Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 308
Filtrar
1.
Anal Chem ; 96(28): 11603-11610, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-38953495

RESUMO

Long noncoding RNAs (lncRNAs) act as the dynamic regulatory molecules that control the expression of genes and affect numerous biological processes, and their dysregulation is associated with tumor progression. Herein, we develop a fluorescent light-up aptasensor to simultaneously measure multiple lncRNAs in living cells and breast tissue samples based on the DNAzyme-mediated cleavage reaction and transcription-driven synthesis of light-up aptamers. When target lncRNAs are present, they can be recognized by template probes to form the active DNAzyme structures, initiating the T4 PNK-catalyzed dephosphorylation-triggered extension reaction to generate double-strand DNAs with the T7 promoter sequences. The corresponding T7 promoters can initiate the transcription amplification catalyzed by the T7 RNA polymerase to generate abundant Broccoli aptamers and malachite green aptamers, which can bind DFHBI-1T and MG to generate strong fluorescence signals. Taking advantage of the good selectivity of DNAzyme-mediated cleavage of lncRNAs, high amplification efficiency of T7 transcription-driven amplification reaction, and bright fluorescence of the RNA aptamer-fluorophore complex, this method exhibits high sensitivity with a detection limit of 21.4 aM for lncRNA HOTAIR and 18.47 aM for lncRNA MALAT1, and it can accurately measure multiple lncRNAs in both tumor cell lines and breast tissue samples, providing a powerful paradigm for biomedical research and early clinic diagnostics.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , DNA Catalítico , Corantes Fluorescentes , RNA Longo não Codificante , DNA Catalítico/química , DNA Catalítico/metabolismo , RNA Longo não Codificante/análise , RNA Longo não Codificante/metabolismo , RNA Longo não Codificante/genética , Humanos , Aptâmeros de Nucleotídeos/química , Corantes Fluorescentes/química , Limite de Detecção , Fluorescência
2.
Methods Mol Biol ; 2822: 157-173, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38907918

RESUMO

RNA (ribonucleic acid) plays a crucial role in various cellular processes and is involved in the development and progression of several diseases. RNA molecules have gained considerable attention as potential biomarkers for various ailments, as they reflect the activity of genes in a particular cell or tissue. By measuring the levels of specific RNA molecules, such as messenger RNA (mRNA), noncoding RNAs, including microRNAs (miRNAs), and long noncoding RNAs (lncRNAs), researchers can infer the expression patterns of genes associated with a particular disease. Aberrant expression of specific miRNAs or lncRNAs has been associated with conditions such as cancer, cardiovascular diseases, neurodegenerative disorders, and more. Detection and quantification of these RNAs in biological samples, such as blood or tissue, can provide valuable diagnostic or prognostic information. Yet their analysis is a challenging endeavor due to their length, sequence similarity across family members, sensitivity to disintegration, and low quantity in total samples. New advances in nanophotonics have provided novel options for fabrication of quantum dots (QDs)-based biosensing devices capable of detecting a variety of disease-specific RNAs. Thus, we proposed and designed a nanophotonic method employing oligonucleotide-conjugated quantum dot nanoconjugates for the rapid and accurate detection of RNAs. Despite the abundance of other molecules in the sample, the approach delivers highly selective, precise identification of the target RNAs. The data also indicated the method's great practicality and simplicity in determining RNAs selectively. Overall, the approach enables the evaluation of RNA expression in relation to the initial onset and progression of a human health disorder.


Assuntos
Pontos Quânticos , Pontos Quânticos/química , Humanos , MicroRNAs/genética , MicroRNAs/análise , RNA/genética , RNA/análise , Técnicas Biossensoriais/métodos , RNA Mensageiro/genética , RNA Mensageiro/análise , RNA Longo não Codificante/genética , RNA Longo não Codificante/análise
3.
BMC Cancer ; 23(1): 1243, 2023 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-38104110

RESUMO

BACKGROUND: An increasing number of small nucleolar RNA host genes (SNHGs) have been revealed to be dysregulated in lung cancer tissues, and abnormal expression of SNHGs is significantly correlated with the prognosis of lung cancer. The purpose of this study was to conduct a meta-analysis to explore the correlation between the expression level of SNHGs and the prognosis of lung cancer. METHODS: A comprehensive search of six related databases was conducted to obtain relevant literature. Relevant information, such as overall survival (OS), progression-free survival (PFS), TNM stage, lymph node metastasis (LNM), and tumor size, was extracted. Hazard ratios (HRs) and 95% confidence intervals (CIs) were pooled to evaluate the relationship between SNHG expression and the survival outcome of lung cancers. Sensitivity and publication bias analyses were performed to explore the stability and reliability of the overall results. RESULTS: Forty publications involving 2205 lung cancer patients were included in this meta-analysis. The pooled HR and 95% CI values indicated a significant positive association between high SNHG expression and poor OS (HR: 1.890, 95% CI: 1.595-2.185), disease-free survival (DFS) (HR: 2.31, 95% CI: 1.57-3.39) and progression-free survival (PFS) (HR: 2.01, 95% CI: 0.66-6.07). The pooled odds ratio (OR) and 95% CI values indicated that increased SNHG expression may be correlated with advanced TNM stage (OR: 1.509, 95% CI: 1.267-1.799), increase risk of distant lymph node metastasis (OR: 1.540, 95% CI: 1.298-1.828), and large tumor size (OR: 1.509, 95% CI: 1.245-1.829). Sensitivity analysis and publication bias results showed that each result had strong reliability and robustness, and there was no significant publication bias or other bias. CONCLUSION: Most SNHGs are upregulated in lung cancer tissues, and high expression of SNHGs predicts poor survival outcomes in lung cancer. SNHGs may be potential prognostic markers and promising therapeutic targets.


Assuntos
Neoplasias Pulmonares , Neoplasias , RNA Longo não Codificante , Humanos , Neoplasias Pulmonares/genética , Metástase Linfática , Reprodutibilidade dos Testes , RNA Longo não Codificante/genética , RNA Longo não Codificante/análise , Neoplasias/patologia , Prognóstico , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/análise
4.
Aging (Albany NY) ; 15(7): 2503-2524, 2023 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-36996493

RESUMO

BACKGROUND: Identification of effective biomarkers for cancer prognosis is a primary research challenge. Recently, several studies have reported the relationship between NCAPG and the occurrence of various tumors. However, none have combined meta-analytical and bioinformatics approaches to systematically assess the role of NCAPG in cancer. METHODS: We searched four databases, namely, PubMed, Web of Science, Embase, and the Cochrane Library, for relevant articles published before April 30, 2022. The overall hazard ratio or odds ratio and 95% confidence intervals were calculated to assess the relationship between NCAPG expression and cancer survival prognosis or clinical characteristics. Furthermore, the aforementioned results were validated using the GEPIA2, Kaplan-Meier plotter, and PrognoScan databases. RESULTS: The meta-analysis included eight studies with 1096 samples. The results showed that upregulation of NCAPG was correlated with poorer overall survival (hazard ratio = 2.90, 95% confidence interval = 2.06-4.10, P < 0.001) in the cancers included in the study. Subgroup analysis showed that in some cancers, upregulation of NCAPG was correlated with age, distant metastasis, lymph node metastasis, TNM stage, relapse, differentiation, clinical stage, and vascular invasion. These results were validated using the GEPIA2, UALCAN, and PrognoScan databases. We also explored the processes of NCAPG methylation and phosphorylation. CONCLUSION: Dysregulated NCAPG expression is associated with the clinical prognostic and pathological features of various cancers. Therefore, NCAPG can serve as a human cancer therapeutic target and a new potential prognostic biomarker.


Assuntos
Neoplasias , RNA Longo não Codificante , Humanos , Prognóstico , Biomarcadores Tumorais/metabolismo , RNA Longo não Codificante/análise , Recidiva Local de Neoplasia , Neoplasias/metabolismo , Biologia Computacional , Proteínas de Ciclo Celular
5.
Pathol Oncol Res ; 28: 1610670, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36277962

RESUMO

Background: Oxidative stress plays a critical role in oncogenesis and tumor progression. However, the prognostic role of oxidative stress-related lncRNA in hepatocellular carcinomas (HCC) has not been fully explored. Methods: We used the gene expression data and clinical data from The Cancer Genome Atlas (TCGA) database to identify oxidative stress-related differentially expressed lncRNAs (DElncRNAs) by pearson correlation analysis. A four-oxidative stress-related DElncRNA signature was constructed by LASSO regression and Cox regression analyses. The predictive signature was further validated by Kaplan-Meier (K-M) survival analysis, receiver operating characteristic (ROC) curves, nomogram and calibration plots, and principal component analysis (PCA). Single-sample gene set enrichment analysis (ssGSEA) was used to explore the relationship between the signature and immune status. Finally, the correlation between the signature and chemotherapeutic response of HCC patients was analyzed. Results: In our study, the four-DElncRNA signature was not only proved to be a robust independent prognostic factor for overall survival (OS) prediction, but also played a crucial role in the regulation of progression and chemotherapeutic response of HCC. ssGSEA showed that the signature was correlated with the infiltration level of immune cells. HCC patients in high-risk group were more sensitive to the conventional chemotherapeutic drugs including Sorafenib, lapatinib, Nilotinib, Gefitinib, Erlotinib and Dasatinib, which pave the way for targeting DElncRNA-associated treatments for HCC patients. Conclusion: Our study has originated a prognostic signature for HCC based on oxidative stress-related DElncRNAs, deepened the understanding of the biological role of four key DElncRNAs in HCC and laid a theoretical foundation for the choice of chemotherapy.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , RNA Longo não Codificante , Humanos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , RNA Longo não Codificante/análise , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Sorafenibe , Gefitinibe , Lapatinib , Cloridrato de Erlotinib , Dasatinibe , Regulação Neoplásica da Expressão Gênica , Biomarcadores Tumorais/metabolismo , Prognóstico , Estresse Oxidativo/genética
6.
Comput Intell Neurosci ; 2022: 9315283, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35978902

RESUMO

Background: m6A-related lncRNAs have demonstrated great potential tumor diagnostic and therapeutic targets. The goal of this work was to find m6A-regulated lncRNAs in osteosarcoma patients. Method: The Cancer Genome Atlas (TCGA) database was used to retrieve RNA sequencing and medical information from osteosarcoma sufferers. The Pearson's correlation test was used to identify the m6A-related lncRNAs. A risk model was built using univariate and multivariable Cox regression analysis. Kaplan-Meier survival analysis and receiver functional requirements were used to assess the risk model's performance (ROC). By using the CIBERSORT method, the associations between the relative risks and different immune cell infiltration were investigated. Lastly, the bioactivities of high-risk and low-risk subgroups were investigated using Gene Set Enrichment Analysis (GSEA). Result: A total of 531 m6A-related lncRNAs were obtained from TCGA. Seven lncRNAs have demonstrated prognostic values. A total of 88 OS patients were separated into cluster 1, cluster 2, and cluster 3. The overall survival rate of OS patients in cluster 3 was more favorable than that of those in cluster 1 and cluster 2. The average Stromal score was much higher in cluster 1 than in cluster 2 and cluster 3 (P < 0.05). The expression levels of lncRNAs used in the construction of the risk prediction model in the high-risk group were generally lower than those in the low-risk group. Analysis of patient survival indicated that the survival of the low-risk group was higher than that of the high-risk group (P < 0.0001) and the area under the curve (AUC) of the ROC curve was 0.719. Using the CIBERSORT algorithm, the results revealed that Macrophages M0, Macrophages M2, and T cells CD4 memory resting accounted for a large proportion of immune cell infiltration. By GSEA analysis, our results implied that the high-risk group was mainly involved in unfolded protein response, DNA repair signaling, and epithelial-mesenchymal transition signaling pathway and glycolysis pathway; meanwhile, the low-risk group was mainly involved in estrogen response early and KRAS signaling pathway. Conclusion: Our investigation showed that m6A-related lncRNAs remained tightly connected to the immunological microenvironment of osteosarcoma tumors, potentially influencing carcinogenesis and development. The immune microenvironment and immune-related biochemical pathways can be changed by regulating the transcription of M6A modulators or lncRNAs. In addition, we looked for risk-related signaling of m6A-related lncRNAs in osteosarcomas and built and validated the risk prediction system. The findings of our current analysis will facilitate the assessment of outcomes and the development of immunotherapies for sufferers of osteosarcomas.


Assuntos
Osteossarcoma , RNA Longo não Codificante , Perfilação da Expressão Gênica/métodos , Humanos , Osteossarcoma/genética , RNA Longo não Codificante/análise , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Microambiente Tumoral/genética
7.
Front Immunol ; 13: 836576, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35812396

RESUMO

Worldwide, hepatocellular carcinoma (HCC) is the most common subtype of liver cancer. However, the survival rate of patients with HCC continues to be poor. The recent literature has revealed that long non-coding RNAs (lncRNAs) and the occurrence of pyroptosis can perform a substantial task in predicting the prognosis of the respective condition along with the response to immunotherapy among HCC patients. Thus, screening and identifying lncRNAs corelated with pyroptosis in HCC patients are critical. In the current study, pyroptosis-related lncRNAs (PR-lncRNAs) have been obtained by co-expression analysis. The Least Absolute Shrinkage and Selection Operator (LASSO) and univariate and multivariate Cox regression assessments have been performed to develop a PR-lncRNA prognostic model. The risk model was analysed using Kaplan-Meier analysis, principal component analysis (PCA), functional enrichment annotation, and a nomogram. The risk model composed of five PR-lncRNAs was identified as an independent prognostic factor. The tumour immune microenvironment (TIME) was assessed using model groupings. Finally, we validated the five PR-lncRNAs in vitro using a quantitative real-time polymerase chain reaction (qRT-PCR).


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , RNA Longo não Codificante , Biomarcadores Tumorais/análise , Biomarcadores Tumorais/genética , Carcinoma Hepatocelular/patologia , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Hepáticas/patologia , Prognóstico , Piroptose/genética , RNA Longo não Codificante/análise , RNA Longo não Codificante/genética , Microambiente Tumoral/genética
8.
Front Immunol ; 13: 740960, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35350786

RESUMO

Background: N6-methyladenosine (m6A) and 5-methylcytosine (m5C) can modify long non-coding RNAs (lncRNAs), thereby affecting tumorigenesis and tumor progression. However, there is a lack of knowledge regarding the potential roles and cross-talk of m6A- and m5C-related lncRNAs in the tumor microenvironment (TME) and their effect on prognosis. Methods: We systematically evaluated the expression patterns of m6A- and m5C-related lncRNAs in 1358 colorectal cancer (CRC) samples from four datasets. Consensus clustering was conducted to identify molecular subtypes of CRC, and the clinical significance, TME, tumor-infiltrating immune cells (TIICs), and immune checkpoints in the different molecular subtypes were analyzed. Finally, we established a m6A- and m5C-related lncRNA signature and a prognostic nomogram. Results: We identified 141 m6A- and m5C-related lncRNAs by co-expression analysis, among which 23 lncRNAs were significantly associated with the overall survival (OS) of CRC patients. Two distinct molecular subtypes (cluster A and cluster B) were identified, and these two distinct molecular subtypes could predict clinicopathological features, prognosis, TME stromal activity, TIICs, immune checkpoints. Next, a m6A- and m5C-related lncRNA signature for predicting OS was constructed, and its predictive capability in CRC patients was validated. We then constructed a highly accurate nomogram for improving the clinical applicability of the signature. Analyses of clinicopathological features, prognosis, TIICs, cancer stem cell (CSC), and drug response revealed significant differences between two risk groups. In addition, we found that patients with a low-risk score exhibited enhanced response to anti-PD-1/L1 immunotherapy. Functional enrichment analysis showed that these lncRNAs related to the high-risk group were involved in the development and progression of CRC. Conclusions: We conducted a comprehensive analysis of m6A- and m5C-related lncRNAs in CRC and revealed their potential functions in predicting tumor-immune-stromal microenvironment, clinicopathological features, and prognosis, and determined their role in immunotherapy. These findings may improve our understanding of the cross-talk between m6A- and m5C-related lncRNAs in CRC and pave a new road for prognosis assessment and more effective immunotherapy strategies.


Assuntos
Neoplasias Colorretais , RNA Longo não Codificante , Biomarcadores Tumorais/análise , Biomarcadores Tumorais/genética , Neoplasias Colorretais/patologia , Humanos , Prognóstico , RNA Longo não Codificante/análise , RNA Longo não Codificante/genética , Microambiente Tumoral/genética
9.
Pathol Oncol Res ; 28: 1610012, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35280112

RESUMO

The purpose of our current study was to establish a long non-coding RNA(lncRNA) signature and assess its prognostic and diagnostic power in papillary thyroid cancer (PTC). LncRNA expression profiles were obtained from the Cancer Genome Atlas (TCGA). The key module and hub lncRNAs related to PTC were determined by weighted gene co-expression network analysis (WGCNA) and LASSO Cox regression analyses, respectively. Functional enrichment analyses, including Gene Ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) and gene set enrichment analysis were implemented to analyze the possible biological processes and signaling pathways of hub lncRNAs. Associations between key lncRNA expressions and tumor-infiltrating immune cells were identified using the TIMER website, and proportions of immune cells in high/low risk score groups were compared. Kaplan-Meier Plotter was used to evaluate the prognostic significance of hub genes in PTC. A diagnostic model was conducted with logistic regression analysis, and its diagnostic performance was assessed by calibration/receiver operating characteristic curves and principal component analysis. A nine-lncRNAs signature (SLC12A5-AS1, LINC02028, KIZ-AS1, LINC02019, LINC01877, LINC01444, LINC01176, LINC01290, and LINC00581) was established in PTC, which has significant diagnostic and prognostic power. Functional enrichment analyses elucidated the regulatory mechanism of the nine-lncRNAs signature in the development of PTC. This signature and expressions of nine hub lncRNAs were correlated with the distributions of tumor infiltrating immune cells. A diagnostic nomogram was also established for PTC. By comparing with the published models with less than or equal to nine lncRNAs, our signature showed a preferable performace for prognosis prediction. In conclusion, our present research established an innovative nine-lncRNAs signature and a six-lncRNAs nomogram that might act as a potential indicator for PTC prognosis and diagnosis, which could be conducive to the PTC treatment.


Assuntos
RNA Longo não Codificante , Neoplasias da Glândula Tireoide , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Nomogramas , RNA Longo não Codificante/análise , Câncer Papilífero da Tireoide/diagnóstico , Câncer Papilífero da Tireoide/genética , Neoplasias da Glândula Tireoide/diagnóstico , Neoplasias da Glândula Tireoide/genética
10.
Dis Markers ; 2022: 4033583, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35320950

RESUMO

Objective: Clear cell renal cell carcinoma (ccRCC) carries significant morbidity and mortality globally and is often resistant to conventional radiotherapy and chemotherapy. Immune checkpoint blockade (ICB) has received attention in ccRCC patients as a promising anticancer treatment. Furthermore, competitive endogenous RNA (ceRNA) networks are crucial for the occurrence and progression of various tumors. This study was aimed at identifying reliable prognostic signatures and exploring potential mechanisms between ceRNA regulation and immune cell infiltration in ccRCC patients. Methods and Results: Gene expression profiling and clinical information of ccRCC samples were obtained from The Cancer Genome Atlas (TCGA) database. Through comprehensive bioinformatic analyses, differentially expressed mRNAs (DEmRNAs; n = 131), lncRNAs (DElncRNAs; n = 12), and miRNAs (DEmiRNAs; n = 25) were identified to establish ceRNA networks. The CIBERSORT algorithm was applied to calculate the proportion of 22 types of tumor-infiltrating immune cells (TIICs) in ccRCC tissues. Subsequently, univariate Cox, Lasso, and multivariate Cox regression analyses were employed to construct ceRNA-related and TIIC-related prognostic signatures. In addition, we explored the relationship between the crucial genes and TIICs via coexpression analysis, which revealed that the interactions between MALAT1, miR-1271-5p, KIAA1324, and follicular helper T cells might be closely correlated with the progression of ccRCC. Ultimately, we preliminarily validated that the potential MALAT1/miR-1271-5p/KIAA1324 axis was consistent with the ceRNA theory by qRT-PCR in the ccRCC cell lines. Conclusion: On the basis of the ceRNA networks and TIICs, we constructed two prognostic signatures with excellent predictive value and explored possible molecular regulatory mechanisms, which might contribute to the improvement of prognosis and individualized treatment for ccRCC patients.


Assuntos
Biomarcadores Tumorais/análise , Carcinoma de Células Renais/tratamento farmacológico , Carcinoma de Células Renais/imunologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Neoplasias Renais/tratamento farmacológico , Neoplasias Renais/imunologia , RNA/análise , Progressão da Doença , Perfilação da Expressão Gênica , Humanos , Proteínas de Membrana/análise , MicroRNAs/análise , Proteínas de Neoplasias/análise , Células-Tronco Neoplásicas/imunologia , Prognóstico , RNA Longo não Codificante/análise , RNA Mensageiro/análise , Análise de Sobrevida , Células T Auxiliares Foliculares/imunologia
11.
Pathol Res Pract ; 231: 153810, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35182891

RESUMO

PURPOSE: Triple Negative Breast Cancer (TNBC) is the malignant tumor with the fastest progression rate in breast cancer. LncRNAs are widely involved in various biological characteristics of tumor. The purpose of this study was to mine LncRNAs that can be used to diagnose and evaluate the prognosis of TNBC. METHODS: Base on TCGA dataset, we used three R language packages to analyze the differentially expressed (DE) lncRNAs in TNBC. Survival analysis and ROC curve analysis were conducted to estimate the potential diagnostic and prognostic value of LncRNAs for TNBC. Furthermore, CCK-8 and Transwell assays were used to assess the effects of LncRNA on MDA-MB-231 cells proliferation and migration. Additionally, targets mRNAs of candidate LncRNA were predicted by co-expression analysis and multiple target gene prediction databases, then KEGG pathway and GO analysis were conducted using DAVID online tool. RESULTS: 6165 DERNAs and 1258 DElncRNAs were obtained. 40 LncRNAs were significantly correlated with the survival time of TNBC patients. Among them, HAGLROS has the highest HR value. ROC curve analysis also showed that HAGLROS had high sensitivity and specificity. Further in vitro experiments showed that downregulation of HAGLROS inhibited the proliferation and migration of MDA-MB-231 cells. Moreover, by conducting bioinformatics analysis, we found that these target genes of HAGLROS were involved in regulating five signaling pathways. Mechanistic investigations demonstrated that HAGLROS might regulate the expression of PAX5 through miR-330-5p, the effects of miR-330-5p in MDA-MB-231 cells were also analyzed. CONCLUSION: Our results showed that HAGLROS was significantly overexpressed in TNBC, and high HAGLROS expression predicted poor overall survival. Downregulation of HAGLROS could inhibite the proliferation and migration of MDA-MB-231 cell by regulating PAX5 expression through miR-330-5p.


Assuntos
RNA Longo não Codificante/análise , Neoplasias de Mama Triplo Negativas/genética , Proliferação de Células/genética , Humanos , Prognóstico , RNA Longo não Codificante/sangue , Neoplasias de Mama Triplo Negativas/sangue
12.
BMC Cancer ; 22(1): 79, 2022 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-35042456

RESUMO

BACKGROUND: Long non-coding RNA (LncRNA) HOTAIR was amplified and overexpressed in many human carcinomas, which could serve as a useful target for cancer early detection and treatment. The 99mTc radiolabeled antisense oligonucleotides (ASON) could visualize the expression of HOTAIR and provide a diagnostic value for malignant tumors. The aim of this study was to evaluate whether liposome-coated antisense oligonucleotide probe 99mTc-HYNIC-ASON targeting HOTAIR can be used in in vivo imaging of HOTAIR in malignant glioma xenografts. METHODS: The ASON targeting LncRNA HOTAIR as well as mismatched ASON (ASONM) were designed and modified. The radiolabeling of 99mTc with two probes were via the conjugation of bifunctional chelator HYNIC. Then probes were purified by Sephadex G25 and tested for their radiolabeling efficiency and purity, as well as stability by ITLC (Instant thin-layer chromatography) and gel electrophoresis. Then the radiolabeled probes were transfected with lipofectamine 2000 for cellular uptake test and the next experimental use. Furthermore, biodistribution study and SPECT imaging were performed at different times after liposome-coated 99mTc-HYNIC-ASON/ASONM were intravenously injected in glioma tumor-bearing mice models. All data were analyzed by statistical software. RESULTS: The labeling efficiencies of 99mTc-HYNIC-ASON and 99mTc-HYNIC-ASONM measured by ITLC were (91 ± 1.5) % and (90 ± 0.6) %, respectively, and both radiochemical purities were more than 89%. Two probes showed good stability within 12 h. Gel electrophoresis confirmed that the oligomers were successfully radiolabeled no significant degradation were found. Biodistribution study demonstrated that liposome-coated antisense probes were excreted mainly through the kidney and bladder and has higher uptake in the tumor. Meanwhile, the tumor was clearly shown after injection of liposome coated 99mTc-HYNIC-ASON, and its T/M ratio was higher than that in the non-transfection group and mismatched group. No tumor was seen in mismatched and blocking group. CONCLUSION: The liposome encapsulated 99mTc-HYNIC-ASON probe can be used in the in vivo, real-time imaging of LncRNA HOTAIR expression in malignant glioma.


Assuntos
Glioma/diagnóstico por imagem , Oligonucleotídeos Antissenso/administração & dosagem , Compostos de Organotecnécio/administração & dosagem , RNA Longo não Codificante/análise , Compostos Radiofarmacêuticos/administração & dosagem , Animais , Modelos Animais de Doenças , Xenoenxertos/metabolismo , Lipossomos , Camundongos , Distribuição Tecidual
13.
Cancer Invest ; 40(3): 254-267, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34726962

RESUMO

Adrenocortical carcinoma (ACC) is characterized by poor prognosis and high mortality. The suppression of the long-non-coding RNA H19, counterbalanced by IGF2 over-expression, leads to down-regulation of the autophagy markers, high proliferation rate and metastatic potential in patients affected by ACC. The administration of the deacetylase inhibitors (DACi) panobinostat, trichostatin A (TSA) and SAHA affected the cell viability of H295R monolayer and spheroids and induced the over-expression of H19 and autophagy transcripts. H19 knock down in H295R cells was not able to modulate the expression level of autophagy transcripts. Instead, H19 knock down was able to impede the ability of DACi to modulate the protein level of the autophagy markers. Furthermore, the administration of higher concentration of DACi was able to down-regulate the protein level of Beclin1 and p62 and to induce the conversion of LC3B-I into the active LC3B-II form, thus confirming an active autophagic process. Neither the active protein level nor the activity of caspases 8 and 3 was prompted by the DACi, thus excluding the involvement of the executioners of apoptosis in H295R decay. The DACi restore H19, the autophagy markers and trigger cell death in ACC cells. The re-activation of autophagy would represent a novel strategy for the treatment of patients affected by this severe malignancy.


Assuntos
Neoplasias do Córtex Suprarrenal/genética , Carcinoma Adrenocortical/genética , Autofagia/fisiologia , RNA Longo não Codificante/fisiologia , Adolescente , Neoplasias do Córtex Suprarrenal/tratamento farmacológico , Neoplasias do Córtex Suprarrenal/patologia , Carcinoma Adrenocortical/tratamento farmacológico , Carcinoma Adrenocortical/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/análise , Proteína Beclina-1/análise , Linhagem Celular Tumoral , Feminino , Inibidores de Histona Desacetilases/uso terapêutico , Humanos , Masculino , Pessoa de Meia-Idade , Panobinostat/uso terapêutico , RNA Longo não Codificante/análise , Adulto Jovem
14.
Anal Biochem ; 639: 114520, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-34896376

RESUMO

Long non-coding RNAs (lncRNAs) are transcripts longer than 200 nt without evident protein coding function. They play important regulatory roles in many biological processes, e.g., gene regulation, chromatin remodeling, and cell fate determination during development. Dysregulation of lncRNAs has been observed in various diseases including cancer. Interacting with proteins is a crucial way for lncRNAs to play their biological roles. Therefore, the characterization of lncRNA binding proteins is important to understand their functions and to delineate the underlying molecular mechanism. Large-scale studies based on mass spectrometry have characterized over a thousand new RNA binding proteins without known RNA-binding domains, thus revealing the complexity and diversity of RNA-protein interactions. In addition, several methods have been developed to identify the binding proteins for particular RNAs of interest. Here we review the progress of the RNA-centric methods for the identification of RNA-protein interactions, focusing on the studies involving lncRNAs, and discuss their strengths and limitations.


Assuntos
RNA Longo não Codificante/metabolismo , Proteínas de Ligação a RNA/metabolismo , Animais , Técnicas de Química Analítica/instrumentação , Técnicas de Química Analítica/métodos , Humanos , Ligação Proteica , RNA Longo não Codificante/análise , Proteínas de Ligação a RNA/análise
15.
BMC Cancer ; 21(1): 1285, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34852770

RESUMO

PURPOSE: Osteosarcoma (OS) is a differentiation disease caused by the genetic and epigenetic differentiation of mesenchymal stem cells into osteoblasts. OS is a common, highly malignant tumor in children and adolescents. Fifteen to 20 % of the patients find distant metastases at their first visit. The purpose of our study was to identify biomarkers for tracking the prognosis and treatment of OS to improve the survival rate of patients. MATERIALS AND METHODS: In this study, which was based on Therapeutically Applicable Research to Generate Effective Treatments (TARGET), we searched for m6A related lncRNAs in OS. We constructed a network between lncRNA and m6A, and built an OS prognostic risk model. RESULTS: We identified 14,581 lncRNAs by using the dataset from TARGET. We obtained 111 m6A-related lncRNAs through a Pearson correlation analysis. A network was built between lncRNA and m6A genes. Eight m6A-related lncRNAs associated with survival were identified through a univariate Cox analysis. A selection operator (LASSO) Cox regression was used to construct a prognostic risk model with six genes (RP11-286E11.1, LINC01426, AC010127.3, DLGAP1-AS2, RP4-657D16.3, AC002398.11) obtained through least absolute shrinkage. We also discovered upregulated levels of DLGAP1-AS2 and m6A methylation in osteosarcoma tissues/cells compared with normal tissues/osteoblasts cells. CONCLUSION: We constructed a risk score prognosis model of m6A-related lncRNAs (RP11-286E11.1, LINC01426, AC010127.3, DLGAP1-AS2, RP4-657D16.3, AC002398.11) using the dataset downloaded from TRAGET. We verified the value of the model by dividing all samples into test groups and training groups. However, the role of m6A-related lncRNAs in osteosarcoma needs to be further researched by cell and in vivo studies.


Assuntos
Adenosina/análogos & derivados , Biomarcadores Tumorais/análise , Neoplasias Ósseas/mortalidade , Osteossarcoma/mortalidade , RNA Longo não Codificante/análise , Adenosina/genética , Adenosina/metabolismo , Biomarcadores Tumorais/genética , Neoplasias Ósseas/genética , Neoplasias Ósseas/patologia , Osso e Ossos/metabolismo , Humanos , Osteossarcoma/genética , Osteossarcoma/patologia , Modelos de Riscos Proporcionais , RNA Longo não Codificante/metabolismo , Fatores de Risco , Taxa de Sobrevida , Regulação para Cima
16.
BMC Cancer ; 21(1): 1221, 2021 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-34774009

RESUMO

BACKGROUND: Gastric cancer (GC) is a common malignant cancer with a poor prognosis. Ferroptosis has been shown to play crucial roles in GC development. Long non-coding RNAs (lncRNAs) is also associated with tumor progression in GC. This study aimed to screen the prognostic ferroptosis-related lncRNAs and to construct a prognostic risk model for GC. METHODS: Ferroptosis-related lncRNAs from The Cancer Genome Atlas (TCGA) GC expression data was downloaded. First, single factor Cox proportional hazard regression analysis was used to select seven prognostic ferroptosis-related lncRNAs from TCGA database. And then, the selected lncRNAs were further included in the multivariate Cox proportional hazard regression analysis to establish the prognostic model. A nomogram was constructed to predict individual survival probability. Finally, we performed quantitative reverse transcription polymerase chain reaction (qRT-PCR) to verify the risk model. RESULTS: We constructed a prognostic ferroptosis-related lncRNA signature in this study. Kaplan-Meier curve analysis revealed a significantly better prognosis for the low-risk group than for the high-risk group (P = 2.036e-05). Multivariate Cox proportional risk regression analysis demonstrated that risk score was an independent prognostic factor [hazard ratio (HR) = 1.798, 95% confidence interval (CI) =1.410-2.291, P < 0.001]. A nomogram, receiver operating characteristic curve, and principal component analysis were used to predict individual prognosis. Finally, the expression levels of AP003392.1, AC245041.2, AP001271.1, and BOLA3-AS1 in GC cell lines and normal cell lines were tested by qRT-PCR. CONCLUSIONS: This risk model was shown to be a novel method for predicting prognosis for GC patients.


Assuntos
Ferroptose/genética , RNA Longo não Codificante/análise , Neoplasias Gástricas/genética , Linhagem Celular Tumoral , Bases de Dados Genéticas , Humanos , Estimativa de Kaplan-Meier , Proteínas Mitocondriais/metabolismo , Proteínas de Neoplasias/metabolismo , Nomogramas , Prognóstico , Modelos de Riscos Proporcionais , Curva ROC , Neoplasias Gástricas/mortalidade
17.
BMC Cancer ; 21(1): 1256, 2021 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-34802433

RESUMO

BACKGROUND: Bladder cancer (BLCA) typically has a poor prognosis due to high relapse and metastasis rates. A growing body of evidence indicates that N6-methyladenosine (m6A) and long non-coding RNAs (lncRNAs) play crucial roles in the progression of BLCA and the treatment response of patients with BLCA. Therefore, we conducted a comprehensive RNA-seq analysis of BLCA using data from The Cancer Genome Atlas (TCGA) to establish an m6A-related lncRNA prognostic signature (m6A-RLPS) for BLCA. METHODS: Consensus clustering analysis was used to investigate clusters of BLCA patients with varying prognoses. The least absolute shrinkage and selection operator Cox regression were used to develop the m6A-RLPS. The ESTIMATE and CIBERSORT algorithms were used to evaluate the immune composition. RESULTS: A total of 745 m6A-related lncRNAs were identified using Pearson correlation analysis (|R| > 0.4, p < 0.001). Fifty-one prognostic m6A-related lncRNAs were screened using univariate Cox regression analysis. Through consensus clustering analysis, patients were divided into two clusters (clusters 1 and 2) with different overall survival rates and tumor stages based on the differential expression of the lncRNAs. Enrichment analysis demonstrated that terms related to tumor biological processes and immune-related activities were increased in patient cluster 2, which was more likely to exhibit low survival rates. Nine m6A-related prognostic lncRNAs were finally determined and subsequently used to construct the m6A-RLPS, which was verified to be an independent predictor of prognosis using univariate and multivariate Cox regression analyses. Further, a nomogram based on age, tumor stage, and the m6A-RLPS was generated and showed high accuracy and reliability with respect to predicting the survival outcomes of BLCA patients. The prognostic signature was found to be strongly correlated to tumor-infiltrating immune cells and immune checkpoint expression. CONCLUSIONS: We established a novel m6A-RLPS with a favorable prognostic value for patients with BLCA. We believe that this prognostic signature can provide new insights into the tumorigenesis of BLCA and predict the treatment response in patients with BLCA.


Assuntos
Adenosina/análogos & derivados , RNA Longo não Codificante/análise , RNA-Seq , Neoplasias da Bexiga Urinária/genética , Adenosina/genética , Progressão da Doença , Humanos , Proteínas de Checkpoint Imunológico/metabolismo , Linfócitos do Interstício Tumoral , Estadiamento de Neoplasias , Prognóstico , Modelos de Riscos Proporcionais , Taxa de Sobrevida , Transcriptoma , Resultado do Tratamento , Neoplasias da Bexiga Urinária/imunologia , Neoplasias da Bexiga Urinária/mortalidade , Neoplasias da Bexiga Urinária/patologia
18.
Clin Epigenetics ; 13(1): 197, 2021 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-34689838

RESUMO

BACKGROUND: 5-Hydroxymethylcytosine (5hmC) is a significant DNA epigenetic modification. However, the 5hmC modification alterations in genomic regions encoding long non-coding RNA (lncRNA) and their clinical significance remain poorly characterized. RESULTS: A three-phase discovery-modeling-validation study was conducted to explore the potential of the plasma-derived 5hmC modification level in genomic regions encoding lncRNAs as a superior alternative biomarker for cancer diagnosis and surveillance. Genome-wide 5hmC profiles in the plasma circulating cell-free DNA of 1632 cancer and 1379 non-cancerous control samples from different cancer types and multiple centers were repurposed and characterized. A large number of altered 5hmC modifications were distributed at genomic regions encoding lncRNAs in cancerous compared with healthy subjects. Furthermore, most 5hmC-modified lncRNA genes were cancer-specific, with only a relatively small number of 5hmC-modified lncRNA genes shared by various cancer types. A 5hmC-LncRNA diagnostic score (5hLD-score) comprising 39 tissue-shared 5hmC-modified lncRNA gene markers was developed using elastic net regularization. The 5hLD-score was able to accurately distinguish tumors from healthy controls with an area under the curve (AUC) of 0.963 [95% confidence interval (CI) 0.940-0.985] and 0.912 (95% CI 0.837-0.987) in the training and internal validation cohorts, respectively. Results from three independent validations confirmed the robustness and stability of the 5hLD-score with an AUC of 0.851 (95% CI 0.786-0.916) in Zhang's non-small cell lung cancer cohort, AUC of 0.887 (95% CI 0.852-0.922) in Tian's esophageal cancer cohort, and AUC of 0.768 (95% CI 0.746-0.790) in Cai's hepatocellular carcinoma cohort. In addition, a significant association was identified between the 5hLD-score and the progression from hepatitis to liver cancer. Finally, lncRNA genes modified by tissue-specific 5hmC alteration were again found to be capable of identifying the origin and location of tumors. CONCLUSION: The present study will contribute to the ongoing effort to understand the transcriptional programs of lncRNA genes, as well as facilitate the development of novel invasive genomic tools for early cancer detection and surveillance.


Assuntos
5-Metilcitosina/análogos & derivados , Detecção Precoce de Câncer/métodos , Neoplasias/diagnóstico , 5-Metilcitosina/análise , Ácidos Nucleicos Livres/análise , Ácidos Nucleicos Livres/sangue , Ácidos Nucleicos Livres/genética , Progressão da Doença , Detecção Precoce de Câncer/estatística & dados numéricos , Humanos , Neoplasias/genética , RNA Longo não Codificante/análise , RNA Longo não Codificante/sangue , RNA Longo não Codificante/genética
19.
Sci Rep ; 11(1): 20014, 2021 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-34625583

RESUMO

Hepatitis B virus (HBV) infection is a significant health issue worldwide.. We attempted to fulfill the molecular mechanisms of epigenetic and genetic factors associated with chronic HBV (CHBV). Expression levels of the lncRNA growth arrest-specific 5 (GAS5) and miR-137 and their corresponding SNPs, rs2067079 (C/T) and rs1625579 (G/T) were analyzed in 117 CHBV patients and 120 controls to investigate the probable association between these biomarkers and CHBV pathogenesis in the Egyptian population. Serum expression levels of GAS5 and miR-137 were significantly down-regulated in cases vs controls. Regarding GAS5 (rs2067079), the mutant TT genotype showed an increased risk of CHBV (p < 0.001), while the dominant CC was a protective factor (p = 0.004). Regarding miR-137 rs1625579, the mutant genotype TT was reported as a risk factor for CHBV (p < 0.001) and the normal GG genotype was a protective factor, p < 0.001. The serum GAS5 was significantly higher in the mutant TT genotype of GAS5 SNP as compared to the other genotypes (p = 0.007). Concerning miR-137 rs1625579, the mutant TT genotype was significantly associated with a lower serum expression level of miR-137 (p = 0.018). We revealed the dysregulated expression levels of GAS5 and miR-137 linked to their functioning SNPs were associated with CHBV risk and might act as potential therapeutic targets.


Assuntos
Hepatite B Crônica , MicroRNAs , RNA Longo não Codificante , Adulto , Biomarcadores/análise , Egito/epidemiologia , Feminino , Predisposição Genética para Doença , Hepatite B/epidemiologia , Hepatite B/genética , Hepatite B Crônica/epidemiologia , Hepatite B Crônica/genética , Humanos , Masculino , MicroRNAs/análise , MicroRNAs/genética , Polimorfismo de Nucleotídeo Único , RNA Longo não Codificante/análise , RNA Longo não Codificante/genética
20.
Medicine (Baltimore) ; 100(37): e27222, 2021 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-34664861

RESUMO

ABSTRACT: Participate in tumorigenic, oncogenic, and tumor suppressive pathways through gene expression regulation. We aimed to build an immune-related long noncoding RNA (lncRNA) prognostic model to enhance nonsmall cell lung cancer (NSCLC) prognostic prediction.The original data were collected from the cancer genome atlas database. Perl and R software were used for statistical analysis. The effects of lncRNAs expression on prognosis were analyzed by Gene Expression Profiling Interactive Analysis. Silico functional analysis were performed by DAVID Bioinformatics Resources.The median risk score as a dividing value separated patients into high- and low-risk groups. These 2 groups had different 5-year survival rates, median survival times, and immune statuses. The 5-lncRNA signature was validated as an independent prognostic factor with high accuracy (area under the receiver operating characteristic = 0.722). Silico functional analysis connected the lncRNAs with immune-related biological processes and pathways in carcinogenesis.The novel immune-related lncRNA prognostic model had significant clinical implication for enhancing lung adenocarcinoma outcome prediction and guiding the choice of treatment.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/diagnóstico , Perfilação da Expressão Gênica/métodos , Prognóstico , RNA Longo não Codificante/análise , Área Sob a Curva , Bibliometria , Carcinoma Pulmonar de Células não Pequenas/imunologia , Biologia Computacional , Perfilação da Expressão Gênica/instrumentação , Perfilação da Expressão Gênica/estatística & dados numéricos , Biblioteca Genômica , Humanos , Estimativa de Kaplan-Meier , Modelos de Riscos Proporcionais , Curva ROC
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA