Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 114
Filtrar
1.
BMC Genomics ; 25(1): 345, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38580917

RESUMO

BACKGROUND: High-mobility group B1 (HMGB1) is both a DNA binding nuclear factor modulating transcription and a crucial cytokine that mediates the response to both infectious and noninfectious inflammation such as autoimmunity, cancer, trauma, and ischemia reperfusion injury. HMGB1 has been proposed to control ribosome biogenesis, similar as the other members of a class of HMGB proteins. RESULTS: Here, we report that HMGB1 selectively promotes transcription of genes involved in the regulation of transcription, osteoclast differentiation and apoptotic process. Improved RNA immunoprecipitation by UV cross-linking and deep sequencing (iRIP-seq) experiment revealed that HMGB1 selectively bound to mRNAs functioning not only in signal transduction and gene expression, but also in axon guidance, focal adhesion, and extracellular matrix organization. Importantly, HMGB1-bound reads were strongly enriched in specific structured RNAs, including the domain II of 28S rRNA, H/ACA box snoRNAs including snoRNA63 and scaRNAs. RTL-P experiment showed that overexpression of HMGB1 led to a decreased methylation modification of 28S rRNA at position Am2388, Cm2409, and Gm2411. We further showed that HMGB1 overexpression increased ribosome RNA expression levels and enhanced protein synthesis. CONCLUSION: Taken together, our results support a model in which HMGB1 binds to multiple RNA species in human cancer cells, which could at least partially contribute to HMGB1-modulated rRNA modification, protein synthesis function of ribosomes, and differential gene expression including rRNA genes. These findings provide additional mechanistic clues to HMGB1 functions in cancers and cell differentiation.


Assuntos
Proteína HMGB1 , Metilação de RNA , Humanos , Células HeLa , Proteína HMGB1/genética , Proteína HMGB1/metabolismo , Metilação , RNA Ribossômico 28S/metabolismo , RNA Nucleolar Pequeno/química , RNA Nucleolar Pequeno/genética , RNA Nucleolar Pequeno/metabolismo , Metilação de RNA/genética
2.
Cell Death Differ ; 30(2): 341-355, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36376383

RESUMO

Small nucleolar RNAs (snoRNAs) have been shown to play critical regulatory roles in cancer development. SNORD88C, which located at the intronic region of C19orf48 in chromosome 19q.33 with a 97-nt length was screened through database and snoRNA-sequencing. We firstly verified this snoRNA was up-regulated in tissue and plasma and served as a non-invasive diagnostic biomarker; then confirmed that SNORD88C promoted proliferation and metastasis of NSCLC in vitro and in vivo. Mechanistically, SNORD88C promoted 2'-O-methylation modification at the C3680 site on 28S rRNA and in turn enhanced downstream SCD1 translation, a central lipogenic enzyme for the synthesis of MUFA that can inhibit autophagy by regulating lipid peroxidation and mTOR, providing the novel insight into the regulation of SNORD88C in NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , RNA Ribossômico 28S/genética , RNA Ribossômico 28S/metabolismo , RNA Nucleolar Pequeno/genética , RNA Nucleolar Pequeno/metabolismo , Metilação , Carcinoma Pulmonar de Células não Pequenas/genética , Sequência de Bases , Neoplasias Pulmonares/genética , Autofagia/genética , Estearoil-CoA Dessaturase
3.
Nucleic Acids Res ; 50(18): 10695-10716, 2022 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-36161484

RESUMO

5-Methylcytosine (m5C) is a base modification broadly found on various RNAs in the human transcriptome. In eukaryotes, m5C is catalyzed by enzymes of the NSUN family composed of seven human members (NSUN1-7). NOP2/NSUN1 has been primarily characterized in budding yeast as an essential ribosome biogenesis factor required for the deposition of m5C on the 25S ribosomal RNA (rRNA). Although human NOP2/NSUN1 has been known to be an oncogene overexpressed in several types of cancer, its functions and substrates remain poorly characterized. Here, we used a miCLIP-seq approach to identify human NOP2/NSUN1 RNA substrates. Our analysis revealed that NOP2/NSUN1 catalyzes the deposition of m5C at position 4447 on the 28S rRNA. We also find that NOP2/NSUN1 binds to the 5'ETS region of the pre-rRNA transcript and regulates pre-rRNA processing through non-catalytic complex formation with box C/D snoRNAs. We provide evidence that NOP2/NSUN1 facilitates the recruitment of U3 and U8 snoRNAs to pre-90S ribosomal particles and their stable assembly into snoRNP complexes. Remarkably, expression of both WT and catalytically inactive NOP2/NSUN1 in knockdown background rescues the rRNA processing defects and the stable assembly of box C/D snoRNP complexes, suggesting that NOP2/NSUN1-mediated deposition of m5C on rRNA is not required for ribosome synthesis.


Assuntos
Proteínas Nucleares/metabolismo , Ribonucleoproteínas Nucleolares Pequenas , tRNA Metiltransferases/metabolismo , 5-Metilcitosina/metabolismo , Humanos , Precursores de RNA/metabolismo , RNA Ribossômico/metabolismo , RNA Ribossômico 28S/metabolismo , RNA Nucleolar Pequeno/metabolismo , Ribonucleoproteínas Nucleolares Pequenas/genética , Ribonucleoproteínas Nucleolares Pequenas/metabolismo , Ribossomos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
4.
J Biol Chem ; 298(4): 101742, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35182523

RESUMO

During ricin intoxication in mammalian cells, ricin's enzymatic (RTA) and binding (RTB) subunits disassociate in the endoplasmic reticulum. RTA is then translocated into the cytoplasm where, by virtue of its ability to depurinate a conserved residue within the sarcin-ricin loop (SRL) of 28S rRNA, it functions as a ribosome-inactivating protein. It has been proposed that recruitment of RTA to the SRL is facilitated by ribosomal P-stalk proteins, whose C-terminal domains interact with a cavity on RTA normally masked by RTB; however, evidence that this interaction is critical for RTA activity within cells is lacking. Here, we characterized a collection of single-domain antibodies (VHHs) whose epitopes overlap with the P-stalk binding pocket on RTA. The crystal structures of three such VHHs (V9E1, V9F9, and V9B2) in complex with RTA revealed not only occlusion of the ribosomal P-stalk binding pocket but also structural mimicry of C-terminal domain peptides by complementarity-determining region 3. In vitro assays confirmed that these VHHs block RTA-P-stalk peptide interactions and protect ribosomes from depurination. Moreover, when expressed as "intrabodies," these VHHs rendered cells resistant to ricin intoxication. One VHH (V9F6), whose epitope was structurally determined to be immediately adjacent to the P-stalk binding pocket, was unable to neutralize ricin within cells or protect ribosomes from RTA in vitro. These findings are consistent with the recruitment of RTA to the SRL by ribosomal P-stalk proteins as a requisite event in ricin-induced ribosome inactivation.


Assuntos
Proteínas Ribossômicas , Ricina , Anticorpos de Domínio Único , Animais , Epitopos/metabolismo , Mamíferos/metabolismo , Peptídeos/metabolismo , RNA Ribossômico 28S/metabolismo , Proteínas Ribossômicas/química , Proteínas Ribossômicas/metabolismo , Ribossomos/metabolismo , Ricina/química , Anticorpos de Domínio Único/metabolismo
5.
J Biol Chem ; 298(3): 101590, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35033535

RESUMO

Ribosomal RNAs (rRNAs) have long been known to carry chemical modifications, including 2'O-methylation, pseudouridylation, N6-methyladenosine (m6A), and N6,6-dimethyladenosine. While the functions of many of these modifications are unclear, some are highly conserved and occur in regions of the ribosome critical for mRNA decoding. Both 28S rRNA and 18S rRNA carry single m6A sites, and while the methyltransferase ZCCHC4 has been identified as the enzyme responsible for the 28S rRNA m6A modification, the methyltransferase responsible for the 18S rRNA m6A modification has remained unclear. Here, we show that the METTL5-TRMT112 methyltransferase complex installs the m6A modification at position 1832 of human 18S rRNA. Our work supports findings that TRMT112 is required for METTL5 stability and reveals that human METTL5 mutations associated with microcephaly and intellectual disability disrupt this interaction. We show that loss of METTL5 in human cancer cell lines and in mice regulates gene expression at the translational level; additionally, Mettl5 knockout mice display reduced body size and evidence of metabolic defects. While recent work has focused heavily on m6A modifications in mRNA and their roles in mRNA processing and translation, we demonstrate here that deorphanizing putative methyltransferase enzymes can reveal previously unappreciated regulatory roles for m6A in noncoding RNAs.


Assuntos
Metiltransferases , RNA Mensageiro , RNA Ribossômico 18S , Adenosina/análogos & derivados , Animais , Metilação , Metiltransferases/genética , Metiltransferases/metabolismo , Camundongos , Biossíntese de Proteínas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Ribossômico 18S/genética , RNA Ribossômico 18S/metabolismo , RNA Ribossômico 28S/metabolismo
6.
Int J Mol Sci ; 22(21)2021 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-34769028

RESUMO

Ribosome-inactivating proteins (RIPs) hydrolyze the N-glycosidic bond and depurinate a specific adenine residue (A-4324 in rat 28S ribosomal RNA, rRNA) in the conserved α-sarcin/ricin loop (α-SRL) of rRNA. In this study, we have purified and characterized lyophyllin, an unconventional RIP from Lyophyllum shimeji, an edible mushroom. The protein resembles peptidase M35 domain of peptidyl-Lys metalloendopeptidases. Nevertheless, protein either from the mushroom or in recombinant form possessed N-glycosidase and protein synthesis inhibitory activities. A homology model of lyophyllin was constructed. It was found that the zinc binding pocket of this protein resembles the catalytic cleft of a classical RIP, with key amino acids that interact with the adenine substrate in the appropriate positions. Mutational studies showed that E122 may play a role in stabilizing the positively charged oxocarbenium ion and H121 for protonating N-3 of adenine. The tyrosine residues Y137 and Y104 may be used for stacking the target adenine ring. This work first shows a protein in the peptidase M35 superfamily based on conserved domain search possessing N-glycosidase activity.


Assuntos
Agaricales/metabolismo , Peptídeo Hidrolases/metabolismo , Proteínas Inativadoras de Ribossomos/metabolismo , Sequência de Aminoácidos , Animais , Sequência de Bases , Endorribonucleases/metabolismo , Proteínas Fúngicas/metabolismo , Células HeLa , Células Hep G2 , Humanos , Ligação Proteica/fisiologia , RNA Ribossômico 28S/metabolismo , Ratos , Ricina/metabolismo
7.
Mol Oncol ; 15(1): 167-194, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33040459

RESUMO

The oncogenic fusion protein nucleophosmin-anaplastic lymphoma kinase (NPM-ALK), found in anaplastic large-cell lymphoma (ALCL), localizes to the cytosol, nucleoplasm, and nucleolus. However, the relationship between its localization and transforming activity remains unclear. We herein demonstrated that NPM-ALK localized to the nucleolus by binding to nucleophosmin 1 (NPM1), a nucleolar protein that exhibits shuttling activity between the nucleolus and cytoplasm, in a manner that was dependent on its kinase activity. In the nucleolus, NPM-ALK interacted with Epstein-Barr virus nuclear antigen 1-binding protein 2 (EBP2), which is involved in rRNA biosynthesis. Moreover, enforced expression of NPM-ALK induced tyrosine phosphorylation of EBP2. Knockdown of EBP2 promoted the activation of the tumor suppressor p53, leading to G0 /G1 -phase cell cycle arrest in Ba/F3 cells transformed by NPM-ALK and ALCL patient-derived Ki-JK cells, but not ALCL patient-derived SUDH-L1 cells harboring p53 gene mutation. In Ba/F3 cells transformed by NPM-ALK and Ki-JK cells, p53 activation induced by knockdown of EBP2 was significantly inhibited by Akt inhibitor GDC-0068, mTORC1 inhibitor rapamycin, and knockdown of Raptor, an essential component of mTORC1. These results suggest that the knockdown of EBP2 triggered p53 activation through the Akt-mTORC1 pathway in NPM-ALK-positive cells. Collectively, the present results revealed the critical repressive mechanism of p53 activity by EBP2 and provide a novel therapeutic strategy for the treatment of ALCL.


Assuntos
Quinase do Linfoma Anaplásico/metabolismo , Nucléolo Celular/metabolismo , Linfoma Anaplásico de Células Grandes/metabolismo , Linfoma Anaplásico de Células Grandes/patologia , Proteínas de Ligação a RNA/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , RNA Helicases DEAD-box/metabolismo , Técnicas de Silenciamento de Genes , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Modelos Biológicos , Proteínas Nucleares/metabolismo , Nucleofosmina , Fosforilação , Fosfotirosina/metabolismo , Ligação Proteica , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Ribossômico 28S/metabolismo , Transdução de Sinais/efeitos dos fármacos , Sirolimo/farmacologia
8.
PLoS Biol ; 18(11): e3000920, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33137094

RESUMO

U2 Small Nuclear RNA Auxiliary Factor 1 (U2AF1) forms a heterodimeric complex with U2AF2 that is primarily responsible for 3' splice site selection. U2AF1 mutations have been identified in most cancers but are prevalent in Myelodysplastic Syndrome (MDS) and Acute Myeloid Leukemia (AML), and the most common mutation is a missense substitution of serine-34 to phenylalanine (S34F). The U2AF heterodimer also has a noncanonical function as a translational regulator. Here, we report that the U2AF1-S34F mutation results in specific misregulation of the translation initiation and ribosome biogenesis machinery. The net result is an increase in mRNA translation at the single-cell level. Among the translationally up-regulated targets of U2AF1-S34F is Nucleophosmin 1 (NPM1), which is a major driver of myeloid malignancy. Depletion of NPM1 impairs the viability of the U2AF1-S34F mutant cells and causes ribosomal RNA (rRNA) processing defects, thus indicating an unanticipated synthetic interaction between U2AF1, NPM1, and ribosome biogenesis. Our results establish a unique molecular phenotype for the U2AF1 mutation that recapitulates translational misregulation in myeloid disease.


Assuntos
Ribossomos/metabolismo , Fator de Processamento U2AF/genética , Fator de Processamento U2AF/metabolismo , Substituição de Aminoácidos , Animais , Pontos de Checagem do Ciclo Celular/genética , Linhagem Celular , Fatores de Iniciação em Eucariotos/genética , Fatores de Iniciação em Eucariotos/metabolismo , Inativação Gênica , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Camundongos , Camundongos Transgênicos , Mutação , Síndromes Mielodisplásicas/genética , Síndromes Mielodisplásicas/metabolismo , Células Progenitoras Mieloides/metabolismo , Proteínas Nucleares/antagonistas & inibidores , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Nucleofosmina , Processamento Pós-Transcricional do RNA , RNA Ribossômico 28S/genética , RNA Ribossômico 28S/metabolismo , Ribossomos/genética , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
9.
Biochem Soc Trans ; 48(5): 1917-1927, 2020 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-32915199

RESUMO

RNA polymerase I (Pol I) is the most specialized eukaryotic Pol. It is only responsible for the synthesis of pre-ribosomal RNA (rRNA), the precursor of 18S, 5.8S and 28S rRNA, the most abundant cellular RNA types. Aberrant Pol I transcription is observed in a wide variety of cancers and its down-regulation is associated with several genetic disorders. The regulation and mechanism of Pol I transcription is increasing in clarity given the numerous high-resolution Pol I structures that have helped bridge seminal genetic and biochemical findings in the field. Here, we review the multifunctional roles of an important TFIIF- and TFIIE-like subcomplex composed of the Pol I subunits A34.5 and A49 in yeast, and PAF49 and PAF53 in mammals. Recent analyses have revealed a dynamic interplay between this subcomplex at nearly every step of the Pol I transcription cycle in addition to new roles in chromatin traversal and the existence of a new helix-turn-helix (HTH) within the A49/PAF53 linker domain that expands its dynamic functions during the Pol I transcription process.


Assuntos
RNA Polimerase I/metabolismo , RNA Ribossômico/metabolismo , Fatores de Transcrição TFII/química , Animais , Cromatina/metabolismo , Dimerização , Humanos , Ligação Proteica , Conformação Proteica , Domínios Proteicos , Multimerização Proteica , Subunidades Proteicas/química , RNA Ribossômico 18S/metabolismo , RNA Ribossômico 28S/metabolismo , RNA Ribossômico 5,8S/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Transcrição Gênica
10.
Bioorg Med Chem Lett ; 30(13): 127191, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32359854

RESUMO

One of the arctigenin stereoisomers, (8R,8'R)-trans-form 1, showed stereospecific cytotoxicity against insect cells, Sf9 and NIAS-AeAl-2 cells. By the comparison with other stereoisomers, the most importance of the 8'R stereochemistry for the higher activities was clarified. On the other hand, the wider range of activity level among stereoisomers against cancer cells, HL-60, was not observed. The structure-activity relationship research using derivatives bearing (8R,8'R)-trans-form was performed to show the same level of activities of 3-iodo, 4-iodo, and 3,4-methylenedioxy derivatives 28, 29, and 36 as (8R,8'R)-trans-arctigenin 1. In the examination of thiono derivatives, 4-iodo thiono and 3,4-methylenedioxy thiono derivatives 66, 67 showed similar level of activities to that of (8R,8'R)-trans-arctigenin 1. The expression of ribosomal 28S rRNA gene of Sf9 cells was increased by (8R,8'R)-trans-arctigenin 1, whereas a degradation of DNA was not observed.


Assuntos
Furanos/farmacologia , Inseticidas/farmacologia , Lignanas/farmacologia , Aedes , Animais , Furanos/química , Células HL-60 , Humanos , Inseticidas/química , Lignanas/química , Estrutura Molecular , RNA Ribossômico 28S/metabolismo , Células Sf9 , Spodoptera , Estereoisomerismo , Relação Estrutura-Atividade
11.
Nat Commun ; 10(1): 5042, 2019 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-31695039

RESUMO

N6-methyladenosine (m6A) modification provides an important epitranscriptomic mechanism that critically regulates RNA metabolism and function. However, how m6A writers attain substrate specificities remains unclear. We report the 3.1 Å-resolution crystal structure of human CCHC zinc finger-containing protein ZCCHC4, a 28S rRNA-specific m6A methyltransferase, bound to S-adenosyl-L-homocysteine. The methyltransferase (MTase) domain of ZCCHC4 is packed against N-terminal GRF-type and C2H2 zinc finger domains and a C-terminal CCHC domain, creating an integrated RNA-binding surface. Strikingly, the MTase domain adopts an autoinhibitory conformation, with a self-occluded catalytic site and a fully-closed cofactor pocket. Mutational and enzymatic analyses further substantiate the molecular basis for ZCCHC4-RNA recognition and a role of the stem-loop structure within substrate in governing the substrate specificity. Overall, this study unveils unique structural and enzymatic characteristics of ZCCHC4, distinctive from what was seen with the METTL family of m6A writers, providing the mechanistic basis for ZCCHC4 modulation of m6A RNA methylation.


Assuntos
Metiltransferases/química , Metiltransferases/metabolismo , RNA Ribossômico 28S/metabolismo , Adenosina/análogos & derivados , Adenosina/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Domínio Catalítico , Cristalografia por Raios X , Humanos , Metilação , Metiltransferases/genética , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Domínios Proteicos , Especificidade por Substrato , Dedos de Zinco
12.
Nat Chem Biol ; 15(1): 88-94, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30531910

RESUMO

N6-Methyladenosine (m6A) RNA modification is present in messenger RNAs (mRNA), ribosomal RNAs (rRNA), and spliceosomal RNAs (snRNA) in humans. Although mRNA m6A modifications have been extensively studied and shown to play critical roles in many cellular processes, the identity of m6A methyltransferases for rRNAs and the function of rRNA m6A modifications are unknown. Here we report a new m6A methyltransferase, ZCCHC4, which primarily methylates human 28S rRNA and also interacts with a subset of mRNAs. ZCCHC4 knockout eliminates m6A4220 modification in 28S rRNA, reduces global translation, and inhibits cell proliferation. We also find that ZCCHC4 protein is overexpressed in hepatocellular carcinoma tumors, and ZCCHC4 knockout significantly reduces tumor size in a xenograft mouse model. Our results highlight the functional significance of an rRNA m6A modification in translation and in tumor biology.


Assuntos
Adenosina/análogos & derivados , Neoplasias Hepáticas/metabolismo , Metiltransferases/metabolismo , RNA Ribossômico 28S/metabolismo , Adenosina/genética , Adenosina/metabolismo , Animais , Proliferação de Células , Humanos , Neoplasias Hepáticas/patologia , Masculino , Metilação , Metiltransferases/genética , Camundongos Endogâmicos BALB C , Biossíntese de Proteínas , Ensaios Antitumorais Modelo de Xenoenxerto
13.
Nucleic Acids Res ; 46(18): 9289-9298, 2018 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-30202881

RESUMO

During ribosome biogenesis, ribosomal RNAs acquire various chemical modifications that ensure the fidelity of translation, and dysregulation of the modification processes can cause proteome changes as observed in cancer and inherited human disorders. Here, we report the complete chemical modifications of all RNAs of the human 80S ribosome as determined with quantitative mass spectrometry. We assigned 228 sites with 14 different post-transcriptional modifications, most of which are located in functional regions of the ribosome. All modifications detected are typical of eukaryotic ribosomal RNAs, and no human-specific modifications were observed, in contrast to a recently reported cryo-electron microscopy analysis. While human ribosomal RNAs appeared to have little polymorphism regarding the post-transcriptional modifications, we found that pseudouridylation at two specific sites in 28S ribosomal RNA are significantly reduced in ribosomes of patients with familial dyskeratosis congenita, a genetic disease caused by a point mutation in the pseudouridine synthase gene DKC1. The landscape of the entire epitranscriptomic ribosomal RNA modifications provides a firm basis for understanding ribosome function and dysfunction associated with human disease.


Assuntos
Processamento Pós-Transcricional do RNA , RNA Ribossômico 28S/genética , RNA/genética , Ribossomos/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Transformada , Microscopia Crioeletrônica , Disceratose Congênita/genética , Células HeLa , Humanos , Mutação , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Biossíntese de Proteínas , Pseudouridina/metabolismo , RNA/química , RNA/metabolismo , RNA Ribossômico 28S/química , RNA Ribossômico 28S/metabolismo , Ribossomos/metabolismo , Ribossomos/ultraestrutura
14.
Toxicol In Vitro ; 52: 265-271, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29964147

RESUMO

Acrolein (Acr) cytotoxicity contributes to chemotherapeutic activity of cyclophosphamide via metabolism of the anticancer drug. Our previous studies have shown that Acr causes ribosomal DNA (rDNA) damages, thus shuts down ribosomal RNA (rRNA) synthesis and leads to ribosomal stress in human cancer cells. Ribosome senses stress in 28S rRNA and induces subsequent activation of mitogen-activated protein kinase (MAPK) pathway which triggers ribotoxic stress response (RSR). Here, we report that cells harboring p53 or not responds differently to Acr-induced RSR. Our results show that Acr induced rRNA cleavage via the activated caspases in cancer cells with wild type p53, but not in cells with deficient p53. Furthermore, MAPK pathways were activated by Acr in cancer cells regardless of p53 status. Acr induced apoptosis in cells with wild type p53, while it induced G2/M cell cycle arrest in cancer cells with deficient p53. In conclusion, the presence of functional p53 plays a significant role in the mechanisms of Acr-induced rRNA cleavage and cell fates. Our results enhance our understanding of the molecular mechanisms of Acr-mediated antitumor activity which helps develop better therapeutic strategies for killing cancer cells with different p53 status.


Assuntos
Acroleína/toxicidade , Neoplasias do Colo/genética , RNA Ribossômico 18S/metabolismo , RNA Ribossômico 28S/metabolismo , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Humanos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Interferência de RNA , Proteína Supressora de Tumor p53/genética
15.
PLoS One ; 12(9): e0185089, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28926611

RESUMO

Activation of the unfolded protein response (UPR) in eukaryotic cells represents an evolutionarily conserved response to physiological stress. Here, we report that the mTOR inhibitors rapamycin (sirolimus) and structurally related temsirolimus are capable of inducing UPR in sarcoma cells. However, this effect appears to be distinct from the classical role for these drugs as mTOR inhibitors. Instead, we detected these compounds to be associated with ribosomes isolated from treated cells. Specifically, temsirolimus treatment resulted in protection from chemical modification of several rRNA residues previously shown to bind rapamycin in prokaryotic cells. As an application for these findings, we demonstrate maximum tumor cell growth inhibition occurring only at doses which induce UPR and which have been shown to be safely achieved in human patients. These results are significant because they challenge the paradigm for the use of these drugs as anticancer agents and reveal a connection to UPR, a conserved biological response that has been implicated in tumor growth and response to therapy. As a result, eIF2 alpha phosphorylation and Xbp-1 splicing may serve as useful biomarkers of treatment response in future clinical trials using rapamycin and rapalogs.


Assuntos
Sirolimo/análogos & derivados , Sirolimo/farmacologia , Resposta a Proteínas não Dobradas/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Fator de Iniciação 2 em Eucariotos/metabolismo , Humanos , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Splicing de RNA/efeitos dos fármacos , RNA Mensageiro/metabolismo , RNA Ribossômico 28S/metabolismo , Sarcoma/metabolismo , Sarcoma/patologia , Solventes/química , Solventes/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Proteína 1 de Ligação a X-Box/genética , Proteína 1 de Ligação a X-Box/metabolismo
16.
J Biol Chem ; 292(44): 18129-18144, 2017 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-28893905

RESUMO

Lysine acetylation is a widespread posttranslational modification affecting many biological pathways. Recent studies indicate that acetylated lysine residues mainly exhibit low acetylation occupancy, but challenges in sample preparation and analysis make it difficult to confidently assign these numbers, limiting understanding of their biological significance. Here, we tested three common sample preparation methods to determine their suitability for assessing acetylation stoichiometry in three human cell lines, identifying the acetylation occupancy in more than 1,300 proteins from each cell line. The stoichiometric analysis in combination with quantitative proteomics also enabled us to explore their functional roles. We found that higher abundance of the deacetylase sirtuin 1 (SIRT1) correlated with lower acetylation occupancy and lower levels of ribosomal proteins, including those involved in ribosome biogenesis and rRNA processing. Treatment with the SIRT1 inhibitor EX-527 confirmed SIRT1's role in the regulation of pre-rRNA synthesis and processing. Specifically, proteins involved in pre-rRNA transcription, including subunits of the polymerase I and SL1 complexes and the RNA polymerase I-specific transcription initiation factor RRN3, were up-regulated after SIRT1 inhibition. Moreover, many protein effectors and regulators of pre-rRNA processing needed for rRNA maturation were also up-regulated after EX-527 treatment with the outcome that pre-rRNA and 28S rRNA levels also increased. More generally, we found that SIRT1 inhibition down-regulates metabolic pathways, including glycolysis and pyruvate metabolism. Together, these results provide the largest data set thus far of lysine acetylation stoichiometry (available via ProteomeXchange with identifier PXD005903) and set the stage for further biological investigations of this central posttranslational modification.


Assuntos
Regulação da Expressão Gênica , Lisina/metabolismo , Processamento de Proteína Pós-Traducional , Precursores de RNA/metabolismo , Processamento Pós-Transcricional do RNA , RNA Ribossômico/metabolismo , Sirtuína 1/metabolismo , Acetilação/efeitos dos fármacos , Métodos Analíticos de Preparação de Amostras , Carbazóis/farmacologia , Linhagem Celular Transformada , Linhagem Celular Tumoral , Cromatografia Líquida de Alta Pressão , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Inibidores de Histona Desacetilases/farmacologia , Humanos , Cinética , Mapeamento de Peptídeos , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Proteômica/métodos , Processamento Pós-Transcricional do RNA/efeitos dos fármacos , RNA Ribossômico 28S/metabolismo , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , Sirtuína 1/antagonistas & inibidores , Sirtuína 1/genética , Espectrometria de Massas em Tandem
17.
Int J Biol Macromol ; 94(Pt A): 728-734, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27765567

RESUMO

Ribosome biogenesis is the process of synthesis of the cellular ribosomes which mediate protein translation. Integral with the ribosomes are four cytoplasmic ribosomal RNAs (rRNAs) which show extensive post-transcriptional modifications including 2'-O-methylation and pseudouridylation. Several hereditary hematologic diseases including Diamond-Blackfan anemia have been shown to be associated with defects in ribosome biogenesis. Thalassemia is the most important hematologic inherited genetic disease worldwide, and this study examined the post-transcriptional ribose methylation status of three specific active sites of the 28S rRNA molecule at positions 1858, 4197 and 4506 of ß-thalassemia trait carriers and normal controls. Samples from whole blood and cultured erythroid cells were examined. Results showed that site 4506 was hypermethylated in ß-thalassemia trait carriers in both cohorts. Expression of fibrillarin, the ribosomal RNA methyltransferase as well as snoRNAs were additionally quantified by RT-qPCR and evidence of dysregulation was seen. Hemoglobin E trait carriers also showed evidence of dysregulation. These results provide the first evidence that ribosome biogenesis is dysregulated in ß-thalassemia trait carriers.


Assuntos
Proteínas Cromossômicas não Histona/metabolismo , Hemoglobina E/metabolismo , Processamento Pós-Transcricional do RNA , RNA Ribossômico 28S/metabolismo , Ribossomos/metabolismo , Talassemia beta/metabolismo , Estudos de Casos e Controles , Proteínas Cromossômicas não Histona/genética , Expressão Gênica , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Hematopoéticas/patologia , Hemoglobina E/genética , Heterozigoto , Humanos , Leucócitos Mononucleares/metabolismo , Leucócitos Mononucleares/patologia , Metilação , Cultura Primária de Células , Biossíntese de Proteínas , RNA Ribossômico 28S/genética , RNA Nucleolar Pequeno/genética , RNA Nucleolar Pequeno/metabolismo , Ribossomos/genética , Uridina Monofosfato/genética , Uridina Monofosfato/metabolismo , Talassemia beta/genética , Talassemia beta/patologia
18.
Cell Physiol Biochem ; 39(3): 1011-20, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27536969

RESUMO

BACKGROUND/AIMS: The purpose of the study was to assess the amount of rRNA and phosphorylation status of the key markers of mTORC1-dependent (70s6k, 4E-BP1) and mTORC1-independent (GSK-3ß, AMPK) signaling pathways controlling protein synthesis in rat soleus during early stages of mechanical unloading (hindlimb suspension (HS) for 1-, 3- and 7 days). METHODS: The content of the key signaling molecules of various anabolic signaling pathways was determined by Western-blotting. The amount of 28S rRNA was evaluated by RT-PCR. The rate of protein synthesis was assessed using in-vivo SUnSET technique. RESULTS: HS for 3 and 7 days induced a significant (p<0.05) decrease in the rate of global protein synthesis in soleus muscle in comparison with control. HS within 24 hours resulted in a significant (p<0.05) decrease in p-4E-BP1 content, p-AMPK content and increase in p-p70s6k content in rat soleus muscle. Following three days of HS the content of p-AKT was decreased (p<0.05). After 7 days of HS the phosphorylation level of AKT and GSK-3beta was significantly reduced (p<0.05) compared to control. We also observed a significant decrease in the amount of 28S rRNA in rat soleus following 1, 3 and 7 days of HS. CONCLUSION: Taken together, the results of our study suggest that a decline in the global rate of protein synthesis in rat soleus during early stages of simulated microgravity is associated with impaired ribosome biogenesis as well as reduced activity of mTORC1-independent signaling pathways.


Assuntos
Elevação dos Membros Posteriores , Complexos Multiproteicos/genética , Músculo Esquelético/metabolismo , RNA Ribossômico 28S/genética , Transdução de Sinais/genética , Serina-Treonina Quinases TOR/genética , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Regulação da Expressão Gênica , Glicogênio Sintase Quinase 3 beta/genética , Glicogênio Sintase Quinase 3 beta/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina , Complexos Multiproteicos/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Ribossômico 28S/metabolismo , Ratos , Ratos Wistar , Proteínas Quinases S6 Ribossômicas 70-kDa/genética , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Fatores de Tempo
19.
Oncotarget ; 7(31): 50522-50534, 2016 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-27409667

RESUMO

PES1 is a component of the PeBoW complex, which is required for the maturation of 28S and 5.8S ribosomal RNAs, as well as for the formation of the 60S ribosome. Deregulation of ribosomal biogenesis can contribute to carcinogenesis. In this study, we showed that PES1 could be modified by the small ubiquitin-like modifier (SUMO) SUMO-1, SUMO-2 and SUMO-3, and SUMOylation of PES1 was stimulated by estrogen (E2). One major SUMOylation site (K517) was identified in the C-terminal Glu-rich domain of PES1. Substitution of K517 with arginine abolished the SUMOylation of PES1. SUMOylation also stabilized PES1 through inhibiting its ubiquitination. In addition, PES1 SUMOylation positively regulated the estrogen signaling pathway. SUMOylation enhanced the ability of PES1 to promote estrogen receptor α (ERα)-mediated transcription by increasing the stability of ERα, both in the presence and absence of E2. Moreover, SUMOylation of PES1 also increased the proportion of S-phase cells in the cell cycle and promoted the proliferation of breast cancer cells both in vitro and in vivo. These findings showed that posttranslational modification of PES1 by SUMOylation may serve as a key factor that regulates the function of PES1 in vivo.


Assuntos
Proteínas/metabolismo , Sumoilação , Ubiquitinação , Animais , Neoplasias da Mama/metabolismo , Células COS , Ciclo Celular , Linhagem Celular Tumoral , Proliferação de Células , Chlorocebus aethiops , Receptor alfa de Estrogênio , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Transplante de Neoplasias , Complexo de Endopeptidases do Proteassoma/metabolismo , Processamento de Proteína Pós-Traducional , RNA Ribossômico 28S/metabolismo , RNA Ribossômico 5,8S/metabolismo , Proteínas de Ligação a RNA , Ativação Transcricional
20.
Proc Natl Acad Sci U S A ; 113(2): 350-5, 2016 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-26712000

RESUMO

Vertically transmitted symbionts that protect their hosts against parasites and pathogens are well known from insects, yet the underlying mechanisms of symbiont-mediated defense are largely unclear. A striking example of an ecologically important defensive symbiosis involves the woodland fly Drosophila neotestacea, which is protected by the bacterial endosymbiont Spiroplasma when parasitized by the nematode Howardula aoronymphium. The benefit of this defense strategy has led to the rapid spread of Spiroplasma throughout the range of D. neotestacea, although the molecular basis for this protection has been unresolved. Here, we show that Spiroplasma encodes a ribosome-inactivating protein (RIP) related to Shiga-like toxins from enterohemorrhagic Escherichia coli and that Howardula ribosomal RNA (rRNA) is depurinated during Spiroplasma-mediated protection of D. neotestacea. First, we show that recombinant Spiroplasma RIP catalyzes depurination of 28S rRNAs in a cell-free assay, as well as Howardula rRNA in vitro at the canonical RIP target site within the α-sarcin/ricin loop (SRL) of 28S rRNA. We then show that Howardula parasites in Spiroplasma-infected flies show a strong signal of rRNA depurination consistent with RIP-dependent modification and large decreases in the proportion of 28S rRNA intact at the α-sarcin/ricin loop. Notably, host 28S rRNA is largely unaffected, suggesting targeted specificity. Collectively, our study identifies a novel RIP in an insect defensive symbiont and suggests an underlying RIP-dependent mechanism in Spiroplasma-mediated defense.


Assuntos
Drosophila/metabolismo , Drosophila/microbiologia , Proteínas Inativadoras de Ribossomos/metabolismo , Spiroplasma/fisiologia , Simbiose , Animais , Endorribonucleases/química , Proteínas Fúngicas/química , Reação em Cadeia da Polimerase , RNA Ribossômico 28S/metabolismo , Coelhos , Proteínas Recombinantes/isolamento & purificação , Ribossomos/metabolismo , Ricina/química , Análise de Sequência de RNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA