Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Radiat Res ; 201(5): 487-498, 2024 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-38471523

RESUMO

In gene expression (GE) studies, housekeeping genes (HKGs) are required for normalization purposes. In large-scale inter-laboratory comparison studies, significant differences in dose estimates are reported and divergent HKGs are employed by the teams. Among them, the 18S rRNA HKG is known for its robustness. However, the high abundance of 18S rRNA copy numbers requires dilution, which is time-consuming and a possible source of errors. This study was conducted to identify the most promising HKGs showing the least radiation-induced GE variance after radiation exposure. In the screening stage of this study, 35 HKGs were analyzed. This included selected HKGs (ITFG1, MRPS5, and DPM1) used in large-scale biodosimetry studies which were not covered on an additionally employed pre-designed 96-well platform comprising another 32 HKGs used for different exposures. Altogether 41 samples were examined, including 27 ex vivo X-ray irradiated blood samples (0, 0.5, 4 Gy), six X-irradiated samples (0, 0.5, 5 Gy) from two cell lines (U118, A549), as well as eight non-irradiated tissue samples to encompass multiple biological entities. In the independent validation stage, the most suitable candidate genes were examined from another 257 blood samples, taking advantage of already stored material originating from three studies. These comprise 100 blood samples from ex vivo X-ray irradiated (0-4 Gy) healthy donors, 68 blood samples from 5.8 Gy irradiated (cobalt-60) Rhesus macaques (RM) (LD29/60) collected 0-60 days postirradiation, and 89 blood samples from chemotherapy-(CTx) treated breast tumor patients. CTx and radiation-induced GE changes in previous studies appeared comparable. RNA was isolated, converted into cDNA, and GE was quantified employing TaqMan assays and quantitative RT-PCR. We calculated the standard deviation (SD) and the interquartile range (IQR) as measures of GE variance using raw cycle threshold (Ct) values and ranked the HKGs accordingly. Dose, time, age, and sex-dependent GE changes were examined employing the parametrical t-test and non-parametrical Kruskal Wallis test, as well as linear regression analysis. Generally, similar ranking results evolved using either SD or IQR GE measures of variance, indicating a tight distribution of GE values. PUM1 and PGK1 showed the lowest variance among the first ten most suitable genes in the screening phase. MRPL19 revealed low variance among the first ten most suitable genes in the screening phase only for blood and cells, but certain comparisons indicated a weak association of MRPL19 with dose (P = 0.02-0.09). In the validation phase, these results could be confirmed. Here, IQR Ct values from, e.g., X-irradiated blood samples were 0.6 raw Ct values for PUM1 and PGK1, which is considered to represent GE differences as expected due to methodological variance. Overall, when compared, the GE variance of both genes was either comparable or lower compared to 18S rRNA. Compared with the IQR GE values of PUM1 and PGKI, twofold-fivefold increased values were calculated for the biodosimetry HKG HPRT1, and comparable values were calculated for biodosimetry HKGs ITFG1, MRPS5, and DPM1. Significant dose-dependent associations were found for ITFG1 and MRPS5 (P = 0.001-0.07) and widely absent or weak (P = 0.02-0.07) for HPRT1 and DPM1. In summary, PUM1 and PGK1 appeared most promising for radiation exposure studies among the 35 HKGs examined, considering GE variance and adverse associations of GE with dose.


Assuntos
Genes Essenciais , Fosfoglicerato Quinase , Proteínas de Ligação a RNA , Exposição à Radiação , Adulto , Animais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Relação Dose-Resposta à Radiação , Genes Essenciais/efeitos da radiação , Exposição à Radiação/efeitos adversos , Radiometria , RNA Ribossômico 18S/genética , RNA Ribossômico 18S/efeitos da radiação , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/efeitos da radiação , Macaca mulatta , Fosfoglicerato Quinase/genética , Fosfoglicerato Quinase/efeitos da radiação
2.
Mol Plant ; 1(1): 42-57, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20031913

RESUMO

Light and the plant hormone ethylene regulate many aspects of plant growth and development in an overlapping and interdependent fashion. Little is known regarding how their signal transduction pathways cross-talk to regulate plant development in a coordinated manner. Here, we report functional characterization of an AP2/DREB-type transcription factor, Arabidopsis RAP2.4, in mediating light and ethylene signaling. Expression of the RAP2.4 gene is down-regulated by light but up-regulated by salt and drought stresses. RAP2.4 protein is constitutively targeted to the nucleus and it can bind to both the ethylene-responsive GCC-box and the dehydration-responsive element (DRE). We show that RAP2.4 protein possesses an intrinsic transcriptional activation activity in yeast cells and that it can activate a reporter gene driven by the DRE cis-element in Arabidopsis protoplasts. Overexpression of RAP2.4 or mutation in RAP2.4 cause altered expression of representative light-, ethylene-, and drought-responsive genes. Although no salient phenotype was observed with a rap2.4 loss-of-function mutant, constitutive overexpression of RAP2.4 results in defects in multiple developmental processes regulated by light and ethylene, including hypocotyl elongation and gravitropism, apical hook formation and cotyledon expansion, flowering time, root elongation, root hair formation, and drought tolerance. Based on these observations, we propose that RAP2.4 acts at or downstream of a converging point of light and ethylene signaling pathways to coordinately regulate multiple developmental processes and stress responses.


Assuntos
Arabidopsis/genética , Etilenos/farmacologia , Genes de Plantas/efeitos da radiação , Luz , Reguladores de Crescimento de Plantas/farmacologia , Proteínas rap de Ligação ao GTP/metabolismo , Arabidopsis/efeitos dos fármacos , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/efeitos da radiação , Proteínas de Arabidopsis/efeitos dos fármacos , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/efeitos da radiação , Genes de Plantas/efeitos dos fármacos , RNA de Plantas/efeitos dos fármacos , RNA de Plantas/genética , RNA de Plantas/efeitos da radiação , RNA Ribossômico 18S/efeitos dos fármacos , RNA Ribossômico 18S/genética , RNA Ribossômico 18S/efeitos da radiação , Proteínas Recombinantes de Fusão/efeitos dos fármacos , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes de Fusão/efeitos da radiação , Plântula/efeitos dos fármacos , Plântula/genética , Plântula/efeitos da radiação , Cloreto de Sódio/farmacologia , Proteínas rap de Ligação ao GTP/efeitos dos fármacos , Proteínas rap de Ligação ao GTP/efeitos da radiação
3.
Radiat Res ; 118(2): 330-40, 1989 May.
Artigo em Inglês | MEDLINE | ID: mdl-2727261

RESUMO

The effects of ionizing radiation (137Cs) on processing of ribosomal RNA (rRNA) were studied by pulse-labeling HeLa S3 cells with [3H]uridine immediately prior to irradiation. The 45 S rRNA precursor, and its two major daughter species, 28 and 18 S rRNA, were separated by gel electrophoresis and the extent of radiolabel incorporation into each was determined at various times after irradiation. This approach permitted kinetic analysis of processing of the 45 S rRNA which had been predominantly synthesized (radiolabeled) prior to irradiation. Since they both derive from the same 45 S pre-rRNA transcript, 28 and 18 S rRNA are produced with a stoichiometry of 1:1, as observed in control cells in the present studies. However, within 1 h following 10 Gy an altered stoichiometry of 28 S:18 S rRNA was apparent, reaching 1.6:1 by 5-7 h following irradiation. This alteration was also observed following the higher dose of 20 Gy, but not following exposures of 5 Gy or less. The 18 S portion of the 45 S pre-rRNA is transcribed prior to the 28 S portion. Consequently, an increase in the 28 S/18 S ratio can only be due to degradation of the 18 S species during or after processing. This alteration may represent a response to radiation-induced growth arrest, by reducing the number of newly synthesized ribosomes that would otherwise be required for cell propagation.


Assuntos
RNA Ribossômico 18S/efeitos da radiação , RNA Ribossômico/efeitos da radiação , Radioisótopos de Césio , Células HeLa , Humanos , RNA Neoplásico/efeitos da radiação , RNA Ribossômico 28S/efeitos da radiação
4.
Radiobiologiia ; 28(1): 23-7, 1988.
Artigo em Russo | MEDLINE | ID: mdl-3344326

RESUMO

The injury to DNA and RNA exposed to gamma-radiation in media of varying acidity with oxygen present or absent therein has been investigated. The interaction of the protonated base with a superoxide radical has been shown to contribute markedly to the oxygen effect of the radiation injury to nucleic acids.


Assuntos
Dano ao DNA , DNA/efeitos da radiação , Oxigênio , RNA Ribossômico 18S/efeitos da radiação , RNA Ribossômico/efeitos da radiação , Radioisótopos de Cobalto , Raios gama , Concentração de Íons de Hidrogênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA