RESUMO
Virus-derived small interference RNAs (vsiRNAs) not only suppress virus infection in plants via induction of RNA silencing but also enhance virus infection by regulating host defensive gene expression. However, the underlying mechanisms that control vsiRNA-mediated host immunity or susceptibility remain largely unknown. In this study, we generated several transgenic wheat lines using four artificial microRNA expression vectors carrying vsiRNAs from Wheat yellow mosaic virus (WYMV) RNA1. Laboratory and field tests showed that two transgenic wheat lines expressing amiRNA1 were highly resistant to WYMV infection. Further analyses showed that vsiRNA1 could modulate the expression of a wheat thioredoxin-like gene (TaAAED1), which encodes a negative regulator of reactive oxygen species (ROS) production in the chloroplast. The function of TaAAED1 in ROS scavenging could be suppressed by vsiRNA1 in a dose-dependent manner. Furthermore, transgenic expression of amiRNA1 in wheat resulted in broad-spectrum disease resistance to Chinese wheat mosaic virus, Barley stripe mosaic virus, and Puccinia striiformis f. sp. tritici infection, suggesting that vsiRNA1 is involved in wheat immunity via ROS signaling. Collectively, these findings reveal a previously unidentified mechanism underlying the arms race between viruses and plants.
Assuntos
Vírus do Mosaico/genética , Doenças das Plantas/imunologia , RNA Interferente Pequeno/metabolismo , RNA Viral/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Triticum/imunologia , Sequestradores de Radicais Livres , Vetores Genéticos , Doenças das Plantas/virologia , Plantas Geneticamente Modificadas , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/isolamento & purificação , RNA Viral/genética , RNA Viral/isolamento & purificação , Tiorredoxinas/genética , Nicotiana/genética , Nicotiana/virologia , Triticum/genética , Triticum/metabolismoRESUMO
Diverse classes of silencing small (s)RNAs operate via ARGONAUTE-family proteins within RNA-induced-silencing-complexes (RISCs). Here, we have streamlined various embodiments of a Q-sepharose-based RISC-purification method that relies on conserved biochemical properties of all ARGONAUTEs. We show, in multiple benchmarking assays, that the resulting 15-min benchtop extraction procedure allows simultaneous purification of all known classes of RISC-associated sRNAs without prior knowledge of the samples-intrinsic ARGONAUTE repertoires. Optimized under a user-friendly format, the method - coined 'TraPR' for Trans-kingdom, rapid, affordable Purification of RISCs - operates irrespectively of the organism, tissue, cell type or bio-fluid of interest, and scales to minute amounts of input material. The method is highly suited for direct profiling of silencing sRNAs, with TraPR-generated sequencing libraries outperforming those obtained via gold-standard procedures that require immunoprecipitations and/or lengthy polyacrylamide gel-selection. TraPR considerably improves the quality and consistency of silencing sRNA sample preparation including from notoriously difficult-to-handle tissues/bio-fluids such as starchy storage roots or mammalian plasma, and regardless of RNA contaminants or RNA degradation status of samples.
Assuntos
Proteínas Argonautas/metabolismo , Cromatografia Líquida/métodos , RNA Interferente Pequeno/isolamento & purificação , Complexo de Inativação Induzido por RNA/química , Animais , Resinas de Troca Aniônica , Proteínas Argonautas/isolamento & purificação , Linhagem Celular Tumoral , Biblioteca Gênica , Camundongos , Camundongos Endogâmicos C57BL , Polinucleotídeo 5'-Hidroxiquinase , RNA Fúngico/isolamento & purificação , RNA de Helmintos/isolamento & purificação , RNA Neoplásico/isolamento & purificação , RNA de Plantas/isolamento & purificação , RNA de Protozoário/isolamento & purificação , RNA Interferente Pequeno/sangue , RNA Interferente Pequeno/metabolismo , Sefarose , Dióxido de Silício , UltracentrifugaçãoRESUMO
The existence of tightly integrated cross talk through multiple signaling and effector pathways has been appreciated in malignant cells. The realization of the plasticity of such networks is stimulating the development of combinational therapy to overcome the limitations of one-dimensional therapies. Synergistic pairs of siRNAs or siRNA and drug combinations are the new frontiers in identifying effective therapeutic combinations. To elucidate effective combinations, we developed a versatile protocol to screen siRNA libraries in triple-negative breast cancer cell models. This protocol outlines the steps to identify synergistic combinations of siRNA-siRNA or siRNA-drug combinations using siRNA libraries via a robotic screen. By focusing on smaller functional siRNA libraries, we present methodologies to identify synergistic siRNA pairings against cancerous cell growth and molecular targets to augment the activity of pro-apoptotic TRAIL protein. Here, we summarize the critical steps to undertake such combinational target identification, emphasizing critical factors that affect the outcome of the screens. Our experience suggests that siRNA library screening is an efficient protocol to identify complementary therapeutic pairs of new or already-existing drugs. This protocol is simple, robust and can be completed within a 1-week working period.
Assuntos
Detecção Precoce de Câncer/métodos , Ensaios de Triagem em Larga Escala/métodos , RNA Interferente Pequeno/genética , Neoplasias de Mama Triplo Negativas/genética , Proliferação de Células/genética , Biblioteca Gênica , Humanos , RNA Interferente Pequeno/isolamento & purificação , Neoplasias de Mama Triplo Negativas/diagnóstico , Neoplasias de Mama Triplo Negativas/patologia , Neoplasias de Mama Triplo Negativas/terapiaRESUMO
Discovery and development of gene targets for cancer therapeutics are lengthy and highly costly processes. Identification and evaluation of candidate gene targets are of fundamental importance. RNA interference allows candidate genes to be specifically and effectively knocked down in cancer cells. This tool can be easily incorporated into a loss-of-function approach in the initial evaluation of candidate gene targets for cancer treatment prior to moving on to animal studies and clinical trials. This chapter describes a relatively simple and straightforward protocol that makes use of small interfering RNA to achieve knockdown of the candidate gene target and to evaluate the resultant effects on four aspects of cancer cell behavior: migration, invasion, proliferation, and adhesion.
Assuntos
Neoplasias da Mama/genética , Biologia Molecular/métodos , Interferência de RNA , RNA Interferente Pequeno/genética , Neoplasias da Mama/terapia , Movimento Celular/genética , Proliferação de Células/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Invasividade Neoplásica/genética , Invasividade Neoplásica/patologia , RNA Interferente Pequeno/isolamento & purificaçãoRESUMO
Here in we describe a solid phase synthesis of oligonucleotides bearing unnatural moiety appropriate for complex formation with In111 as well as their deprotection, isolation, and purification. We also present methods for oligonucleotides/In111 complex formulation with single and double stranded oligonucleotides of RNA nature and give an example of preparation method for one supramolecular drug delivery system (DDS) consisting of radiolabeled siRNA and positively charged peptide.
Assuntos
Sistemas de Liberação de Medicamentos/métodos , Oligonucleotídeos/química , Técnicas de Síntese em Fase Sólida/métodos , Cromatografia Líquida de Alta Pressão/métodos , Radioisótopos de Índio/química , Microscopia Intravital/métodos , Luciferases/química , Luciferases/genética , Oligonucleotídeos/isolamento & purificação , Peptídeos/química , RNA Interferente Pequeno/química , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/isolamento & purificação , Tomografia Computadorizada com Tomografia Computadorizada de Emissão de Fóton Único/métodosRESUMO
BACKGROUND: Vitamin D, a hormone that acts through the nuclear vitamin D receptor (VDR), upregulates antitumorigenic microRNA in prostate epithelium. This may contribute to the lower levels of aggressive prostate cancer (PCa) observed in patients with high serum vitamin D. The small noncoding RNA (ncRNA) landscape includes many other RNA species that remain uncharacterized in prostate epithelium and their potential regulation by vitamin D is unknown. METHODS: Laser capture microdissection (LCM) followed by small-RNA sequencing was used to identify ncRNAs in the prostate epithelium of tissues from a vitamin D-supplementation trial. VDR chromatin immunoprecipitation-sequencing was performed to identify vitamin D genomic targets in primary prostate epithelial cells. RESULTS: Isolation of epithelium by LCM increased sample homogeneity and captured more diversity in ncRNA species compared with publicly available small-RNA sequencing data from benign whole prostate. An abundance of PIWI-interacting RNAs (piRNAs) was detected in normal prostate epithelium. The obligate binding partners of piRNAs, PIWI-like (PIWIL) proteins, were also detected in prostate epithelium. High prostatic vitamin D levels were associated with increased expression of piRNAs. VDR binding sites were located near several ncRNA biogenesis genes and genes regulating translation and differentiation. CONCLUSIONS: Benign prostate epithelium expresses both piRNA and PIWIL proteins, suggesting that these small ncRNA may serve an unknown function in the prostate. Vitamin D may increase the expression of prostatic piRNAs. VDR binding sites in primary prostate epithelial cells are consistent with its reported antitumorigenic functions and a role in ncRNA biogenesis.
Assuntos
Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , RNA Interferente Pequeno/metabolismo , RNA Nuclear Pequeno/metabolismo , Sequência de Bases , Sequenciamento de Cromatina por Imunoprecipitação , Epitélio/metabolismo , Epitélio/patologia , Humanos , Microdissecção e Captura a Laser , Masculino , Pessoa de Meia-Idade , Neoplasias da Próstata/tratamento farmacológico , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/isolamento & purificação , RNA Nuclear Pequeno/genética , RNA Nuclear Pequeno/isolamento & purificação , Receptores de Calcitriol/metabolismo , Vitamina D/administração & dosagemRESUMO
Artificial small RNAs (sRNAs), including artificial microRNAs (amiRNAs) and synthetic trans-acting small interfering RNAs (syn-tasiRNAs), are used to silence viral RNAs and confer antiviral resistance in plants. Here, the combined use of recent high-throughput methods for generating artificial sRNA constructs and the Tomato spotted wilt virus (TSWV)-Nicotiana benthamiana pathosystem allowed for the simple and rapid identification of amiRNAs with high anti-TSWV activity. A comparative analysis between the most effective amiRNA construct and a syn-tasiRNA construct including the four most effective amiRNA sequences showed that both were highly effective against two different TSWV isolates. These results highlight the usefulness of this high-throughput methodology for the fast-forward identification of artificial sRNAs with high antiviral activity prior to time-consuming generation of stably transformed plants.
Assuntos
MicroRNAs , Tospovirus , Inativação Gênica , Ensaios de Triagem em Larga Escala , MicroRNAs/genética , MicroRNAs/isolamento & purificação , MicroRNAs/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/isolamento & purificação , RNA Interferente Pequeno/metabolismo , RNA Viral/genética , Tospovirus/fisiologiaRESUMO
Background: Small ribonucleic acids represent an important repertoire of mobile molecules that exert key roles in several cell processes including antiviral defense. Small RNA based repertoire includes both small interfering RNA (siRNA) and microRNA (miRNA) molecules. In the Prunus genus, sharka disease, caused by the Plum pox virus (PPV), first occurred on European plum (Prunus domestica) and then spread over among all species in this genus and thus classified as quarantine pathogen. Next-generation sequencing (NGS) was used for the study of siRNA/miRNA molecules; however, NGS relies on adequate extraction protocols. Currently, knowledge of PPV-Prunus interactions in terms of siRNA populations and miRNA species is still scarce, and siRNA/miRNA extraction protocols are limited to species such as peach, almond, and sweet cherry. Results: We describe a reliable procedure for siRNA/miRNA purification from Prunus salicina trees, in which previously used protocols did not allow adequate purification. The procedure was based on a combination of commercially available RNA purification kits and specific steps that yielded high quality purifications. The resulting molecules were adequate for library construction and NGS, leading to the development of a pipeline for analysis of both siRNAs and miRNAs in the PPVP. salicina interactions. Results showed that PPV infection led to altered siRNA profiles in Japanese plum as characterized by decreased 24-nt and increased 21- and 22-nt siRNAs. Infections showed miR164 and miR160 generation and increased miR166, miR171, miR168, miR319, miR157, and miR159. Conclusion: We propose this protocol as a reliable and reproducible small RNA isolation procedure for P. salicina and other Prunus species.
Assuntos
RNA de Plantas/isolamento & purificação , MicroRNAs/isolamento & purificação , RNA Interferente Pequeno/isolamento & purificação , Prunus domestica/genética , Doenças das Plantas/virologia , Vírus Eruptivo da Ameixa/fisiologia , Interações Hospedeiro-Patógeno , Sequenciamento de Nucleotídeos em Larga Escala , Reação em Cadeia da Polimerase em Tempo Real , Prunus domestica/imunologia , Prunus domestica/virologiaRESUMO
Argonaute (Ago) proteins bind small RNAs such as microRNAs (miRNAs) or short interfering RNAs (siRNAs), which guide them to distinct mRNAs for post-transcriptional gene silencing. Mammalian miRNA-guided gene silencing pathways mainly lead to translational repression and mRNA destabilization. To facilitate these processes, Ago proteins bind members of the GW protein family, which form central interaction platforms for the recruitment of downstream effector proteins. GW proteins use tryptophane residues (W) to bind to the surface of Ago proteins. This high affinity interaction is retained when a short, GST-fused GW peptide is used in biochemical pull-down experiments-an approach referred to as "Ago Affinity Purification by Peptides" (Ago-APP). Since the binding interface is conserved among different paralogues and different species, Ago-APP represents a universal tool to purify Ago proteins and associated small RNAs using samples from species with conserved miRNA pathways.
Assuntos
Proteínas Argonautas/isolamento & purificação , Peptídeos/metabolismo , Animais , Proteínas Argonautas/metabolismo , Northern Blotting/métodos , Técnicas de Cultura de Células/métodos , Humanos , Peptídeos/isolamento & purificação , Ligação Proteica , Mapeamento de Interação de Proteínas/métodos , RNA Interferente Pequeno/isolamento & purificação , RNA Interferente Pequeno/metabolismoRESUMO
Airway and lung inflammation is a fundamental hallmark of chronic obstructive pulmonary disease (COPD). Activating transcription factor 3 (ATF3) has been reported to negatively regulate many pro-inflammatory cytokines and chemokines. However, little is known about the impact of ATF3 on the inflammatory response of COPD. Since cigarette smoke (CS) is considered to be the most important risk factor in the etiology of COPD, we attempted to investigate the effects and molecular mechanisms of ATF3 in CS-induced inflammation. We observed an increase in the expression of ATF3 in the lung tissues of CS-exposed mice and CS extract (CSE)-treated human bronchial epithelial (HBE) cells. In vitro results indicated that ATF3 inhibition significantly increased the expression of proinflammatory cytokines interleukin 6 (IL6) and interleukin 8 (IL8) in CSE-stimulated HBE cells. Furthermore, in vivo data verified that CS induced inflammatory cell recruitment around the bronchus. In addition, neutrophil infiltration in bronchoalveolar lavage fluid (BALF) of CS-exposed Atf3-/- mice was markedly higher than in stimulated WT mice. Finally, ATF3 deficiency increased the in vitro and in vivo expression and phosphorylation of nuclear factor-κB (NF-κB), a positive mediator of inflammation. Thus, this study shows that ATF3 plays an important role in the negative regulation of CS-induced pro-inflammatory gene expression through downregulating NF-κB phosphorylation.
Assuntos
Fator 3 Ativador da Transcrição/metabolismo , Interleucina-6/metabolismo , Interleucina-8/metabolismo , NF-kappa B/metabolismo , Fumar/efeitos adversos , Fator 3 Ativador da Transcrição/genética , Animais , Brônquios/citologia , Brônquios/efeitos dos fármacos , Brônquios/metabolismo , Líquido da Lavagem Broncoalveolar , Linhagem Celular , Regulação para Baixo , Repressão Epigenética , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Humanos , Inflamação/etiologia , Inflamação/genética , Interleucina-6/genética , Interleucina-8/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , NF-kappa B/antagonistas & inibidores , NF-kappa B/genética , Infiltração de Neutrófilos/genética , Doença Pulmonar Obstrutiva Crônica/etiologia , Doença Pulmonar Obstrutiva Crônica/genética , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/isolamento & purificação , Regulação para CimaRESUMO
Piwi-interacting RNAs (piRNAs) are 26 to 31-nt small non-coding RNAs that have been reported mostly in germ-line cells and cancer cells. However, the presence of piRNAs in the whitespotted bamboo shark liver has not yet been reported. In a previous study of microRNAs in shark liver, some piRNAs were detected from small RNAs sequenced by Solexa technology. A total of 4857 piRNAs were predicted and found in shark liver. We further selected 17 piRNAs with high and significantly differential expression between normal and regenerative liver tissues for subsequent verification by Northern blotting. Ten piRNAs were further identified, and six of these were matched to known piRNAs in piRNABank. The actual expression of six known and four novel piRNAs was validated by qRT-PCR. In addition, a total of 401 target genes of the 10 piRNAs were predicted by miRanda. Through GO and pathway function analyses, only five piRNAs could be annotated with eighteen GO annotations. The results indicated that the identified piRNAs are involved in many important biological responses, including immune inflammation, cell-specific differentiation and development, and angiogenesis. This manuscript provides the first identification of piRNAs in the liver of whitespotted bamboo shark using Solexa technology as well as further elucidation of the regulatory role of piRNAs in whitespotted bamboo shark liver. These findings may provide a useful resource and may facilitate the development of therapeutic strategies against liver damage.
Assuntos
Regeneração Hepática/genética , Fígado/metabolismo , RNA Interferente Pequeno/genética , Tubarões/genética , Animais , Ontologia Genética , Hepatectomia , Fígado/cirurgia , Anotação de Sequência Molecular , RNA Interferente Pequeno/isolamento & purificação , Análise de Sequência de RNA , Tubarões/cirurgiaRESUMO
Nonviral gene and small interfering RNA (siRNA) delivery formulations are extensively used for biological and therapeutic research in cell culture experiments, but less so in in vivo and clinical research. Difficulties with formulating the nanoparticles for uniformity and stability at concentrations required for in vivo and clinical use are limiting their progression in these areas. Here, we report a simple but effective method of formulating monodisperse nanocomplexes from a ternary formulation of lipids, targeting peptides, and nucleic acids at a low starting concentration of 0.2 mg/mL of DNA, and we then increase their concentration up to 4.5 mg/mL by reverse dialysis against a concentrated polymer solution at room temperature. The nanocomplexes did not aggregate and they had maintained their biophysical properties, but, importantly, they also mediated DNA transfection and siRNA silencing in cultured cells. Moreover, concentrated anionic nanocomplexes administered by convection-enhanced delivery in the striatum showed efficient silencing of the ß-secretase gene BACE1. This method of preparing nanocomplexes could probably be used to concentrate other nonviral formulations and may enable more widespread use of nanoparticles in vivo.
Assuntos
DNA , Lipídeos , Nanopartículas/química , Peptídeos , RNA Interferente Pequeno , Transfecção/métodos , Animais , Linhagem Celular Tumoral , DNA/química , DNA/isolamento & purificação , Humanos , Lipídeos/química , Lipídeos/isolamento & purificação , Camundongos , Peptídeos/química , Peptídeos/isolamento & purificação , RNA Interferente Pequeno/química , RNA Interferente Pequeno/isolamento & purificaçãoRESUMO
Human chromosome 7 open reading frame 24 has been identified as a tumor-related protein, and later it was shown to be γ-glutamylcyclotransferase (GGCT). This protein is upregulated in various types of cancer and is proved to be associated with cellular proliferation. RNA interference is an effective method to achieve highly specific gene regulation. In this study, the anti-GGCT siRNA was incorporated into a comprehensively evaluated polyethylene glycol-hyaluronic acid-modified liposomal siRNA delivery system (PEG-HA-NP) for drug-resistant MCF-7 breast cancer therapy by systemic administration. The PEG-HA-NP had a diameter of 216 nm and a zeta potential of -17.4 mV. Transfection of anti-GGCT siRNA-loaded PEG-HA-NP could achieve effective GGCT downregulation and induce the subsequent cell cytotoxicity against MCF-7/ADR cells. Systemic administration of PEG-HA-NP at 0.35 mg/kg siRNA could retard the tumor growth and induce necrosis of tumor tissue while showing no obvious toxicity to normal tissues. Therefore, systemic administration of anti-GGCT-loaded PEG-HA-NP was proved to be a promising strategy for drug-resistant MCF-7 breast cancer therapy.
Assuntos
Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Sistemas de Liberação de Medicamentos , Resistencia a Medicamentos Antineoplásicos , Ácido Hialurônico/química , Polietilenoglicóis/química , RNA Interferente Pequeno/administração & dosagem , gama-Glutamilciclotransferase/antagonistas & inibidores , Animais , Antineoplásicos/química , Antineoplásicos/isolamento & purificação , Apoptose/efeitos dos fármacos , Neoplasias da Mama/enzimologia , Neoplasias da Mama/patologia , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Humanos , Lipossomos , Células MCF-7 , Camundongos , Camundongos Nus , RNA Interferente Pequeno/química , RNA Interferente Pequeno/isolamento & purificação , RNA Interferente Pequeno/uso terapêutico , Relação Estrutura-Atividade , gama-Glutamilciclotransferase/genética , gama-Glutamilciclotransferase/metabolismoRESUMO
To identify molecular targets that modify sensitivity to lenalidomide, we measured proliferation in multiple myeloma (MM) cells transfected with 27 968 small interfering RNAs in the presence of increasing concentrations of drug and identified 63 genes that enhance activity of lenalidomide upon silencing. Ribosomal protein S6 kinase (RPS6KA3 or RSK2) was the most potent sensitizer. Other notable gene targets included 5 RAB family members, 3 potassium channel proteins, and 2 peroxisome family members. Single genes of interest included I-κ-B kinase-α (CHUK), and a phosphorylation dependent transcription factor (CREB1), which associate with RSK2 to regulate several signaling pathways. RSK2 knockdown induced cytotoxicity across a panel of MM cell lines and consistently increased sensitivity to lenalidomide. Accordingly, 3 small molecular inhibitors of RSK2 demonstrated synergy with lenalidomide cytotoxicity in MM cells even in the presence of stromal contact. Both RSK2 knockdown and small molecule inhibition downregulate interferon regulatory factor 4 and MYC, and provides an explanation for the synergy between lenalidomide and RSK2 inhibition. Interestingly, RSK2 inhibition also sensitized MM cells to bortezomib, melphalan, and dexamethasone, but did not downregulate Ikaros or influence lenalidomide-mediated downregulation of tumor necrosis factor-α or increase lenalidomide-induced IL-2 upregulation. In summary, inhibition of RSK2 may prove a broadly useful adjunct to MM therapy.
Assuntos
Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Mieloma Múltiplo/genética , Inibidores de Proteínas Quinases/farmacologia , RNA Interferente Pequeno/isolamento & purificação , Proteínas Quinases S6 Ribossômicas 90-kDa/antagonistas & inibidores , Talidomida/análogos & derivados , Inibidores da Angiogênese/farmacologia , Apoptose/efeitos dos fármacos , Western Blotting , Proliferação de Células/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Redes Reguladoras de Genes , Humanos , Fatores Reguladores de Interferon/genética , Fatores Reguladores de Interferon/metabolismo , Lenalidomida , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , RNA Mensageiro/genética , RNA Interferente Pequeno/análise , RNA Interferente Pequeno/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Proteínas Quinases S6 Ribossômicas 90-kDa/genética , Talidomida/farmacologia , Células Tumorais CultivadasRESUMO
The aim of this study was to investigate c-Myc and ß-catenin-mediated drug resistance in A549/DDP lung adenocarcinoma cells. Cisplatin sensitivity was determined by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) toxicity assay. ß-Catenin and c-Myc protein expression following cisplatin treatment were determined using western blotting and immunofluorescence. Flow cytometry was performed to detect cell cycle and apoptosis in A549, A549/DDP, and c-Myc small interfering RNA (siRNA)-transfected A549/DDP cells before and after treatment with different doses of cisplatin. The median inhibitory concentration (IC50 ) in cisplatin-treated A549 and A549/DDP cells was 5.769 ± 0.24 µmol/L and 28.373 ± 0.96 µmol/L, respectively; the cisplatin resistance of A549 cells was about five times that of A549/DDP cells. Endogenous ß-catenin and c-Myc expression in A549/DDP cells were higher than that in A549 cells, and were upregulated in A549/DDP cells (p < 0.05) and downregulated in A549 cells after 48 h cisplatin treatment (p < 0.05). ß-catenin localization transferred from membrane/cytoplasmic/nuclear to cytoplasmic/nuclear, and c-Myc localization transferred from cytoplasmic/nuclear to nuclear in both cell lines following cisplatin treatment. The rate of apoptosis increased in a dose-dependent manner with cisplatin. After 48-h transfection with c-myc siRNA, A549/DDP cells were blocked in the S phase, and G0/G1-phase cells increased. Simultaneously, the apoptotic rate was increased (p < 0.05) and the IC50 decreased significantly (p < 0.05). C-myc, the downstream target gene of ß-catenin, plays an important role in regulating cisplatin resistance in A549/DDP cells. C-Myc siRNA improved the sensitivity of A549/DDP cells to cisplatin.
Assuntos
Antineoplásicos/farmacologia , Resistencia a Medicamentos Antineoplásicos/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , beta Catenina/metabolismo , Adenocarcinoma , Adenocarcinoma de Pulmão , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Cisplatino/farmacologia , Regulação da Expressão Gênica , Humanos , Concentração Inibidora 50 , Neoplasias Pulmonares , Proteínas Proto-Oncogênicas c-myc/genética , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/isolamento & purificação , Sais de Tetrazólio , Tiazóis , Transfecção , beta Catenina/genéticaRESUMO
p19 is an RNA binding protein originally isolated from the Carnation Italian ring-spot virus (CIRV). It has been shown that p19 is a plant RNA-silencing suppressor that binds small interfering RNA (siRNA) with high affinity. A bifunctional p19 fusion protein, with an N-terminal maltose binding protein (MBP) and a C-terminal chitin binding domain (CBD) allows protein purification and binding of p19 to chitin magnetic beads via the chitin binding domain. The fusion p19 protein recognizes and binds double-stranded RNAs (dsRNA) in the size range of 20-23 nucleotides, but does not bind single strand RNA (ssRNA) or dsDNA. Furthermore, p19 can also bind mRNA, if there is a 19 bp blunt RNA duplex at the exact end of the RNA. Binding specificity of the p19 fusion protein for small dsRNA allows for detection of siRNAs derived either from exogenous or endogenous long dsRNA or microRNAs when hybridized to a complementary RNA. Here we describe a robust method using p19 and radioactive RNA probes to detect siRNAs in the sub-femtomole range and in the presence of a million-fold excess of total RNA. Unlike most nucleic acid detection methods, p19 selects for RNA hybrids of correct length and structure. This chapter describes the potential of p19 fusion protein to detect miRNAs, isolate exogenous or endogenous siRNAs, and purify longer RNAs that contain a 19-bp terminal RNA duplex.
Assuntos
RNA Interferente Pequeno/análise , Proteínas Recombinantes de Fusão/metabolismo , Tombusvirus/química , Proteínas do Core Viral/metabolismo , Animais , Sequência de Bases , Northern Blotting/métodos , Caenorhabditis elegans , Eletroforese em Gel de Poliacrilamida/métodos , Fígado/metabolismo , Magnetismo/métodos , Imãs/química , RNA de Cadeia Dupla/análise , RNA de Cadeia Dupla/isolamento & purificação , RNA de Cadeia Dupla/metabolismo , RNA Interferente Pequeno/isolamento & purificação , RNA Interferente Pequeno/metabolismo , Ratos , Tombusvirus/metabolismoRESUMO
The tombusvirus P19 VSR (viral suppressor of RNA interference) binds siRNAs with high affinity, whereas the Flockhouse Virus (FHV) B2 VSR binds both long double-stranded RNA (dsRNA) and small interfering RNAs (siRNAs). Both VSRs are small proteins and function in plant and animal cells. Fusing a Nuclear Localization Signal (NLS) to the N-terminus shifts the localization of the VSR from cytoplasmic to nuclear, allowing researchers to specifically probe the subcellular distribution of siRNAs, and to investigate the function of nuclear and cytoplasmic siRNAs. This chapter provides a detailed protocol for the immunoprecipitation of siRNAs bound to epitope-tagged VSR and subsequent analysis by 3'-end-labeling using cytidine-3',5'-bis phosphate ([5'-(32)P]pCp) and northern blotting.
Assuntos
Imunoprecipitação/métodos , RNA Interferente Pequeno/isolamento & purificação , Proteínas Recombinantes de Fusão/metabolismo , Tombusvirus/metabolismo , Proteínas do Core Viral/metabolismo , Animais , Northern Blotting/métodos , Linhagem Celular , Drosophila , Epitopos/genética , Epitopos/metabolismo , Sinais de Localização Nuclear , Ligação Proteica , RNA Interferente Pequeno/química , RNA Interferente Pequeno/metabolismo , Proteínas Recombinantes de Fusão/genética , Tombusvirus/genética , Transfecção/métodos , Proteínas do Core Viral/genéticaRESUMO
In this study, we investigated the anti-cancer effects of luteolin, a member of the flavonoid family, in NCI-H460 human lung carcinoma cells. It was shown that luteolin induces apoptotic cell death through modulating both the extrinsic pathway and intrinsic pathways, which are suppressed by z-VAD-fmk, indicating that luteolin triggers caspase-dependant apoptosis. Furthermore, we found that the α subunit of the eukaryotic initiation factor 2 (eIF2α/C/EBP homologous protein pathway, but not the c-Jun N-terminal kinase pathway, played a critical role in induction of apoptosis by luteolin. The data indicated that luteolin also induces autophagy; evidence for this is the accumulation of microtubule-associated protein light chain-3 (LC3) II protein, the increase of LC3 puncta as well as an enhanced autophagy flux. In addition, inhibiting autophagy by bafilomycin A1 reduced apoptotic cell death, suggesting that luteolin-induced autophagy functions as a cell death mechanism. Notably, the activated caspases that appeared with luteolin treatment cleaved Beclin-1, and the expression of LC3II remained the same even after cells were challenged with Beclin-1 siRNA, demonstrating that luteolin induces Beclin-1-independent autophagy. Taken together, our findings showed that luteolin triggers both endoplasmic reticulum stress-related apoptosis and non-canonical autophagy, which function as a cell death mechanism in NCI-H460 human lung cancer cells.
Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Neoplasias Pulmonares/patologia , Luteolina/farmacologia , Clorometilcetonas de Aminoácidos/farmacologia , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Proteína Beclina-1 , Proteínas Estimuladoras de Ligação a CCAAT/genética , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Linhagem Celular Tumoral , Fragmentação do DNA , Fator de Iniciação 2 em Eucariotos/genética , Fator de Iniciação 2 em Eucariotos/metabolismo , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno/genética , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Macrolídeos/farmacologia , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/isolamento & purificaçãoRESUMO
Nanoparticles have been proposed as carriers for drugs, genes and therapies to treat various diseases. Many strategies have been developed to target nanomaterials to specific or over-expressed receptors in diseased cells, and these typically involve functionalizing the surface of nanoparticles with proteins, antibodies or other biomolecules. Here, we show that the targeting ability of such functionalized nanoparticles may disappear when they are placed in a biological environment. Using transferrin-conjugated nanoparticles, we found that proteins in the media can shield transferrin from binding to both its targeted receptors on cells and soluble transferrin receptors. Although nanoparticles continue to enter cells, the targeting specificity of transferrin is lost. Our results suggest that when nanoparticles are placed in a complex biological environment, interaction with other proteins in the medium and the formation of a protein corona can 'screen' the targeting molecules on the surface of nanoparticles and cause loss of specificity in targeting.
Assuntos
Nanopartículas/química , Transferrina/antagonistas & inibidores , Transferrina/química , Adsorção , Animais , Anticorpos/metabolismo , Linhagem Celular Tumoral , Fenômenos Químicos , Dicroísmo Circular , Células Epiteliais/citologia , Células Epiteliais/efeitos dos fármacos , Citometria de Fluxo , Humanos , Camundongos , Tamanho da Partícula , Proteínas/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/isolamento & purificação , RNA Interferente Pequeno/metabolismo , Receptores da Transferrina/química , Dióxido de Silício/químicaRESUMO
PURPOSE: Ovarian cancer has the highest mortality rate of all the gynecologic malignancies and is responsible for approximately 140,000 deaths annually worldwide. Copy number amplification is frequently associated with the activation of oncogenic drivers in this tumor type, but their cytogenetic complexity and heterogeneity has made it difficult to determine which gene(s) within an amplicon represent(s) the genuine oncogenic driver. We sought to identify amplicon targets by conducting a comprehensive functional analysis of genes located in the regions of amplification in high-grade serous and endometrioid ovarian tumors. EXPERIMENTAL DESIGN: High-throughput siRNA screening technology was used to systematically assess all genes within regions commonly amplified in high-grade serous and endometrioid cancer. We describe the results from a boutique siRNA screen of 272 genes in a panel of 18 ovarian cell lines. Hits identified by the functional viability screen were further interrogated in primary tumor cohorts to determine the clinical outcomes associated with amplification and gene overexpression. RESULTS: We identified a number of genes as critical for cellular viability when amplified, including URI1, PAK4, GAB2, and DYRK1B. Integration of primary tumor gene expression and outcome data provided further evidence for the therapeutic use of such genes, particularly URI1 and GAB2, which were significantly associated with survival in 2 independent tumor cohorts. CONCLUSION: By taking this integrative approach to target discovery, we have streamlined the translation of high-resolution genomic data into preclinical in vitro studies, resulting in the identification of a number of genes that may be specifically targeted for the treatment of advanced ovarian tumors.