Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 404
Filtrar
1.
Mol Biol (Mosk) ; 58(2): 220-233, 2024.
Artigo em Russo | MEDLINE | ID: mdl-39355880

RESUMO

RNA polymerase III synthesizes a wide range of noncoding RNAs shorter than 400 nucleotides in length. These RNAs are involved in protein synthesis (tRNA, 5S rRNA, and 7SL RNA), maturation, and splicing of different types of RNA (RPR, MRP RNA, and U6 snRNA), regulation of transcription (7SK RNA), replication (Y RNA), and intracellular transport (vault RNA). BC200 and BC1 RNA genes are transcribed by RNA polymerase III in neurons only where these RNAs regulate protein synthesis. Mutations in the regulatory elements of the genes transcribed by RNA polymerase III as well as in transcription factors of this RNA polymerase are associated with the development of a number of diseases, primarily oncological and neurological. In this regard, the mechanisms of regulation of the expression of the genes containing various RNA polymerase III promoters were actively studied. This review describes the structural and functional classification of polymerase III promoters, as well as the factors involved in the regulation of promoters of different types. A number of examples demonstrate the role of the described factors in the pathogenesis of human diseases.


Assuntos
Regiões Promotoras Genéticas , RNA Polimerase III , Transcrição Gênica , RNA Polimerase III/genética , RNA Polimerase III/metabolismo , Humanos , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Animais , Regulação da Expressão Gênica
2.
Sci Rep ; 14(1): 7638, 2024 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561452

RESUMO

Hypomyelinating leukodystrophy (HLD) is a rare genetic heterogeneous disease that can affect myelin development in the central nervous system. This study aims to analyze the clinical phenotype and genetic function of a family with HLD-7 caused by POLR3A mutation. The proband (IV6) in this family mainly showed progressive cognitive decline, dentin dysplasia, and hypogonadotropic hypogonadism. Her three old brothers (IV1, IV2, and IV4) also had different degrees of ataxia, dystonia, or dysarthria besides the aforementioned manifestations. Their brain magnetic resonance imaging showed bilateral periventricular white matter atrophy, brain atrophy, and corpus callosum atrophy and thinning. The proband and her two living brothers (IV2 and IV4) were detected to carry a homozygous mutation of the POLR3A (NM_007055.4) gene c. 2300G > T (p.Cys767Phe), and her consanguineous married parents (III1 and III2) were p.Cys767Phe heterozygous carriers. In the constructed POLR3A wild-type and p.Cys767Phe mutant cells, it was seen that overexpression of wild-type POLR3A protein significantly enhanced Pol III transcription of 5S rRNA and tRNA Leu-CAA. However, although the mutant POLR3A protein overexpression was increased compared to the wild-type protein overexpression, it did not show the expected further enhancement of Pol III function. On the contrary, Pol III transcription function was frustrated (POLR3A, BC200, and tRNA Leu-CAA expression decreased), and MBP and 18S rRNA expressions were decreased. This study indicates that the POLR3A p.Cys767Phe variant caused increased expression of mutated POLR3A protein and abnormal expression of Pol III transcripts, and the mutant POLR3A protein function was abnormal.


Assuntos
Doenças Desmielinizantes Hereditárias do Sistema Nervoso Central , Masculino , Feminino , Humanos , Doenças Desmielinizantes Hereditárias do Sistema Nervoso Central/genética , Mutação , Fenótipo , Atrofia , RNA de Transferência , RNA Polimerase III/genética , RNA Polimerase III/metabolismo
3.
Nucleic Acids Res ; 52(8): 4151-4166, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38340348

RESUMO

In cancer therapy, DNA intercalators are mainly known for their capacity to kill cells by inducing DNA damage. Recently, several DNA intercalators have attracted much interest given their ability to inhibit RNA Polymerase I transcription (BMH-21), evict histones (Aclarubicin) or induce chromatin trapping of FACT (Curaxin CBL0137). Interestingly, these DNA intercalators lack the capacity to induce DNA damage while still retaining cytotoxic effects and stabilize p53. Herein, we report that these DNA intercalators impact chromatin biology by interfering with the chromatin stability of RNA polymerases I, II and III. These three compounds have the capacity to induce degradation of RNA polymerase II and they simultaneously enable the trapping of Topoisomerases TOP2A and TOP2B on the chromatin. In addition, BMH-21 also acts as a catalytic inhibitor of Topoisomerase II, resembling Aclarubicin. Moreover, BMH-21 induces chromatin trapping of the histone chaperone FACT and propels accumulation of Z-DNA and histone eviction, similarly to Aclarubicin and CBL0137. These DNA intercalators have a cumulative impact on general transcription machinery by inducing accumulation of topological defects and impacting nuclear chromatin. Therefore, their cytotoxic capabilities may be the result of compounding deleterious effects on chromatin homeostasis.


Assuntos
Cromatina , DNA Topoisomerases Tipo II , Substâncias Intercalantes , RNA Polimerase II , Humanos , Antígenos de Neoplasias/metabolismo , Antígenos de Neoplasias/genética , Carbazóis , Cromatina/metabolismo , Dicetopiperazinas , DNA/metabolismo , DNA/química , Dano ao DNA , DNA Topoisomerases Tipo II/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Grupo de Alta Mobilidade/metabolismo , Proteínas de Grupo de Alta Mobilidade/genética , Histonas/metabolismo , Substâncias Intercalantes/farmacologia , Substâncias Intercalantes/química , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , Proteínas de Ligação a Poli-ADP-Ribose/genética , RNA Polimerase I/metabolismo , RNA Polimerase I/antagonistas & inibidores , RNA Polimerase II/metabolismo , RNA Polimerase III/metabolismo , Inibidores da Topoisomerase II/farmacologia , Transcrição Gênica/efeitos dos fármacos , Fatores de Elongação da Transcrição/metabolismo , Fatores de Elongação da Transcrição/genética , Aclarubicina/farmacologia
4.
Mol Cell ; 84(4): 687-701.e7, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38266641

RESUMO

Molecular chaperones are critical for protein homeostasis and are implicated in several human pathologies such as neurodegeneration and cancer. While the binding of chaperones to nascent and misfolded proteins has been studied in great detail, the direct interaction between chaperones and RNA has not been systematically investigated. Here, we provide the evidence for widespread interaction between chaperones and RNA in human cells. We show that the major chaperone heat shock protein 70 (HSP70) binds to non-coding RNA transcribed by RNA polymerase III (RNA Pol III) such as tRNA and 5S rRNA. Global chromatin profiling revealed that HSP70 binds genomic sites of transcription by RNA Pol III. Detailed biochemical analyses showed that HSP70 alleviates the inhibitory effect of cognate tRNA transcript on tRNA gene transcription. Thus, our study uncovers an unexpected role of HSP70-RNA interaction in the biogenesis of a specific class of non-coding RNA with wider implications in cancer therapeutics.


Assuntos
Proteínas de Choque Térmico HSP70 , Neoplasias , Humanos , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP70/metabolismo , Chaperonas Moleculares/metabolismo , RNA , RNA Polimerase III/genética , RNA Polimerase III/metabolismo , RNA de Transferência/genética , RNA não Traduzido/genética
5.
FASEB J ; 37(12): e23260, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37933949

RESUMO

RNA Polymerase III Subunit G (POLR3G) promotes tumorigenesis, metastasis, cancer stemness, and chemoresistance of breast cancer and lung cancer; however, its biological function in bladder cancer (BLCA) remains unclear. Through bioinformatic analyses, we found that POLR3G expression was significantly elevated in BLCA tumor tissues and was associated with decreased survival. Multivariate Cox analysis indicated that POLR3G could serve as an independent prognostic risk factor. Our functional investigations revealed that POLR3G deficiency resulted in reduced migration and invasion of BLCA cells both in vitro and in vivo. Additionally, the expressions of EMT-related mesenchymal markers were also downregulated in POLR3G knockdown cells. Mechanistically, we showed that POLR3G could activate the PI3K/AKT signaling pathway. Inhibition of this pathway with LY294002 reduced the enhanced migration and invasion of BLCA cells induced by POLR3G overexpression, whereas the activation of this pathway using 740Y-P restored the abilities that were inhibited by POLR3G knockdown. Taken together, our findings suggested that POLR3G is a prognostic predictor for BLCA and promotes EMT of BLCA through activation of the PI3K/AKT signaling pathway.


Assuntos
Transição Epitelial-Mesenquimal , RNA Polimerase III , Transdução de Sinais , Neoplasias da Bexiga Urinária , Humanos , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Neoplasias da Bexiga Urinária/metabolismo , RNA Polimerase III/metabolismo
6.
J Peripher Nerv Syst ; 28(4): 620-628, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37897416

RESUMO

BACKGROUND AND AIMS: POLR3B gene encodes a subunit of RNA polymerase III (Pol III). Biallelic mutations in POLR3B are associated with leukodystrophies, but recently de novo heterozygous mutations have been described in early onset peripheral demyelinating neuropathies with or without central involvement. Here, we report the first Italian case carrying a de novo variant in POLR3B with a pure neuropathy phenotype and primary axonal involvement of the largest nerve fibers. METHODS: Nerve conduction studies, sympathetic skin response, dynamic sweat test, tactile and thermal quantitative sensory testing and brain magnetic resonance imaging were performed according to standard procedures. Histopathological examination was performed on skin and sural nerve biopsies. Molecular analysis of the proband and his relatives was performed with Next Generation Sequencing. The impact of the identified variant on the overall protein structure was evaluated through rotamers method. RESULTS: Since his early adolescence, the patient presented with signs of polyneuropathy with severe distal weakness, atrophy, and reduced sensation. Neurophysiological studies showed a sensory-motor axonal polyneuropathy, with confirmed small fiber involvement. In addition, skin biopsy and sural nerve biopsy showed predominant large fibers involvement. A trio's whole exome sequencing revealed a novel de novo variant p.(Arg1046Cys) in POLR3B, which was classified as Probably Pathogenic. Molecular modeling data confirmed a deleterious effect of the variant on protein structure. INTERPRETATION: Neurophysiological and morphological findings suggest a primary axonal involvement of the largest nerve fibers in POLR3B-related neuropathies. A partial loss of function mechanism is proposed for both neuropathy and leukodystrophy phenotypes.


Assuntos
Doenças Desmielinizantes , Doenças do Sistema Nervoso Periférico , Polineuropatias , RNA Polimerase III , Adolescente , Humanos , Axônios , Doenças Desmielinizantes/genética , Mutação , Fibras Nervosas/metabolismo , Doenças do Sistema Nervoso Periférico/genética , Polineuropatias/genética , Proteínas/genética , RNA Polimerase III/genética , RNA Polimerase III/metabolismo
7.
Int J Mol Sci ; 24(10)2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37239877

RESUMO

nc886 is a medium-sized non-coding RNA that is transcribed by RNA polymerase III (Pol III) and plays diverse roles in tumorigenesis, innate immunity, and other cellular processes. Although Pol III-transcribed ncRNAs were previously thought to be expressed constitutively, this concept is evolving, and nc886 is the most notable example. The transcription of nc886 in a cell, as well as in human individuals, is controlled by multiple mechanisms, including its promoter CpG DNA methylation and transcription factor activity. Additionally, the RNA instability of nc886 contributes to its highly variable steady-state expression levels in a given situation. This comprehensive review discusses nc886's variable expression in physiological and pathological conditions and critically examines the regulatory factors that determine its expression levels.


Assuntos
RNA Polimerase III , RNA não Traduzido , Humanos , RNA Polimerase III/genética , RNA Polimerase III/metabolismo , RNA não Traduzido/genética , RNA não Traduzido/metabolismo , Metilação de DNA , Transformação Celular Neoplásica/genética , Carcinogênese/genética , Transcrição Gênica
8.
J Biol Chem ; 299(7): 104859, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37230389

RESUMO

The TFIIF-like Rpc53/Rpc37 heterodimer of RNA polymerase (pol) III is involved in various stages of transcription. The C-terminal region of Rpc53 dimerizes with Rpc37 to anchor on the lobe domain of the pol III cleft. However, structural and functional features of the Rpc53 N-terminal region had not been characterized previously. Here, we conducted site-directed alanine replacement mutagenesis on the Rpc53 N-terminus, generating yeast strains that exhibited a cold-sensitive growth defect and severely compromised pol III transcriptional activity. Circular dichroism and NMR spectroscopy revealed a highly disordered 57-amino acid polypeptide in the Rpc53 N-terminus. This polypeptide is a versatile protein-binding module displaying nanomolar-level binding affinities for Rpc37 and the Tfc4 subunit of the transcription initiation factor TFIIIC. Accordingly, we denote this Rpc53 N-terminus polypeptide as the TFIIIC-binding region or CBR. Alanine replacements in the CBR significantly reduced its binding affinity for Tfc4, highlighting its functional importance to cell growth and transcription in vitro. Our study reveals the functional basis for Rpc53's CBR in assembly of the pol III transcription initiation complex.


Assuntos
RNA Polimerase III , Fatores de Transcrição TFIII , RNA Polimerase III/metabolismo , Transcrição Gênica , Fatores de Transcrição TFIII/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Peptídeos/metabolismo
9.
Wiley Interdiscip Rev RNA ; 14(5): e1782, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36754845

RESUMO

The RNA polymerase III (Pol III) transcriptome is universally comprised of short, highly structured noncoding RNA (ncRNA). Through RNA-protein interactions, the Pol III transcriptome actuates functional activities ranging from nuclear gene regulation (7SK), splicing (U6, U6atac), and RNA maturation and stability (RMRP, RPPH1, Y RNA), to cytoplasmic protein targeting (7SL) and translation (tRNA, 5S rRNA). In higher eukaryotes, the Pol III transcriptome has expanded to include additional, recently evolved ncRNA species that effectively broaden the footprint of Pol III transcription to additional cellular activities. Newly evolved ncRNAs function as riboregulators of autophagy (vault), immune signaling cascades (nc886), and translation (Alu, BC200, snaR). Notably, upregulation of Pol III transcription is frequently observed in cancer, and multiple ncRNA species are linked to both cancer progression and poor survival outcomes among cancer patients. In this review, we outline the basic features and functions of the Pol III transcriptome, and the evidence for dysregulation and dysfunction for each ncRNA in cancer. When taken together, recurrent patterns emerge, ranging from shared functional motifs that include molecular scaffolding and protein sequestration, overlapping protein interactions, and immunostimulatory activities, to the biogenesis of analogous small RNA fragments and noncanonical miRNAs, augmenting the function of the Pol III transcriptome and further broadening its role in cancer. This article is categorized under: RNA in Disease and Development > RNA in Disease RNA Processing > Processing of Small RNAs RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications.


Assuntos
Neoplasias , Transcriptoma , Humanos , Neoplasias/genética , Regulação da Expressão Gênica , RNA não Traduzido/genética , Eucariotos/metabolismo , RNA Polimerase III/genética , RNA Polimerase III/metabolismo , Transcrição Gênica
10.
J Biol Chem ; 299(3): 102945, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36707053

RESUMO

Deregulation of transcription factor AP2 alpha (TFAP2A) and RNA polymerase III (Pol III) products is associated with tumorigenesis. However, the mechanism underlying this event is not fully understood and the connection between TFAP2A and Pol III-directed transcription has not been investigated. Here, we report that TFAP2A functions as a positive factor in the regulation of Pol III-directed transcription and cell proliferation. We found TFAP2A is also required for the activation of Pol III transcription induced by the silencing of filamin A, a well-known cytoskeletal protein and an inhibitor in Pol III-dependent transcription identified previously. Using a chromatin immunoprecipitation technique, we showed TFAP2A positively modulates the assembly of Pol III transcription machinery factors at Pol III-transcribed gene loci. We found TFAP2A can activate the expression of Pol III transcription-related factors, including BRF1, GTF3C2, and c-MYC. Furthermore, we demonstrate TFAP2A enhances expression of MDM2, a negative regulator of tumor suppressor p53, and also inhibits p53 expression. Finally, we found MDM2 overexpression can rescue the inhibition of Pol III-directed transcription and cell proliferation caused by TFAP2A silencing. In summary, we identified that TFAP2A can activate Pol III-directed transcription by controlling multiple pathways, including general transcription factors, c-MYC and MDM2/p53. The findings from this study provide novel insights into the regulatory mechanisms of Pol III-dependent transcription and cancer cell proliferation.


Assuntos
Neoplasias , Fatores Associados à Proteína de Ligação a TATA , Fator de Transcrição AP-2 , Humanos , Proliferação de Células , RNA Polimerase III/metabolismo , Fatores Associados à Proteína de Ligação a TATA/metabolismo , Fator de Transcrição AP-2/genética , Fator de Transcrição AP-2/metabolismo , Transcrição Gênica , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo
11.
Elife ; 122023 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-36656267

RESUMO

Deregulation of Pol III products causes a range of diseases, including neural diseases and cancers. However, the factors and mechanisms that modulate Pol III-directed transcription remain to be found, although massive advances have been achieved. Here, we show that STAT3 positively regulates the activities of Pol III-dependent transcription and cancer cell growth. RNA-seq analysis revealed that STAT3 inhibits the expression of TP73, a member of the p53 family. We found that TP73 is not only required for the regulation of Pol III-directed transcription mediated by STAT3 but also independently suppresses the synthesis of Pol III products. Mechanistically, TP73 can disrupt the assembly of TFIIIB subunits and inhibit their occupancies at Pol III target loci by interacting with TFIIIB subunit TBP. MiR-106a-5p can activate Pol III-directed transcription by targeting the TP73 mRNA 3' UTR to reduce TP 73 expression. We show that STAT3 activates the expression of miR-106a-5p by binding to the miRNA promoter, indicating that the miR-106a-5p links STAT3 with TP73 to regulate Pol III-directed transcription. Collectively, these findings indicate that STAT3 functions as a positive regulator in Pol III-directed transcription by controlling the miR-106a-5p/TP73 axis.


Assuntos
MicroRNAs , Neoplasias , Humanos , Proliferação de Células , MicroRNAs/genética , Neoplasias/genética , Regiões Promotoras Genéticas , RNA Polimerase III/genética , RNA Polimerase III/metabolismo , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Fator de Transcrição TFIIIB/genética , Fator de Transcrição TFIIIB/metabolismo
12.
Hum Mol Genet ; 32(1): 104-121, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-35925837

RESUMO

Eukaryotic RNA polymerase I (Pol I) products play fundamental roles in ribosomal assembly, protein synthesis, metabolism and cell growth. Abnormal expression of both Pol I transcription-related factors and Pol I products causes a range of diseases, including ribosomopathies and cancers. However, the factors and mechanisms governing Pol I-dependent transcription remain to be elucidated. Here, we report that transcription factor IIB-related factor 1 (BRF1), a subunit of transcription factor IIIB required for RNA polymerase III (Pol III)-mediated transcription, is a nucleolar protein and modulates Pol I-mediated transcription. We showed that BRF1 can be localized to the nucleolus in several human cell types. BRF1 expression correlates positively with Pol I product levels and tumour cell growth in vitro and in vivo. Pol III transcription inhibition assays confirmed that BRF1 modulates Pol I-directed transcription in an independent manner rather than through a Pol III product-to-45S pre-rRNA feedback mode. Mechanistically, BRF1 binds to the Pol I transcription machinery components and can be recruited to the rDNA promoter along with them. Additionally, alteration of BRF1 expression affects the recruitment of Pol I transcription machinery components to the rDNA promoter and the expression of TBP and TAF1A. These findings indicate that BRF1 modulates Pol I-directed transcription by controlling the expression of selective factor 1 subunits. In summary, we identified a novel role of BRF1 in Pol I-directed transcription, suggesting that BRF1 can independently regulate both Pol I- and Pol III-mediated transcription and act as a key coordinator of Pol I and Pol III.


Assuntos
Neoplasias , Fatores Associados à Proteína de Ligação a TATA , Humanos , DNA Ribossômico/genética , Neoplasias/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , RNA Polimerase I/genética , RNA Polimerase I/metabolismo , RNA Polimerase III/genética , RNA Polimerase III/metabolismo , Fatores Associados à Proteína de Ligação a TATA/genética , Fatores Associados à Proteína de Ligação a TATA/metabolismo , Proteína de Ligação a TATA-Box/genética , Proteína de Ligação a TATA-Box/metabolismo , Fator de Transcrição TFIIB/genética , Fator de Transcrição TFIIB/metabolismo , Fatores de Transcrição/genética , Transcrição Gênica
13.
J Biochem Mol Toxicol ; 36(9): e23144, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35730126

RESUMO

Posterior capsular opacification (PCO) is the major complication after cataract surgery and can result in secondary vision loss. Circular RNAs (circRNAs) are reported to play critical regulatory roles in multiple cell biological processes. The most common working mechanism of circRNAs is by acting as microRNA sponges. Here, we analyzed the role and mechanism of circRNA RNA polymerase III subunit A (POLR3A) in PCO. Cell viability was analyzed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Cell motility was assessed by transwell and wound healing assays. Dual-luciferase reporter and RNA-pull-down assays were performed to verify the interaction between microRNA-31 (miR-31) and circ-POLR3A or thioredoxin interacting protein (TXNIP). PCO cell model was established by treating SRA01/04 cells with transforming growth factor-ß2 (TGF-ß2). We found that TGF-ß2 enhanced SRA01/04 cell viability, migration, and invasion abilities. Circ-POLR3A expression was upregulated in PCO tissues and TGF-ß2-induced SRA01/04 cells. TGF-ß2 promoted the viability and motility of SRA01/04 cells largely by upregulating circ-POLR3A. Circ-POLR3A negatively regulated the miR-31 level by directly interacting with it. Circ-POLR3A absence-induced influences in TGF-ß2-induced SRA01/04 cells were partly reversed by silencing miR-31. miR-31 is directly bound to the 3'-untranslated region of TXNIP. TXNIP overexpression largely attenuated miR-31 overexpression-mediated effects in TGF-ß2-induced SRA01/04 cells. Circ-POLR3A could elevate the protein expression of TXNIP by sponging miR-31. Exosomes were involved in mediating the delivery of circ-POLR3A in SRA01/04 cells. In conclusion, circ-POLR3A contributed to TGF-ß2-induced promotion of cell viability, migration, and invasion of SRA01/04 cells by targeting miR-31/TXNIP axis.


Assuntos
Opacificação da Cápsula , MicroRNAs , Regiões 3' não Traduzidas , Opacificação da Cápsula/genética , Opacificação da Cápsula/metabolismo , Proteínas de Transporte/metabolismo , Movimento Celular , Proliferação de Células , Sobrevivência Celular , Células Epiteliais/metabolismo , Transição Epitelial-Mesenquimal , Humanos , MicroRNAs/metabolismo , RNA Polimerase III/genética , RNA Polimerase III/metabolismo , RNA Polimerase III/farmacologia , RNA Circular/genética , Tiorredoxinas , Fator de Crescimento Transformador beta2/genética , Fator de Crescimento Transformador beta2/metabolismo , Fator de Crescimento Transformador beta2/farmacologia , Fatores de Crescimento Transformadores/genética , Fatores de Crescimento Transformadores/metabolismo , Fatores de Crescimento Transformadores/farmacologia
14.
Nat Commun ; 13(1): 3007, 2022 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-35637192

RESUMO

RNA polymerase III (Pol III) includes two alternate isoforms, defined by mutually exclusive incorporation of subunit POLR3G (RPC7α) or POLR3GL (RPC7ß), in mammals. The contributions of POLR3G and POLR3GL to transcription potential has remained poorly defined. Here, we discover that loss of subunit POLR3G is accompanied by a restricted repertoire of genes transcribed by Pol III. Particularly sensitive is snaR-A, a small noncoding RNA implicated in cancer proliferation and metastasis. Analysis of Pol III isoform biases and downstream chromatin features identifies loss of POLR3G and snaR-A during differentiation, and conversely, re-establishment of POLR3G gene expression and SNAR-A gene features in cancer contexts. Our results support a model in which Pol III identity functions as an important transcriptional regulatory mechanism. Upregulation of POLR3G, which is driven by MYC, identifies a subgroup of patients with unfavorable survival outcomes in specific cancers, further implicating the POLR3G-enhanced transcription repertoire as a potential disease factor.


Assuntos
Neoplasias , Pequeno RNA não Traduzido , Animais , Cromatina , Humanos , Mamíferos/genética , Neoplasias/genética , Isoformas de Proteínas/genética , RNA Polimerase III/genética , RNA Polimerase III/metabolismo
15.
Gene ; 831: 146548, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35569767

RESUMO

Macrophages are transcriptionally highly dynamic cell type, rapidly adapting to a changing environment to execute innate immune functions. Activation of macrophages with lipopolysaccharides (LPS), a major component of the outer membrane of most Gram-negative bacteria, induces rapid transcriptional changes and within a few hours transcription of several hundred genes is altered. Within these genes are tRNAs, which are synthesised by RNA Polymerase (Pol) III, and whose expression is rapidly upregulated in response to LPS. However, the mechanisms that govern Pol III activation are not fully elucidated. LPS engage the Toll-like receptor (TLR) 4 and induce various signalling pathways, including mitogen-activated protein kinases (MAPK). MAPKs are serine/threonine kinases that catalyse the phosphorylation of transcription factors, protein kinases, and many other substrates including functional proteins, play a central role in mediating cellular responses to extracellular signals, including inflammatory cues. Here we show that ERK and p38 MAP kinases contribute to the activation of Pol III in macrophages stimulated with LPS. We also demonstrate that MAP kinases effector MSK1/2 kinases are involved in tRNA upregulation. Our data show that ERK, p38, and MSK kinases are required for upregulation of Pol III activity in macrophages stimulated by LPS. The possible modes of their action are discussed.


Assuntos
Lipopolissacarídeos , RNA Polimerase III , Lipopolissacarídeos/metabolismo , Lipopolissacarídeos/farmacologia , Macrófagos/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fosforilação , RNA Polimerase III/genética , RNA Polimerase III/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
16.
Mol Ther ; 30(4): 1597-1609, 2022 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-35121112

RESUMO

Long non-coding RNA HOX Transcript Antisense RNA (HOTAIR) is overexpressed in multiple cancers with diverse genetic profiles. Importantly, since HOTAIR heavily contributes to cancer progression by promoting tumor growth and metastasis, HOTAIR becomes a potential target for cancer therapy. However, the underlying mechanism leading to HOTAIR deregulation is largely unexplored. Here, we performed a pan-cancer analysis using more than 4,200 samples and found that intragenic exon CpG island (Ex-CGI) was hypermethylated and was positively correlated to HOTAIR expression. Also, we revealed that Ex-CGI methylation promotes HOTAIR expression through enhancing the transcription elongation process. Furthermore, we linked up the aberrant intragenic tri-methylation on H3 at lysine 4 (H3K4me3) and Ex-CGI DNA methylation in promoting transcription elongation of HOTAIR. Targeting the oncogenic CDK7-CDK9-H3K4me3 axis downregulated HOTAIR expression and inhibited cell growth in many cancers. To our knowledge, this is the first time that a positive feedback loop that involved CDK9-mediated phosphorylation of RNA Polymerase II Serine 2 (RNA PolII Ser2), H3K4me3, and intragenic DNA methylation, which induced robust transcriptional elongation and heavily contributed to the upregulation of oncogenic lncRNA in cancer has been demonstrated. Targeting the oncogenic CDK7-CDK9-H3K4me3 axis could be a novel therapy in many cancers through inhibiting the HOTAIR expression.


Assuntos
Quinase 9 Dependente de Ciclina , Histonas , Neoplasias , RNA Polimerase III , RNA Longo não Codificante , Linhagem Celular Tumoral , Quinase 9 Dependente de Ciclina/metabolismo , Metilação de DNA , Retroalimentação Fisiológica/fisiologia , Regulação Neoplásica da Expressão Gênica , Histonas/metabolismo , Humanos , Neoplasias/genética , Neoplasias/metabolismo , RNA Polimerase III/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo
17.
Nat Commun ; 13(1): 623, 2022 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-35110532

RESUMO

RNA polymerase III (Pol III) transcribes noncoding RNA, including transfer RNA (tRNA), and is commonly targeted during cancer and viral infection. We find that Herpes Simplex Virus-1 (HSV-1) stimulates tRNA expression 10-fold. Perturbation of host tRNA synthesis requires nuclear viral entry, but not synthesis of specific viral transcripts. tRNA with a specific codon bias were not targeted-rather increased transcription was observed from euchromatic, actively transcribed loci. tRNA upregulation is linked to unique crosstalk between the Pol II and III transcriptional machinery. While viral infection results in depletion of Pol II on host mRNA promoters, we find that Pol II binding to tRNA loci increases. Finally, we report Pol III and associated factors bind the viral genome, which suggests a previously unrecognized role in HSV-1 gene expression. These findings provide insight into mechanisms by which HSV-1 alters the host nuclear environment, shifting key processes in favor of the pathogen.


Assuntos
Herpesvirus Humano 1/fisiologia , RNA Polimerase III/metabolismo , Fatores de Transcrição , Genoma Viral , Herpesvirus Humano 1/genética , Humanos , Regiões Promotoras Genéticas , RNA Polimerase II/metabolismo , RNA Polimerase III/genética , RNA Mensageiro/metabolismo , RNA de Transferência , RNA não Traduzido , Transcrição Gênica , Ativação Transcricional , Replicação Viral
18.
J Biol Chem ; 298(3): 101581, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35038452

RESUMO

RNA polymerase III (pol III) products play fundamental roles in a variety of cellular processes, including protein synthesis and cancer cell proliferation. In addition, dysregulation of pol III-directed transcription closely correlates with tumorigenesis. It is therefore of interest to identify novel pathways or factors governing pol III-directed transcription. Here, we show that transcription factor (TF) GATA binding protein 4 (GATA4) expression in SaOS2 cells was stimulated by the silencing of filamin A (FLNA), a repressor of pol III-directed transcription, suggesting that GATA4 is potentially associated with the regulation of pol III-directed transcription. Indeed, we show that GATA4 expression positively correlates with pol III-mediated transcription and tumor cell proliferation. Mechanistically, we found that GATA4 depletion inhibits the occupancies of the pol III transcription machinery factors at the loci of pol III target genes by reducing expression of both TFIIIB subunit TFIIB-related factor 1 and TFIIIC subunit general transcription factor 3C subunit 2 (GTF3C2). GATA4 has been shown to activate specificity factor 1 (Sp1) gene transcription by binding to the Sp1 gene promoter, and Sp1 has been confirmed to activate pol III gene transcription by directly binding to both Brf1 and Gtf3c2 gene promoters. Thus, the findings from this study suggest that GATA4 links FLNA and Sp1 signaling to form an FLNA/GATA4/Sp1 axis to modulate pol III-directed transcription and transformed cell proliferation. Taken together, these results provide novel insights into the regulatory mechanism of pol III-directed transcription.


Assuntos
Filaminas , Fator de Transcrição GATA4 , Proteínas Quinases , RNA Polimerase III , Proliferação de Células , Filaminas/genética , Filaminas/metabolismo , Fator de Transcrição GATA4/genética , Fator de Transcrição GATA4/metabolismo , Proteínas Quinases/metabolismo , RNA Polimerase III/metabolismo , Transdução de Sinais , Fatores de Transcrição/genética , Transcrição Gênica
19.
Nucleic Acids Res ; 50(D1): D279-D286, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34747466

RESUMO

RNA polymerase III (Pol III) transcribes hundreds of non-coding RNA genes (ncRNAs), which involve in a variety of cellular processes. However, the expression, functions, regulatory networks and evolution of these Pol III-transcribed ncRNAs are still largely unknown. In this study, we developed a novel resource, Pol3Base (http://rna.sysu.edu.cn/pol3base/), to decode the interactome, expression, evolution, epitranscriptome and disease variations of Pol III-transcribed ncRNAs. The current release of Pol3Base includes thousands of regulatory relationships between ∼79 000 ncRNAs and transcription factors by mining 56 ChIP-seq datasets. By integrating CLIP-seq datasets, we deciphered the interactions of these ncRNAs with >240 RNA binding proteins. Moreover, Pol3Base contains ∼9700 RNA modifications located within thousands of Pol III-transcribed ncRNAs. Importantly, we characterized expression profiles of ncRNAs in >70 tissues and 28 different tumor types. In addition, by comparing these ncRNAs from human and mouse, we revealed about 4000 evolutionary conserved ncRNAs. We also identified ∼11 403 tRNA-derived small RNAs (tsRNAs) in 32 different tumor types. Finally, by analyzing somatic mutation data, we investigated the mutation map of these ncRNAs to help uncover their potential roles in diverse diseases. This resource will help expand our understanding of potential functions and regulatory networks of Pol III-transcribed ncRNAs.


Assuntos
Bases de Dados Genéticas , Neoplasias/genética , RNA Polimerase III/genética , RNA não Traduzido/genética , Proteínas de Ligação a RNA/genética , Software , Fatores de Transcrição/genética , Animais , Mineração de Dados , Conjuntos de Dados como Assunto , Evolução Molecular , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Internet , Camundongos , Mutação , Neoplasias/classificação , Neoplasias/metabolismo , Neoplasias/patologia , RNA Polimerase III/metabolismo , RNA de Transferência/classificação , RNA de Transferência/genética , RNA de Transferência/metabolismo , RNA não Traduzido/classificação , RNA não Traduzido/metabolismo , Proteínas de Ligação a RNA/classificação , Proteínas de Ligação a RNA/metabolismo , Fatores de Transcrição/classificação , Fatores de Transcrição/metabolismo , Transcrição Gênica
20.
Nucleic Acids Res ; 49(21): 12017-12034, 2021 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-34850129

RESUMO

A 1969 report that described biochemical and activity properties of the three eukaryotic RNA polymerases revealed Pol III as highly distinguishable, even before its transcripts were identified. Now known to be the most complex, Pol III contains several stably-associated subunits referred to as built-in transcription factors (BITFs) that enable highly efficient RNA synthesis by a unique termination-associated recycling process. In vertebrates, subunit RPC7(α/ß) can be of two forms, encoded by POLR3G or POLR3GL, with differential activity. Here we review promoter-dependent transcription by Pol III as an evolutionary perspective of eukaryotic tRNA expression. Pol III also provides nonconventional functions reportedly by promoter-independent transcription, one of which is RNA synthesis from DNA 3'-ends during repair. Another is synthesis of 5'ppp-RNA signaling molecules from cytoplasmic viral DNA in a pathway of interferon activation that is dysfunctional in immunocompromised patients with mutations in Pol III subunits. These unconventional functions are also reviewed, including evidence that link them to the BITF subunits. We also review data on a fraction of the human Pol III transcriptome that evolved to include vault RNAs and snaRs with activities related to differentiation, and in innate immune and tumor surveillance. The Pol III of higher eukaryotes does considerably more than housekeeping.


Assuntos
Evolução Biológica , Células Eucarióticas/metabolismo , RNA Polimerase III/metabolismo , Animais , Humanos , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA