Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 115
Filtrar
1.
Pathol Res Pract ; 229: 153734, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35030351

RESUMO

Clear cell renal cell carcinoma (ccRCC) is recognized as one of the most lethal malignancies among the urological system, with constantly increasing mortality. While the molecular mechanisms underlying ccRCC progression are still poorly understood, the molecular and functional role of lncRNA in multiple diseases has been well demonstrated. In this study, we hypothesized that lncRNA MEG8 might participate in ccRCC development. At first, we found that MEG8 expression was increased in ccRCC tumor tissues and cells. Next, we demonstrated that MEG8 knockdown suppressed cell viability, migration, and invasion in vitro and inhibited tumor growth in vivo. Subsequently, we utilized bioinformatics analysis, ChIP, and luciferase assays, and we found that PLAG1 could transcriptionally regulate MEG8 in ccRCC cells. Furthermore, MEG8 promoted G3BP1 expression to aggravate ccRCC tumorigenic properties through sponging miR-495-3p. Our study identified a novel PLAG1/MEG8/miR-495-3p/G3BP1 network in ccRCC development, which might be a promising direction for developing new diagnoses or therapeutic agents for ccRCC.


Assuntos
Carcinoma de Células Renais/genética , DNA Helicases/fisiologia , Proteínas de Ligação a DNA/fisiologia , Neoplasias Renais/genética , MicroRNAs/fisiologia , Proteínas de Ligação a Poli-ADP-Ribose/fisiologia , RNA Helicases/fisiologia , Proteínas com Motivo de Reconhecimento de RNA/fisiologia , RNA Longo não Codificante , Humanos , Células Tumorais Cultivadas
2.
Int J Cancer ; 150(4): 551-561, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-34460104

RESUMO

Stress granules (SGs) contain mRNAs and proteins stalled in translation during stress; these are increasingly being implicated in diseases, including neurological disorders and cancer. The dysregulated assembly, persistence, disassembly and clearance of SGs contribute to the process of senescence. Senescence has long been a mysterious player in cellular physiology and associated diseases. The systemic process of aging has been pivotal in the development of various neurological disorders like age-related neuropathy, Alzheimer's disease and Parkinson's disease. Glioma is a cancer of neurological origin with a very poor prognosis and high rate of recurrence, SGs have only recently been implicated in its pathogenesis. Senescence has long been established to play an antitumorigenic role, however, relatively less studied is its protumorigenic importance. Here, we have evaluated the existing literature to assess the crosstalk of the two biological phenomena of senescence and SG formation in the context of tumorigenesis. In this review, we have attempted to analyze the contribution of senescence in regulating diverse cellular processes, like, senescence associated secretory phenotype (SASP), microtubular reorganization, telomeric alteration, autophagic clearance and how intricately these phenomena are tied with the formation of SGs. Finally, we propose that interplay between senescence, its contributing factors and the genesis of SGs can drive tumorigenicity of gliomas, which can potentially be utilized for therapeutic intervention.


Assuntos
Neoplasias Encefálicas/etiologia , Senescência Celular/fisiologia , Glioma/etiologia , Grânulos de Estresse/fisiologia , Autofagia , Neoplasias Encefálicas/patologia , DNA Helicases/fisiologia , Progressão da Doença , Glioma/patologia , Humanos , Microtúbulos/química , Proteínas de Ligação a Poli-ADP-Ribose/fisiologia , RNA Helicases/fisiologia , Proteínas com Motivo de Reconhecimento de RNA/fisiologia , Telômero , Quinases Associadas a rho/fisiologia
3.
J Cell Mol Med ; 25(18): 8615-8627, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34312987

RESUMO

YTH domain containing 2 (YTHDC2) is the largest N6-Methyladenosine (m6 A) binding protein of the YTH protein family and the only member containing ATP-dependent RNA helicase activity. For further analysing its biological role in epigenetic modification, we comprehensively explored YTHDC2 from gene expression, genetic alteration, protein-protein interaction (PPI) network, immune infiltration, diagnostic value and prognostic value in pan-cancer, using a series of databases and bioinformatic tools. We found that YTHDC2 with Missense mutation could cause a different prognosis in uterine corpus endometrial carcinoma (UCEC), and its different methylation level could lead to a totally various prognosis in adrenocortical carcinoma (ACC), cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC), lung squamous cell carcinoma (LUSC) and UCEC. The main molecular mechanisms of YTHDC2 focused on catalytic activity, helicase activity, snRNA binding, spliceosome and mRNA surveillance. Additionally, YTHDC2 was notably correlated with tumour immune infiltration. Moreover, YTHDC2 had a high diagnostic value for seven cancer types and a prognostic value for brain lower grade glioma (LGG), rectum adenocarcinoma (READ) and skin cutaneous melanoma (SKCM). Collectively, YTHDC2 plays a significant role in epigenetic modification and immune infiltration and maybe a potential biomarker for diagnosis and prognosis in certain cancers.


Assuntos
Adenosina/análogos & derivados , Neoplasias/metabolismo , RNA Helicases/fisiologia , Adenosina/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Prognóstico
4.
Methods Mol Biol ; 2209: 35-52, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33201461

RESUMO

RNA helicases are proteins found in all kingdoms of life, and they are associated with all processes involving RNA from transcription to decay. They use NTP binding and hydrolysis to unwind duplexes, to remodel RNA structures and protein-RNA complexes, and to facilitate the unidirectional metabolism of biological processes. Viral, bacterial, and eukaryotic parasites have an intimate need for RNA helicases in their reproduction. Moreover, various disorders, like cancers, are often associated with a perturbation of the host's helicase activity. Thus, RNA helicases provide a rich source of targets for the development of therapeutic or prophylactic drugs. In this review, we provide an overview of the different targeting strategies against helicases, the different types of compounds explored, the proposed inhibitory mechanisms of the compounds on the proteins, and the therapeutic potential of these compounds in the treatment of various disorders.


Assuntos
Inibidores Enzimáticos , RNA Helicases , Animais , Infecções Bacterianas/tratamento farmacológico , Linhagem Celular , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Humanos , Infecções por Protozoários/tratamento farmacológico , RNA Helicases/antagonistas & inibidores , RNA Helicases/fisiologia , Viroses/tratamento farmacológico
5.
Mol Cell ; 77(6): 1222-1236.e13, 2020 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-32048998

RESUMO

RNA decay is crucial for mRNA turnover and surveillance and misregulated in many diseases. This complex system is challenging to study, particularly in mammals, where it remains unclear whether decay pathways perform specialized versus redundant roles. Cytoplasmic pathways and links to translation are particularly enigmatic. By directly profiling decay factor targets and normal versus aberrant translation in mouse embryonic stem cells (mESCs), we uncovered extensive decay pathway specialization and crosstalk with translation. XRN1 (5'-3') mediates cytoplasmic bulk mRNA turnover whereas SKIV2L (3'-5') is universally recruited by ribosomes, tackling aberrant translation and sometimes modulating mRNA abundance. Further exploring translation surveillance revealed AVEN and FOCAD as SKIV2L interactors. AVEN prevents ribosome stalls at structured regions, which otherwise require SKIV2L for clearance. This pathway is crucial for histone translation, upstream open reading frame (uORF) regulation, and counteracting ribosome arrest on small ORFs. In summary, we uncovered key targets, components, and functions of mammalian RNA decay pathways and extensive coupling to translation.


Assuntos
Proteínas Reguladoras de Apoptose/fisiologia , Proteínas de Ligação a DNA/fisiologia , Exorribonucleases/fisiologia , Células-Tronco Embrionárias Murinas/metabolismo , Biossíntese de Proteínas , RNA Helicases/fisiologia , Estabilidade de RNA , RNA Mensageiro/metabolismo , Animais , Sistemas CRISPR-Cas , Regulação da Expressão Gênica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células-Tronco Embrionárias Murinas/citologia , Fases de Leitura Aberta , Proteínas Proto-Oncogênicas/fisiologia , RNA Mensageiro/química , RNA Mensageiro/genética , Ribossomos/genética , Ribossomos/metabolismo
6.
RNA Biol ; 16(6): 754-769, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30810475

RESUMO

Prp16 is a DEAH box pre-mRNA splicing factor that triggers a key spliceosome conformational switch to facilitate second step splicing in Saccharomyces cerevisiae. However, Prp16 functions are largely unexplored in Schizosaccharomyces pombe, an attractive model with exon-intron architecture more relevant to several other eukaryotes. Here, we generated mis-sense alleles in SpPrp16 whose consequences on genome-wide splicing uncover its nearly global splicing role with only a small subset of unaffected introns. Prp16 dependent and independent intron categories displayed a striking difference in the strength of intronic 5' splice site (5'SS)-U6 snRNA and branch site (BS)-U2 snRNA interactions. Selective weakening of these interactions could convert a Prp16 dependent intron into an independent one. These results point to the role of SpPrp16 in destabilizing 5'SS-U6snRNA and BS-U2snRNA interactions which plausibly trigger structural alterations in the spliceosome to facilitate first step catalysis. Our data suggest that SpPrp16 interactions with early acting factors, its enzymatic activities and association with intronic elements collectively account for efficient and accurate first step catalysis. In addition to splicing derangements in the spprp16F528S mutant, we show that SpPrp16 influences cell cycle progression and centromeric heterochromatinization. We propose that strong 5'SS-U6 snRNA and BS-U2 snRNA complementarity of intron-like elements in non-coding RNAs which lead to complete splicing arrest and impaired Seb1 functions at the pericentromeric loci may cumulatively account for the heterochromatin defects in spprp16F528S cells. These findings suggest that the diverse Prp16 functions within a genome are likely governed by its intronic features that influence splice site-snRNA interaction strength.


Assuntos
Adenosina Trifosfatases/fisiologia , Regulação Fúngica da Expressão Gênica , Inativação Gênica , Íntrons , RNA Helicases/fisiologia , Fatores de Processamento de RNA/fisiologia , Splicing de RNA , Proteínas de Schizosaccharomyces pombe/fisiologia , Schizosaccharomyces/genética , Adenosina Trifosfatases/química , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Alelos , Sequência de Aminoácidos , Ciclo Celular , Centrômero , Sequência Conservada , Genoma Fúngico , Mutação , RNA Helicases/química , RNA Helicases/genética , RNA Helicases/metabolismo , Fatores de Processamento de RNA/química , Fatores de Processamento de RNA/genética , Fatores de Processamento de RNA/metabolismo , RNA Nuclear Pequeno/metabolismo , Proteínas de Schizosaccharomyces pombe/química , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo
7.
PLoS Pathog ; 15(2): e1007596, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30785952

RESUMO

Nuclear RNAs are subject to a number of RNA decay pathways that serve quality control and regulatory functions. As a result, any virus that expresses its genes in the nucleus must have evolved mechanisms that avoid these pathways, but the how viruses evade nuclear RNA decay remains largely unknown. The multifunctional Kaposi's sarcoma-associated herpesvirus (KSHV) ORF57 (Mta) protein is required for the nuclear stability of viral transcripts. In the absence of ORF57, we show that viral transcripts are subject to degradation by two specific nuclear RNA decay pathways, PABPN1 and PAPα/γ-mediated RNA decay (PPD) in which decay factors are recruited through poly(A) tails, and an ARS2-mediated RNA decay pathway dependent on the 5' RNA cap. In transcription pulse chase assays, ORF57 appears to act primarily by inhibiting the ARS2-mediated RNA decay pathway. In the context of viral infection in cultured cells, inactivation of both decay pathways by RNAi is necessary for the restoration of ORF57-dependent viral genes produced from an ORF57-null bacmid. Mechanistically, we demonstrate that ORF57 protects viral transcripts by preventing the recruitment of the exosome co-factor hMTR4. In addition, our data suggest that ORF57 recruitment of ALYREF inhibits hMTR4 association with some viral RNAs, whereas other KSHV transcripts are stabilized by ORF57 in an ALYREF-independent fashion. In conclusion, our studies show that KSHV RNAs are subject to nuclear degradation by two specific host pathways, PPD and ARS2-mediated decay, and ORF57 protects viral transcripts from decay by inhibiting hMTR4 recruitment.


Assuntos
RNA Helicases/metabolismo , Estabilidade de RNA/fisiologia , Proteínas Virais Reguladoras e Acessórias/metabolismo , Linhagem Celular , Núcleo Celular , Proteínas Ativadoras de GTPase/metabolismo , Proteínas Ativadoras de GTPase/fisiologia , Regulação Viral da Expressão Gênica/genética , Genes Virais/genética , Células HEK293 , Herpesvirus Humano 8/metabolismo , Herpesvirus Humano 8/patogenicidade , Humanos , Proteínas Nucleares , Proteína I de Ligação a Poli(A)/metabolismo , Proteína I de Ligação a Poli(A)/fisiologia , Ligação Proteica , RNA Helicases/fisiologia , Estabilidade de RNA/genética , RNA Nuclear/fisiologia , RNA Viral , Proteínas de Ligação a RNA , Fatores de Transcrição , Proteínas Virais/genética , Proteínas Virais/metabolismo , Proteínas Virais Reguladoras e Acessórias/fisiologia , Replicação Viral
8.
Biochim Biophys Acta Mol Cell Res ; 1866(3): 360-370, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30595162

RESUMO

Ras-GTPase-activating protein (SH3 domain)-binding proteins (G3BPs, also known as Rasputin) are a family of RNA binding proteins that regulate gene expression in response to environmental stresses by controlling mRNA stability and translation. G3BPs appear to facilitate this activity through their role in stress granules for which they are considered a core component, however, it should be noted that not all stress granules contain G3BPs and this appears to be contextual depending on the environmental stress and the cell type. Although the role of G3BPs in stress granules appears to be one of its major roles, data also strongly suggests that they interact with mRNAs outside of stress granules to regulate gene expression. G3BPs have been implicated in several diseases including cancer progression, invasion, and metastasis as well as virus survival. There is now a body of evidence that suggests targeting of G3BPs could be explored as a form of cancer therapeutic. This review discusses the important discoveries and advancements made in the field of G3BPs biology over the last two decades including their roles in RNA stability, translational control of cellular transcripts, stress granule formation, cancer progression and its interactions with viruses during infection. An emerging theme for G3BPs is their ability to regulate gene expression in response to environmental stimuli, disease progression and virus infection making it an intriguing target for disease therapies.


Assuntos
DNA Helicases/metabolismo , DNA Helicases/fisiologia , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , Proteínas de Ligação a Poli-ADP-Ribose/fisiologia , RNA Helicases/metabolismo , RNA Helicases/fisiologia , Proteínas com Motivo de Reconhecimento de RNA/metabolismo , Proteínas com Motivo de Reconhecimento de RNA/fisiologia , Estresse Fisiológico/fisiologia , Animais , Proteínas de Transporte/metabolismo , Grânulos Citoplasmáticos/metabolismo , DNA Helicases/genética , Humanos , Fosforilação , Proteínas de Ligação a Poli-ADP-Ribose/genética , RNA Helicases/genética , Proteínas com Motivo de Reconhecimento de RNA/genética , Estabilidade de RNA/genética , Estabilidade de RNA/fisiologia , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/metabolismo , Transdução de Sinais
9.
Biochim Biophys Acta Proteins Proteom ; 1867(2): 89-97, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30391636

RESUMO

The recent emergence of Zika virus (ZIKV) has caused global concern as a result of the association with neurological disorders, and brain development dysfunction in fetuses of mothers who become infected with ZIKV during pregnancy. The NS2B-NS3 protease is important for viral replication and offers an attractive drug target. In addition to processing the viral polypeptide, evidence has shown that the NS2B-NS3 protease also targets cellular proteins as part of the viral replication process. This study sought to determine new host cell protein targets of ZIKV NS2B-NS3 (zNS2B-NS3). Plasmids encoding the protease domains of zNS2B-NS3pro and an inactive zNS2B-NS3(S135A) were transfected into HEK293T/17 cells and differentially expressed proteins were detected by 2D gel electrophoresis. A total of 18 protein spots were observed as differentially expressed between zNS2B-NS3pro and zNS2B-NS3(S135A), of which 7 were selected for identification by mass spectrometry. Four proteins (protein disulfide-isomerase A3 (PDIA3), heterogeneous nuclear ribonucleoprotein A2/B1 (hnRNP A2/B1), voltage-dependent anion-selective channel (VDAC) and aldolase A (ALDOA)) were selected for validation by independent transient expression and western blot analysis. Three proteins (PDIA3, hnRNP A2/B1 and ALDOA) were successfully validated, but only two proteins (PDIA3 and ALDOA) were shown to be regulated in ZIKV infection in agreement with the results of the transfection experiments. This study has identified two proteins, PDIA3 an ALDOA whose expression is modulated by the ZIKV NS2B-NS3 protease, and these proteins are involved in the ER stress response and glycolysis respectively, two critical cellular processes in ZIKV infection.


Assuntos
Infecção por Zika virus/metabolismo , Zika virus/genética , Feminino , Células HEK293 , Humanos , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Proteoma/metabolismo , RNA Helicases/metabolismo , RNA Helicases/fisiologia , Serina Endopeptidases/química , Serina Endopeptidases/metabolismo , Serina Endopeptidases/fisiologia , Estresse Fisiológico/fisiologia , Proteínas não Estruturais Virais/metabolismo , Proteínas não Estruturais Virais/fisiologia , Zika virus/metabolismo , Infecção por Zika virus/fisiopatologia
10.
Nucleic Acids Res ; 46(17): 9134-9147, 2018 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-29939295

RESUMO

Here we show that laboratory of genetics and physiology 2 (LGP2) virus sensor protein regulates gene expression network of endogenous genes mediated by TAR-RNA binding protein (TRBP)-bound microRNAs (miRNAs). TRBP is an enhancer of RNA silencing, and functions to recruit precursor-miRNAs (pre-miRNAs) to Dicer that processes pre-miRNA into mature miRNA. Viral infection activates the antiviral innate immune response in mammalian cells. Retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs), including RIG-I, melanoma-differentiation-associated gene 5 (MDA5), and LGP2, function as cytoplasmic virus sensor proteins during viral infection. RIG-I and MDA5 can distinguish between different types of RNA viruses to produce antiviral cytokines, including type I interferon. However, the role of LGP2 is controversial. We found that LGP2 bound to the double-stranded RNA binding sites of TRBP, resulting in inhibition of pre-miRNA binding and recruitment by TRBP. Furthermore, although it is unclear whether TRBP binds to specific pre-miRNA, we found that TRBP bound to particular pre-miRNAs with common structural characteristics. Thus, LGP2 represses specific miRNA activities by interacting with TRBP, resulting in selective regulation of target genes. Our findings show that a novel function of LGP2 is to modulate RNA silencing, indicating the crosstalk between RNA silencing and RLR signaling in mammalian cells.


Assuntos
Redes Reguladoras de Genes/genética , MicroRNAs/metabolismo , RNA Helicases/fisiologia , Proteínas de Ligação a RNA/metabolismo , Sistemas CRISPR-Cas , Edição de Genes , Regulação da Expressão Gênica/genética , Técnicas de Silenciamento de Genes , Células HeLa , Humanos , MicroRNAs/fisiologia , Interferência de RNA , Vírus de RNA/genética , Vírus de RNA/metabolismo , Proteínas de Ligação a RNA/fisiologia , Transdução de Sinais
11.
Sci Rep ; 8(1): 3850, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29497062

RESUMO

Deletions and chromosome re-arrangements are common features of cancer cells. We have established a new two-component system reporting on epigenetic silencing or deletion of an actively transcribed gene adjacent to a double-strand break (DSB). Unexpectedly, we find that a targeted DSB results in a minority (<10%) misrepair event of kilobase deletions encompassing the DSB site and transcribed gene. Deletions are reduced upon RNaseH1 over-expression and increased after knockdown of the DNA:RNA helicase Senataxin, implicating a role for DNA:RNA hybrids. We further demonstrate that the majority of these large deletions are dependent on the 3' flap endonuclease XPF. DNA:RNA hybrids were detected by DNA:RNA immunoprecipitation in our system after DSB generation. These hybrids were reduced by RNaseH1 over-expression and increased by Senataxin knock-down, consistent with a role in deletions. Overall, these data are consistent with DNA:RNA hybrid generation at the site of a DSB, mis-processing of which results in genome instability in the form of large deletions.


Assuntos
Reparo do DNA/fisiologia , Proteínas de Ligação a DNA/metabolismo , RNA Helicases/fisiologia , Linhagem Celular Tumoral , DNA/genética , Quebras de DNA de Cadeia Dupla , DNA Helicases/fisiologia , Proteínas de Ligação a DNA/genética , Endonucleases/metabolismo , Instabilidade Genômica , Humanos , Enzimas Multifuncionais , RNA , RNA Helicases/metabolismo , Deleção de Sequência/genética
12.
PLoS Pathog ; 14(2): e1006886, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29462185

RESUMO

Melanoma differentiation-associated gene-5 (MDA5) recognizes distinct subsets of viruses including Encephalomyocarditis virus (EMCV) of picornavirus family, but the molecular mechanisms underlying the specificity of the viral recognition of MDA5 in immune cells remain obscure. DHX29 is an RNA helicase required for the translation of 5' structured mRNA of host and many picornaviruses (such as EMCV). We identify that DXH29 as a key RNA co-sensor, plays a significant role for specific recognition and triggering anti-EMCV immunity. We have observed that DHX29 regulates MDA5-, but not RIG-I-, mediated type I interferon signaling by preferentially interacting with structured RNAs and specifically with MDA5 for enhancing MDA5-dsRNA binding affinity. Overall, our results identify a critical role for DHX29 in innate immune response and provide molecular insights into the mechanisms by which DHX29 recognizes 5' structured EMCV RNA and interacts with MDA5 for potent type I interferon signaling and antiviral immunity.


Assuntos
Infecções por Cardiovirus/imunologia , Vírus da Encefalomiocardite/imunologia , Imunidade Inata/genética , Helicase IFIH1 Induzida por Interferon/fisiologia , RNA Helicases/fisiologia , RNA Viral/imunologia , Animais , Infecções por Cardiovirus/genética , Células Cultivadas , Chlorocebus aethiops , Vírus da Encefalomiocardite/genética , Células HEK293 , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Humanos , RNA Helicases/genética , RNA Viral/genética , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Células Vero
13.
Mol Biol Rep ; 45(1): 39-55, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29282598

RESUMO

Over 10% of genetic diseases are caused by mutations that introduce a premature termination codon in protein-coding mRNA. Nonsense-mediated mRNA decay (NMD) is an essential cellular pathway that degrades these mRNAs to prevent the accumulation of harmful partial protein products. NMD machinery is also increasingly appreciated to play a role in other essential cellular functions, including telomere homeostasis and the regulation of normal mRNA turnover, and is misregulated in numerous cancers. Hence, understanding and designing therapeutics targeting NMD is an important goal in biomedical science. The central regulator of NMD, the Upf1 protein, interacts with translation termination factors and contextual factors to initiate NMD specifically on mRNAs containing PTCs. The molecular details of how these contextual factors affect Upf1 function remain poorly understood. Here, we review plausible models for the NMD pathway and the evidence for the variety of roles NMD machinery may play in different cellular processes.


Assuntos
Degradação do RNAm Mediada por Códon sem Sentido/fisiologia , RNA Helicases/metabolismo , RNA Helicases/fisiologia , Transativadores/metabolismo , Transativadores/fisiologia , Proteínas de Transporte/genética , Códon sem Sentido/genética , Códon sem Sentido/fisiologia , Humanos , Mutação , Biossíntese de Proteínas , Estabilidade de RNA/fisiologia , RNA Mensageiro/genética , Transativadores/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/fisiologia
14.
Biochim Biophys Acta Rev Cancer ; 1868(2): 510-520, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28965870

RESUMO

Cancer cells are reliant on the cellular translational machinery for both global elevation of protein synthesis and the translation of specific mRNAs that promote tumor cell survival. Targeting translational control in cancer is therefore increasingly recognized as a promising therapeutic strategy. In this regard, DEAD/H box RNA helicases are a very interesting group of proteins, with several family members regulating mRNA translation in cancer cells. In this review, we delineate the mechanisms by which DEAD/H box proteins modulate oncogenic translation and how inhibition of these RNA helicases can be exploited for anti-cancer therapeutics.


Assuntos
Neoplasias/tratamento farmacológico , Biossíntese de Proteínas/efeitos dos fármacos , RNA Helicases/antagonistas & inibidores , Regiões 5' não Traduzidas , Carcinogênese , RNA Helicases DEAD-box/antagonistas & inibidores , RNA Helicases DEAD-box/fisiologia , Fator de Iniciação 4A em Eucariotos/antagonistas & inibidores , Fator de Iniciação 4A em Eucariotos/fisiologia , Humanos , Neoplasias/metabolismo , RNA Helicases/fisiologia
15.
Hepatology ; 65(5): 1478-1491, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28090671

RESUMO

Retinoic acid-inducible gene I (RIG-I)-like receptors are cytosolic pattern recognition receptors (PRRs) that detect non-self-RNA and activate downstream interferon (IFN) signaling. One of the RIG-I-like receptors, laboratory of genetics and physiology 2 (LGP2), was originally thought to be a negative feedback regulator in the RIG-I signaling pathway, but growing evidence indicates that LGP2 is one cofactor of melanoma differentiation-associated protein 5 (MDA5) in MDA5-mediated IFN signaling activation. Our previous work showed that MDA5 was the major PRR to sense hepatitis C virus (HCV) infection in hepatocytes, but the role of LGP2 in HCV infection-induced IFN signaling has not been elucidated. In this study, we reported that LGP2 was a positive regulator of HCV infection-induced IFN signaling. Knockout of LGP2 in hepatocytes significantly diminished IFN production in response to HCV infection, but not to HCV 3'untranslated region RNA transfection. Mechanistic studies showed that LGP2 exerted its function at a step upstream of MDA5 in the IFN signaling. HCV infection promoted the molecular interaction between LGP2 and MDA5, which, in turn, enhanced MDA5/HCV RNA association. Finally, we demonstrated that the ATPase activity of LGP2 was critical for assisting MDA5/HCV RNA interaction and activating IFN signaling during HCV infection. CONCLUSION: Our work demonstrated that LGP2 plays an essential role in activating IFN signaling against HCV infection by promoting MDA5 recognition of HCV pathogen-associated molecular patterns. (Hepatology 2017;65:1478-1491).


Assuntos
Hepatite C/imunologia , Helicase IFIH1 Induzida por Interferon/metabolismo , Interferons/metabolismo , RNA Helicases/fisiologia , Regiões 3' não Traduzidas , Células HEK293 , Humanos , Imunidade Inata , Poli I-C , Polinucleotídeos/metabolismo , Vírus Sendai/imunologia
16.
Proc Natl Acad Sci U S A ; 112(51): 15707-12, 2015 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-26647184

RESUMO

Mutants in the period-1 (prd-1) gene, characterized by a recessive allele, display a reduced growth rate and period lengthening of the developmental cycle controlled by the circadian clock. We refined the genetic location of prd-1 and used whole genome sequencing to find the mutation defining it, confirming the identity of prd-1 by rescuing the mutant circadian phenotype via transformation. PRD-1 is an RNA helicase whose orthologs, DDX5 [DEAD (Asp-Glu-Ala-Asp) Box Helicase 5] and DDX17 in humans and DBP2 (Dead Box Protein 2) in yeast, are implicated in various processes, including transcriptional regulation, elongation, and termination, ribosome biogenesis, and mRNA decay. Although prd-1 mutants display a long period (∼25 h) circadian developmental cycle, they interestingly display a WT period when the core circadian oscillator is tracked using a frq-luciferase transcriptional fusion under conditions of limiting nutritional carbon; the core oscillator in the prd-1 mutant strain runs with a long period under glucose-sufficient conditions. Thus, PRD-1 clearly impacts the circadian oscillator and is not only part of a metabolic oscillator ancillary to the core clock. PRD-1 is an essential protein, and its expression is neither light-regulated nor clock-regulated. However, it is transiently induced by glucose; in the presence of sufficient glucose, PRD-1 is in the nucleus until glucose runs out, which elicits its disappearance from the nucleus. Because circadian period length is carbon concentration-dependent, prd-1 may be formally viewed as a clock mutant with defective nutritional compensation of circadian period length.


Assuntos
Relógios Circadianos/fisiologia , Neurospora crassa/fisiologia , Proteínas Circadianas Period/genética , RNA Helicases/fisiologia , Trifosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Carbono/metabolismo , Glucose/metabolismo , Dados de Sequência Molecular , Proteínas Circadianas Period/fisiologia
17.
Mol Cell ; 57(4): 636-647, 2015 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-25699710

RESUMO

The mechanisms contributing to transcription-associated genomic instability are both complex and incompletely understood. Although R-loops are normal transcriptional intermediates, they are also associated with genomic instability. Here, we show that BRCA1 is recruited to R-loops that form normally over a subset of transcription termination regions. There it mediates the recruitment of a specific, physiological binding partner, senataxin (SETX). Disruption of this complex led to R-loop-driven DNA damage at those loci as reflected by adjacent γ-H2AX accumulation and ssDNA breaks within the untranscribed strand of relevant R-loop structures. Genome-wide analysis revealed widespread BRCA1 binding enrichment at R-loop-rich termination regions (TRs) of actively transcribed genes. Strikingly, within some of these genes in BRCA1 null breast tumors, there are specific insertion/deletion mutations located close to R-loop-mediated BRCA1 binding sites within TRs. Thus, BRCA1/SETX complexes support a DNA repair mechanism that addresses R-loop-based DNA damage at transcriptional pause sites.


Assuntos
Proteína BRCA1/fisiologia , Reparo do DNA , Modelos Genéticos , RNA Helicases/fisiologia , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Dano ao DNA , DNA Helicases , Células HeLa , Humanos , Enzimas Multifuncionais , RNA Helicases/genética , RNA Helicases/metabolismo , Terminação da Transcrição Genética , Transcrição Gênica
18.
Mol Cell ; 55(5): 771-81, 2014 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-25127512

RESUMO

Cytoplasmic pattern recognition receptors detect non-self RNAs during virus infections and initiate antiviral signaling. One receptor, MDA5, possesses essential signaling domains, but weak RNA binding. A second receptor, LGP2, rapidly detects diverse dsRNA species, but lacks signaling domains. Accumulating evidence suggests LGP2 and MDA5 work together to detect viral RNA and generate a complete antiviral response, but the basis for their cooperation has been elusive. Experiments presented here address this gap in antiviral signaling, revealing that LGP2 assists MDA5-RNA interactions leading to enhanced MDA5-mediated antiviral signaling. LGP2 increases the initial rate of MDA5-RNA interaction and regulates MDA5 filament assembly, resulting in the formation of more numerous, shorter MDA5 filaments that are shown to generate equivalent or greater signaling activity in vivo than the longer filaments containing only MDA5. These findings provide a mechanism for LGP2 coactivation of MDA5 and a biological context for MDA5-RNA filaments in antiviral responses.


Assuntos
RNA Helicases DEAD-box/metabolismo , RNA Helicases/fisiologia , RNA Viral/metabolismo , Trifosfato de Adenosina/metabolismo , RNA Helicases DEAD-box/química , RNA Helicases DEAD-box/imunologia , Células HEK293 , Humanos , Hidrólise , Imunidade Inata , Helicase IFIH1 Induzida por Interferon , RNA Helicases/imunologia , RNA Helicases/metabolismo , RNA de Cadeia Dupla/metabolismo , RNA Viral/imunologia , Transdução de Sinais
19.
Proc Natl Acad Sci U S A ; 111(4): E484-91, 2014 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-24434553

RESUMO

An siRNA screen targeting 89 IFN stimulated genes in 14 different cancer cell lines pointed to the RIG-I (retinoic acid inducible gene I)-like receptor Laboratory of Genetics and Physiology 2 (LGP2) as playing a key role in conferring tumor cell survival following cytotoxic stress induced by ionizing radiation (IR). Studies on the role of LGP2 revealed the following: (i) Depletion of LGP2 in three cancer cell lines resulted in a significant increase in cell death following IR, (ii) ectopic expression of LGP2 in cells increased resistance to IR, and (iii) IR enhanced LGP2 expression in three cell lines tested. Studies designed to define the mechanism by which LGP2 acts point to its role in regulation of IFNß. Specifically (i) suppression of LGP2 leads to enhanced IFNß, (ii) cytotoxic effects following IR correlated with expression of IFNß inasmuch as inhibition of IFNß by neutralizing antibody conferred resistance to cell death, and (iii) mouse embryonic fibroblasts from IFN receptor 1 knockout mice are radioresistant compared with wild-type mouse embryonic fibroblasts. The role of LGP2 in cancer may be inferred from cumulative data showing elevated levels of LGP2 in cancer cells are associated with more adverse clinical outcomes. Our results indicate that cytotoxic stress exemplified by IR induces IFNß and enhances the expression of LGP2. Enhanced expression of LGP2 suppresses the IFN stimulated genes associated with cytotoxic stress by turning off the expression of IFNß.


Assuntos
Sobrevivência Celular/fisiologia , RNA Helicases DEAD-box/fisiologia , Neoplasias Experimentais/patologia , RNA Helicases/fisiologia , Radiação Ionizante , Animais , Apoptose , Neoplasias Encefálicas/patologia , Proteína DEAD-box 58 , RNA Helicases DEAD-box/metabolismo , Glioblastoma/patologia , Humanos , Interferon Tipo I/biossíntese , Camundongos , Camundongos Knockout , Neoplasias Experimentais/metabolismo , RNA Helicases/metabolismo , Células Tumorais Cultivadas
20.
Bing Du Xue Bao ; 30(5): 514-20, 2014 Sep.
Artigo em Chinês | MEDLINE | ID: mdl-25562960

RESUMO

We investigated inhibition of Moloney leukemia virus 10 (MOV10) upon xenotropic murine leukemia virus-related virus (XMRV) and made a preliminary study of the mechanism of action. Using transfection, infection, western blotting and real-time polymerase chain reaction, we found that MOV10 inhibited XMRV replication. Using MOV10 overexpressed in viral producer cells, MOV10 was shown to reduce the infectivity of XMRV. MOV10 could be incorporated into XMRV, suggesting that MOV10 could undergo encapsidation by XMRV during viral assembly. MOV10 could also restrict the DNA production of XMRV in target cells. We found that the putative RNA-helicase domain of MOV10 maintained most of its XMRV inhibition. These results suggest that MOV10 could be required during the retroviral lifecycle. Perturbation of MOV10 disrupts the generation of infectious viral particles, suggesting that MOV10 has broad antiretroviral activity. Hence, MOV10 could be actively involved in host defense against retroviral infection.


Assuntos
Vírus da Leucemia Murina de Moloney/fisiologia , RNA Helicases/fisiologia , Replicação Viral , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA