , Estrutura Secundária de Proteína , Pyrobaculum/genética , Pyrobaculum/metabolismo , Pyrococcus abyssi/enzimologia , Pyrococcus abyssi/genética , RNA Arqueal/química , RNA Arqueal/genética , RNA Nucleolar Pequeno/genética , RNA de Transferência/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos , Especificidade por Substrato , Temperatura , tRNA Metiltransferases/classificação , tRNA Metiltransferases/genética
12.
RNA ; 11(7): 1043-50, 2005 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15928341

RESUMO

Proper assembly of large protein-RNA complexes requires sequential binding of the proteins to the RNA. The signal recognition particle (SRP) is a multiprotein-RNA complex responsible for the cotranslational targeting of proteins to biological membranes. Here we describe the crystal structure at 2.6-A resolution of the S-domain of SRP RNA from the archeon Methanococcus jannaschii. Comparison of this structure with the SRP19-bound form reveals the nature of the SRP19-induced conformational changes, which promote subsequent SRP54 attachment. These structural changes are initiated at the SRP19 binding site and transmitted through helix 6 to looped-out adenosines, which form tertiary RNA interaction with helix 8. Displacement of these adenosines enforces a conformational change of the asymmetric loop structure in helix 8. In free RNA, the three unpaired bases A195, C196, and C197 are directed toward the helical axis, whereas upon SRP19 binding the loop backbone inverts and the bases are splayed out in a conformation that resembles the SRP54-bound form. Nucleotides adjacent to the bulged nucleotides seem to be particularly important in the regulation of this loop transition. Binding of SRP19 to 7S RNA reveals an elegant mechanism of how protein-induced changes are directed through an RNA molecule and may relate to those regulating the assembly of other RNPs.


Assuntos
Mathanococcus/química , RNA Arqueal/química , RNA Arqueal/metabolismo , Partícula de Reconhecimento de Sinal/química , Partícula de Reconhecimento de Sinal/metabolismo , Adenosina/química , Sequência de Bases , Sítios de Ligação , Cromatografia em Gel , Cristalografia por Raios X , Citosina/química , Ensaio de Desvio de Mobilidade Eletroforética , Lactococcus lactis/genética , Mathanococcus/genética , Modelos Biológicos , Modelos Moleculares , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Ligação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , RNA Arqueal/genética
13.
FEBS Lett ; 579(13): 2807-10, 2005 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-15907485

RESUMO

Post-transcriptionally modified nucleosides are constituents of transfer RNA (tRNA) that are known to influence tertiary structure, stability and coding properties. Modifications in unfractionated tRNA from the phylogenetically unique archaeal methanogen Methanopyrus kandleri (optimal growth temperature 98 degrees C) were studied using liquid chromatography-mass spectrometry to establish the extent to which they might differ from those of other methanogens. The exceptionally diverse population of nucleosides included four new nucleosides of unknown structure, and one that was characterized as N(6)-acetyladenosine, a new RNA constituent. The nucleoside modification pattern in M. kandleri tRNA is notably different from that of other archaeal methanogens, and is closer to that of the thermophilic crenarchaeota.


Assuntos
Adenosina/química , Archaea/genética , RNA Arqueal/química , RNA de Transferência/química , Cromatografia Líquida de Alta Pressão , Espectrometria de Massas por Ionização por Electrospray
14.
Arch Microbiol ; 183(2): 148-50, 2005 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15611862

RESUMO

Methanococcus maripaludis possesses two sets of F(420)-non-reducing hydrogenases which are differentially expressed in response to the selenium content of the medium. One of the subunits of the selenium-containing hydrogenase, VhuD, contains two selenocysteine residues, whereas the homologue of M. voltae possesses cysteine residues in the equivalent positions. Analysis of the 3' non-translated region of the M. voltae vhuD mRNA revealed the existence of a structure resembling the consensus of archaeal SECIS elements but with deviations rendering it non-functional in determining selenocysteine insertion. The presence of a pseudo-SECIS element in the 3' non-translated region of the vhuD mRNA from M. voltae suggests that VhuD from this organism has developed from a selenocysteine-containing ancestor. The 3' non-translated region from the VhcD homologues neither contained a SECIS nor a pseudo SECIS element.


Assuntos
Regiões 3' não Traduzidas/química , Proteínas Arqueais/genética , Hidrogenase/genética , Mathanococcus/genética , Proteínas/genética , RNA Arqueal/química , Sequência de Bases , Mathanococcus/enzimologia , Dados de Sequência Molecular , Selenoproteínas
15.
Archaea ; 1(4): 269-75, 2004 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-15810437

RESUMO

The signal recognition particle (SRP) RNA helix 6 of archaea and eukaryotes is essential for the binding of protein SRP19 and the assembly of a functional complex. The conserved adenosine at the third position of the tetraloop of helix 6 (A149) is crucial for the binding of protein SRP19 in the mammalian SRP. Here we investigated the significance of the equivalent adenosine residue at position 159 (A159) of Archaeoglobus fulgidus SRP RNA. The A159 of A. fulgidus and A149 of human SRP RNA were changed to C, G or U, and fragments containing helix 6 or helices 6 and 8 were synthesized by run-off transcription with T7 RNA polymerase. The ability of recombinant A. fulgidus and human SRP19 to form ribonucleoprotein complexes was measured in vitro. The simultaneous presence of A149 and helix 8 is required for the high-affinity binding of SRP19 to the human SRP RNA. In contrast, A. fulgidus SRP19 binds to the SRP RNA fragments with high affinity irrespective of the nature of the nucleotide, demonstrating that A159 does not directly participate in protein binding. Instead, as indicated by the resistance of the wild-type A. fulgidus RNA towards digestion by RNase A, this residue allows the formation of a tightly folded RNA molecule. The high affinity between A.fulgidus SRP 19 and RNA molecules that contain both helices 6 and 8 suggests that A159 is likely to initiate archaeal SRP assembly by forming a conserved tertiary RNA-RNA interaction.


Assuntos
Adenosina/metabolismo , Archaeoglobus fulgidus/genética , RNA Arqueal/química , Partícula de Reconhecimento de Sinal/genética , Partícula de Reconhecimento de Sinal/metabolismo , Adenosina/química , Sequência de Aminoácidos , Archaeoglobus fulgidus/metabolismo , Sequência de Bases , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Conformação de Ácido Nucleico , Mutação Puntual , RNA Arqueal/genética , RNA Arqueal/fisiologia , Ribonucleases/metabolismo
16.
RNA ; 9(11): 1345-52, 2003 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-14561884

RESUMO

During translation, tRNAs cycle through three binding sites on the ribosome: the A, the P, and the E sites. We have determined the structures of complexes between the Haloarcula marismortui large ribosomal subunit and two different E site substrates: a deacylated tRNA acceptor stem minihelix and a CCA-acceptor end. Both of these tRNA mimics contain analogs of adenosine 76, the component responsible for a large proportion of E site binding affinity. They bind in the center of the loop-extension of protein L44e, and make specific contacts with both L44e and 23S rRNA including bases that are conserved in all three kingdoms of life. These contacts are consistent with the footprinting, protection, and cross-linking data that have identified the E site biochemically. These structures explain the specificity of the E site for deacylated tRNAs, as it is too small to accommodate any relevant aminoacyl-tRNA. The orientation of the minihelix suggests that it may mimic the P/E hybrid state. It appears that the E site on the 50S subunit was formed by only RNA in the last common ancestor of the three kingdoms, since the proteins at the E sites of H. marismortui and Deinucoccus radiodurans large subunits are not homologous.


Assuntos
RNA Arqueal/metabolismo , RNA de Transferência/metabolismo , Ribossomos/metabolismo , Acilação , Sítios de Ligação , Haloarcula marismortui/genética , Haloarcula marismortui/metabolismo , Modelos Moleculares , RNA Arqueal/química , RNA de Transferência/química , Ribossomos/química
17.
RNA ; 9(6): 734-45, 2003 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12756331

RESUMO

The bacterial tRNA processing enzyme ribonuclease P (RNase P) is a ribonucleoprotein composed of a approximately 400 nucleotide RNA and a smaller protein subunit. It has been established that RNase P RNA contacts the mature tRNA portion of pre-tRNA substrates, whereas RNase P protein interacts with the 5' leader sequence. However, specific interactions with substrate nucleotides flanking the cleavage site have not previously been defined. Here we provide evidence for an interaction between a conserved adenosine, A248 in the Escherichia coli ribozyme, and N(-1), the substrate nucleotide immediately 5' of the cleavage site. Specifically, mutations at A248 result in miscleavage of substrates containing a 2' deoxy modification at N(-1). Compensatory mutations at N(-1) restore correct cleavage in both the RNA-alone and holoenzyme reactions, and also rescue defects in binding thermodynamics caused by A248 mutation. Analysis of pre-tRNA leader sequences in Bacteria and Archaea reveals a conserved preference for U at N(-1), suggesting that an interaction between A248 and N(-1) is common among RNase P enzymes. These results provide the first direct evidence for RNase P RNA interactions with the substrate cleavage site, and show that RNA and protein cooperate in leader sequence recognition.


Assuntos
Regiões 5' não Traduzidas/metabolismo , Endorribonucleases/química , Endorribonucleases/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Precursores de RNA/metabolismo , RNA Catalítico/química , RNA Catalítico/metabolismo , RNA de Transferência/metabolismo , Adenosina/genética , Sequência de Bases , Sítios de Ligação , Catálise , Sequência Conservada , Escherichia coli/enzimologia , Modelos Biológicos , Mutação , Precursores de RNA/química , RNA Arqueal/química , RNA Arqueal/metabolismo , RNA Bacteriano/química , RNA Bacteriano/metabolismo , RNA de Transferência/química , Ribonuclease P , Análise de Sequência de RNA , Especificidade por Substrato
18.
Nat Struct Biol ; 10(4): 256-63, 2003 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-12598892

RESUMO

Nop56p and Nop58p are two core proteins of the box C/D snoRNPs that interact concurrently with fibrillarin and snoRNAs to function in enzyme assembly and catalysis. Here we report the 2.9 A resolution co-crystal structure of an archaeal homolog of Nop56p/Nop58p, Nop5p, in complex with fibrillarin from Archaeoglobus fulgidus (AF) and the methyl donor S-adenosyl-L-methionine. The N-terminal domain of Nop5p forms a complementary surface to fibrillarin that serves to anchor the catalytic subunit and to stabilize cofactor binding. A coiled coil in Nop5p mediates dimerization of two fibrillarin-Nop5p heterodimers for optimal interactions with bipartite box C/D RNAs. Structural analysis and complementary biochemical data demonstrate that the conserved C-terminal domain of Nop5p harbors RNA-binding sites. A model of box C/D snoRNP assembly is proposed based on the presented structural and biochemical data.


Assuntos
Proteínas Arqueais/química , Proteínas Arqueais/metabolismo , Proteínas Nucleares , RNA Arqueal/química , RNA Arqueal/metabolismo , Ribonucleoproteínas Nucleolares Pequenas/metabolismo , Sequência de Aminoácidos , Proteínas Arqueais/genética , Archaeoglobus fulgidus/genética , Archaeoglobus fulgidus/metabolismo , Sítios de Ligação , Proteínas Cromossômicas não Histona/química , Proteínas Cromossômicas não Histona/metabolismo , Cristalografia por Raios X , Dimerização , Ensaio de Desvio de Mobilidade Eletroforética , Substâncias Macromoleculares , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Molecular , Estrutura Terciária de Proteína , Edição de RNA , RNA Arqueal/genética , RNA Nucleolar Pequeno/química , RNA Nucleolar Pequeno/genética , RNA Nucleolar Pequeno/metabolismo , Ribonucleoproteínas Nucleolares Pequenas/química , Ribonucleoproteínas Nucleolares Pequenas/genética , Homologia de Sequência de Aminoácidos , Eletricidade Estática , Pequeno RNA não Traduzido
19.
J Biol Chem ; 277(48): 46145-50, 2002 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-12359717

RESUMO

Specific interactions of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) with RNA have been reported both in vitro and in vivo. We show that eukaryotic and bacterial GAPDH and two proteins from the hyperthermophilic archaeon Sulfolobus solfataricus, which are annotated as dehydrogenases, cleave RNA producing similar degradation patterns. RNA cleavage is most efficient at 60 degrees C, at MgCl(2) concentrations up to 5 mm, and takes place between pyrimidine and adenosine. The RNase active center of the putative aspartate semialdehyde dehydrogenase from S. solfataricus is located within the N-terminal 73 amino acids, which comprise the first mononucleotide-binding site of the predicted Rossmann fold. Thus, RNA cleavage has to be taken into account in the ongoing discussion of the possible biological function of RNA binding by dehydrogenases.


Assuntos
Proteínas Arqueais/metabolismo , Gliceraldeído-3-Fosfato Desidrogenases/metabolismo , RNA Arqueal/metabolismo , Sequência de Bases , Hidrólise , Dados de Sequência Molecular , Conformação de Ácido Nucleico , RNA Arqueal/química , Sulfolobus/enzimologia
20.
Mol Cell ; 10(1): 117-28, 2002 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12150912

RESUMO

Crystal structures of the Haloarcula marismortui large ribosomal subunit complexed with the 16-membered macrolide antibiotics carbomycin A, spiramycin, and tylosin and a 15-membered macrolide, azithromycin, show that they bind in the polypeptide exit tunnel adjacent to the peptidyl transferase center. Their location suggests that they inhibit protein synthesis by blocking the egress of nascent polypeptides. The saccharide branch attached to C5 of the lactone rings extends toward the peptidyl transferase center, and the isobutyrate extension of the carbomycin A disaccharide overlaps the A-site. Unexpectedly, a reversible covalent bond forms between the ethylaldehyde substituent at the C6 position of the 16-membered macrolides and the N6 of A2103 (A2062, E. coli). Mutations in 23S rRNA that result in clinical resistance render the binding site less complementary to macrolides.


Assuntos
Antibacterianos/química , Antibacterianos/metabolismo , Haloarcula marismortui/química , RNA Ribossômico 23S/química , RNA Ribossômico 23S/metabolismo , Ribossomos/química , Ribossomos/metabolismo , Sequência de Bases , Sítios de Ligação , Cristalografia por Raios X , Resistência a Medicamentos/genética , Haloarcula marismortui/citologia , Haloarcula marismortui/genética , Macrolídeos , Modelos Moleculares , Estrutura Molecular , Mutação , Conformação de Ácido Nucleico , Conformação Proteica , RNA Arqueal/química , RNA Arqueal/genética , RNA Arqueal/metabolismo , RNA Ribossômico 23S/genética , Ribossomos/genética , Eletricidade Estática
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA