Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 10(1): 4563, 2019 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-31594941

RESUMO

Ribosome-synthesized post-translationally modified peptides (RiPPs) represent a rapidly expanding class of natural products with various biological activities. Linear azol(in)e-containing peptides (LAPs) comprise a subclass of RiPPs that display outstanding diversity of mechanisms of action while sharing common structural features. Here, we report the discovery of a new LAP biosynthetic gene cluster in the genome of Rhizobium Pop5, which encodes the precursor peptide and modification machinery of phazolicin (PHZ) - an extensively modified peptide exhibiting narrow-spectrum antibacterial activity against some symbiotic bacteria of leguminous plants. The cryo-EM structure of the Escherichia coli 70S-PHZ complex reveals that the drug interacts with the 23S rRNA and uL4/uL22 proteins and obstructs ribosomal exit tunnel in a way that is distinct from other compounds. We show that the uL4 loop sequence determines the species-specificity of antibiotic action. PHZ expands the known diversity of LAPs and may be used in the future as biocontrol agent for agricultural needs.


Assuntos
Antibacterianos/farmacologia , Azóis/farmacologia , Agentes de Controle Biológico/farmacologia , Peptídeos/farmacologia , Biossíntese de Proteínas/efeitos dos fármacos , Ribossomos/efeitos dos fármacos , Antibacterianos/química , Antibacterianos/metabolismo , Azóis/química , Azóis/metabolismo , Agentes de Controle Biológico/química , Agentes de Controle Biológico/metabolismo , Microscopia Crioeletrônica , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/ultraestrutura , Testes de Sensibilidade Microbiana , Família Multigênica , Biossíntese Peptídica/genética , Peptídeos/química , Peptídeos/metabolismo , Phaseolus/microbiologia , RNA Ribossômico 23S/metabolismo , RNA Ribossômico 23S/ultraestrutura , Rhizobium/genética , Rhizobium/metabolismo , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , Proteínas Ribossômicas/ultraestrutura , Ribossomos/metabolismo , Ribossomos/ultraestrutura , Especificidade da Espécie , Simbiose
2.
Nature ; 564(7736): 444-448, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30518861

RESUMO

Orthogonal ribosomes are unnatural ribosomes that are directed towards orthogonal messenger RNAs in Escherichia coli, through an altered version of the 16S ribosomal RNA of the small subunit1. Directed evolution of orthogonal ribosomes has provided access to new ribosomal function, and the evolved orthogonal ribosomes have enabled the encoding of multiple non-canonical amino acids into proteins2-4. The original orthogonal ribosomes shared the pool of 23S ribosomal RNAs, contained in the large subunit, with endogenous ribosomes. Selectively directing a new 23S rRNA to an orthogonal mRNA, by controlling the association between the orthogonal 16S rRNAs and 23S rRNAs, would enable the evolution of new function in the large subunit. Previous work covalently linked orthogonal 16S rRNA and a circularly permuted 23S rRNA to create orthogonal ribosomes with low activity5,6; however, the linked subunits in these ribosomes do not associate specifically with each other, and mediate translation by associating with endogenous subunits. Here we discover engineered orthogonal 'stapled' ribosomes (with subunits linked through an optimized RNA staple) with activities comparable to that of the parent orthogonal ribosome; they minimize association with endogenous subunits and mediate translation of orthogonal mRNAs through the association of stapled subunits. We evolve cells with genomically encoded stapled ribosomes as the sole ribosomes, which support cellular growth at similar rates to natural ribosomes. Moreover, we visualize the engineered stapled ribosome structure by cryo-electron microscopy at 3.0 Å, revealing how the staple links the subunits and controls their association. We demonstrate the utility of controlling subunit association by evolving orthogonal stapled ribosomes which efficiently polymerize a sequence of monomers that the natural ribosome is intrinsically unable to translate. Our work provides a foundation for evolving the rRNA of the entire orthogonal ribosome for the encoded cellular synthesis of non-canonical biological polymers7.


Assuntos
Evolução Molecular Direcionada , Escherichia coli , Biossíntese de Proteínas , Subunidades Ribossômicas/metabolismo , Subunidades Ribossômicas/ultraestrutura , Ribossomos/metabolismo , Ribossomos/ultraestrutura , Sequência de Bases , Reagentes de Ligações Cruzadas/química , Microscopia Crioeletrônica , Escherichia coli/classificação , Escherichia coli/citologia , Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , Modelos Moleculares , Peptídeos/genética , Peptídeos/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Ribossômico 16S/química , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo , RNA Ribossômico 16S/ultraestrutura , RNA Ribossômico 23S/química , RNA Ribossômico 23S/genética , RNA Ribossômico 23S/metabolismo , RNA Ribossômico 23S/ultraestrutura , Subunidades Ribossômicas/química , Ribossomos/química , Ribossomos/genética
3.
J Mol Biol ; 234(4): 1013-20, 1993 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-8263910

RESUMO

The Escherichia coli ribosomal protein (r-protein) L11 and its binding site on 23 S ribosomal RNA (rRNA) are associated with ribosomal hydrolysis of guanosine 5'-triphosphate (GTP). We have used hydroxyl radical footprinting to map the contacts between L11 and the backbone riboses in 23 S rRNA, and to investigate how this interaction is influenced by other ribosomal components. Complexes were characterized in both naked 23 S rRNA and ribosomes from an E. coli L11-minus strain, before and after reconstitution with L11. The protein protects 17 riboses between positions 1058 and 1085 in the naked 23 S rRNA. Within the ribosome, L11 also interacts with this rRNA region, although the protection effects are subtly different and extend to nucleotide 1098. The pentameric r-protein complex L10.(L12)4 binds to an adjacent site on the rRNA, protecting riboses at positions 1043, 1046 to 1049, 1053 to 1055 and increasing the accessibility of position 1068. The overlap in the positions affected by r-proteins L11 and L10.(L12)4, and the increase in protection between positions 1078 and 1084 when they are bound at the same time, reflect the mutually cooperative nature of their interaction with the rRNA. The data support a model for the tertiary configuration of the rRNA region, in which two stem-loop structures fold so that the loops lie in close proximity, with the main ribose interactions of L11 within the minor groove of one of the stems. The conformation of the rRNA-L11 interaction is modulated by L10.(L12)4 and other proteins within the ribosome. The antibiotics thiostrepton and micrococcin inhibit the catalytic functions of this region by slotting in between the accessible loops and interacting with nucleotides there.


Assuntos
Endorribonucleases , RNA Ribossômico 23S/metabolismo , Proteínas Ribossômicas/metabolismo , Ribossomos/ultraestrutura , Tioestreptona/metabolismo , Sequência de Bases , Sítios de Ligação , Escherichia coli , Proteínas Fúngicas/metabolismo , GTP Fosfo-Hidrolases/química , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Ligação Proteica , RNA Ribossômico 23S/ultraestrutura , Proteína Ribossômica L10 , Ribossomos/efeitos dos fármacos , Ribossomos/metabolismo
4.
J Theor Biol ; 134(2): 199-256, 1988 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-2468977

RESUMO

A model for the tertiary structure of 23S, 16S and 5S ribosomal RNA molecules interacting with three tRNA molecules is presented using the secondary structure models common to E. coli, Z. mays chloroplast, and mammalian mitochondria. This ribosomal RNA model is represented by phosphorus atoms which are separated by 5.9 A in the standard A-form double helix conformation. The accumulated proximity data summarized in Table 1 were used to deduce the most reasonable assembly of helices separated from each other by at least 6.2 A. Straight-line approximation for single strands was adopted to describe the maximum allowed distance between helices. The model of a ribosome binding three tRNA molecules by Nierhaus (1984), the stereochemical model of codon-anticodon interaction by Sundaralingam et al. (1975) and the ribosomal transpeptidation model, forming an alpha-helical nascent polypeptide, by Lim & Spirin (1986), were incorporated in this model. The distribution of chemically modified nucleotides, cross-linked sites, invariant and missing regions in mammalian mitochondrial rRNAs are indicated on the model.


Assuntos
Escherichia coli/genética , Modelos Moleculares , RNA Bacteriano/ultraestrutura , RNA Ribossômico/ultraestrutura , Sítios de Ligação , Conformação de Ácido Nucleico , Conformação Proteica , RNA Ribossômico 16S/ultraestrutura , RNA Ribossômico 23S/ultraestrutura , RNA Ribossômico 5S/ultraestrutura , RNA de Transferência de Ácido Aspártico/ultraestrutura , RNA de Transferência de Fenilalanina/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA