Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 176
Filtrar
1.
Environ Mol Mutagen ; 63(7): 320-328, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-36181379

RESUMO

Molnupiravir (MOV) is used to treat COVID-19. In cells, MOV is converted to the ribonucleoside analog N4-hydroxycytidine (NHC) and incorporated into the SARS-CoV-2 RNA genome during its replication, resulting in RNA mutations. The widespread accumulation of such mutations inhibits SARS-CoV-2 propagation. Although safety assessments by many regulatory agencies across the world have concluded that the genotoxic risks associated with the clinical use of MOV are low, concerns remain that it could induce DNA mutations in patients, particularly because numerous in vitro studies have shown that NHC is a DNA mutagen. In this study, we used HiFi sequencing, a technique that can detect ultralow-frequency substitution mutations in whole genomes, to evaluate the mutagenic effects of MOV in E. coli and of MOV and NHC in mouse lymphoma L5178Y cells and human lymphoblastoid TK6 cells. In all models, exposure to these compounds increased genome-wide mutation frequencies in a dose-dependent manner, and these increases were mainly composed of A:T → G:C transitions. The NHC exposure concentrations used for mammalian cells were comparable to those observed in the plasma of humans who received clinical doses of MOV.


Assuntos
COVID-19 , Mutagênicos , Humanos , Camundongos , Animais , Mutagênicos/toxicidade , Escherichia coli/genética , RNA Viral/farmacologia , SARS-CoV-2 , DNA , Mamíferos/genética
2.
J Antibiot (Tokyo) ; 75(6): 321-332, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35440771

RESUMO

Staphylococcus aureus is one of the most dangerous pathogens commonly associated with high levels of morbidity and mortality. Sortase A is considered as a promising molecular target for the development of antistaphylococcal agents. Using hybrid virtual screening approach and FRET analysis, we have identified five compounds able to decrease the activity of sortase A by more than 50% at the concentration of 200 µM. The most promising compound was 2-(2-amino-3-chloro-benzoylamino)-benzoic acid which was able to inhibit S. aureus sortase A at the IC50 value of 59.7 µM. This compound was selective toward sortase A compared to other four cysteine proteases - cathepsin L, cathepsin B, rhodesain, and the SARS-CoV2 main protease. Microscale thermophoresis experiments confirmed that this compound bound sortase A with KD value of 189 µM. Antibacterial and antibiofilm assays also confirmed high specificity of the hit compound against two standard and three wild-type, S. aureus hospital infection isolates. The effect of the compound on biofilms produced by two S. aureus ATCC strains was also observed suggesting that the compound reduced biofilm formation by changing the biofilm structure and thickness.


Assuntos
COVID-19 , Infecções Estafilocócicas , Aminoaciltransferases , Antibacterianos/química , Antibacterianos/farmacologia , Proteínas de Bactérias/metabolismo , Biofilmes , Cisteína Endopeptidases , Humanos , Testes de Sensibilidade Microbiana , RNA Viral/farmacologia , SARS-CoV-2 , Staphylococcus aureus
3.
PLoS One ; 16(12): e0260706, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34871316

RESUMO

Airway epithelial barrier dysfunction is increasingly recognized as a key feature of asthma and other lung diseases. Respiratory viruses are responsible for a large fraction of asthma exacerbations, and are particularly potent at disrupting epithelial barrier function through pattern recognition receptor engagement leading to tight junction dysfunction. Although different mechanisms of barrier dysfunction have been described, relatively little is known about whether barrier integrity can be promoted to limit disease. Here, we tested three classes of drugs commonly prescribed to treat asthma for their ability to promote barrier function using a cell culture model of virus-induced airway epithelial barrier disruption. Specifically, we studied the corticosteroid budesonide, the long acting beta-agonist formoterol, and the leukotriene receptor antagonist montelukast for their ability to promote barrier integrity of a monolayer of human bronchial epithelial cells (16HBE) before exposure to the viral mimetic double-stranded RNA. Of the three, only budesonide treatment limited transepithelial electrical resistance and small molecule permeability (4 kDa FITC-dextran flux). Next, we used a mouse model of acute dsRNA challenge that induces transient epithelial barrier disruption in vivo, and studied the effects budesonide when administered prophylactically or therapeutically. We found that budesonide similarly protected against dsRNA-induced airway barrier disruption in the lung, independently of its effects on airway inflammation. Taken together, these data suggest that an under-appreciated effect of inhaled budesonide is to maintain or promote airway epithelial barrier integrity during respiratory viral infections.


Assuntos
Asma/tratamento farmacológico , Brônquios/efeitos dos fármacos , Broncodilatadores/farmacologia , Budesonida/farmacologia , Permeabilidade da Membrana Celular/efeitos dos fármacos , Poli I-C/antagonistas & inibidores , Acetatos/farmacologia , Administração por Inalação , Animais , Asma/induzido quimicamente , Asma/metabolismo , Asma/patologia , Brônquios/metabolismo , Brônquios/patologia , Linhagem Celular , Ciclopropanos/farmacologia , Dextranos/metabolismo , Impedância Elétrica , Células Epiteliais/citologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Feminino , Fluoresceína-5-Isotiocianato/análogos & derivados , Fluoresceína-5-Isotiocianato/metabolismo , Fumarato de Formoterol/farmacologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Modelos Biológicos , Mimetismo Molecular , Poli I-C/farmacologia , Quinolinas/farmacologia , RNA de Cadeia Dupla/antagonistas & inibidores , RNA de Cadeia Dupla/farmacologia , RNA Viral/antagonistas & inibidores , RNA Viral/farmacologia , Sulfetos/farmacologia , Junções Íntimas/efeitos dos fármacos , Junções Íntimas/metabolismo
4.
Endocrinology ; 162(12)2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34453520

RESUMO

The human testis can be infected by a large number of RNA and DNA viruses. While various RNA virus infections may induce orchitis and impair testicular functions, DNA virus infection rarely affects the testis. Mechanisms underlying the differential effects of RNA and DNA viral infections on the testis remain unclear. In the current study, we therefore examined the effects of viral RNA and DNA sensor signaling pathways on mouse Sertoli cells (SC) and Leydig cells (LC). The local injection of viral RNA analogue polyinosinic-polycytidylic acid [poly(I:C)] into the testis markedly disrupted spermatogenesis, whereas the injection of the herpes simplex virus (HSV) DNA analogue HSV60 did not affect spermatogenesis. Poly(I:C) dramatically induced the expression of the proinflammatory cytokines tumor necrosis factor α (TNF-α) and interleukin 6 in SC and LC through Toll-like receptor 3 and interferon ß promoter stimulator 1 signaling pathways, impairing the integrity of the blood-testis barrier and testosterone synthesis. Poly(I:C)-induced TNF-α production thus plays a critical role in the impairment of cell functions. In contrast, HSV60 predominantly induced the expression of type 1 interferons and antiviral proteins via the DNA sensor signaling pathway, which did not affect testicular cell functions. Accordingly, the Zika virus induced high levels of TNF-α in SC and LC and impaired their respective cellular functions, whereas Herpes simplex virus type 2 principally induced antiviral responses and did not impair such functions. These results provide insights into the mechanisms by which RNA viral infections impair testicular functions.


Assuntos
DNA Viral/metabolismo , Células Intersticiais do Testículo/metabolismo , RNA Viral/metabolismo , Receptores Virais/metabolismo , Células de Sertoli/metabolismo , Animais , Barreira Hematotesticular/efeitos dos fármacos , Barreira Hematotesticular/metabolismo , Permeabilidade da Membrana Celular/efeitos dos fármacos , Células Cultivadas , Chlorocebus aethiops , DNA Viral/farmacologia , Células Intersticiais do Testículo/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Ácidos Nucleicos/metabolismo , Poli I-C/metabolismo , Poli I-C/farmacologia , RNA Viral/farmacologia , Células de Sertoli/efeitos dos fármacos , Transdução de Sinais/imunologia , Testículo/efeitos dos fármacos , Testículo/metabolismo , Células Vero
5.
Nat Plants ; 6(6): 620-624, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32483329

RESUMO

An in planta gene editing approach was developed wherein Cas9 transgenic plants are infected with an RNA virus that expresses single guide RNAs (sgRNAs). The sgRNAs are augmented with sequences that promote cell-to-cell mobility. Mutant progeny are recovered in the next generation at frequencies ranging from 65 to 100%; up to 30% of progeny derived from plants infected with a virus expressing three sgRNAs have mutations in all three targeted loci.


Assuntos
Edição de Genes/métodos , Nicotiana/genética , Plantas Geneticamente Modificadas/genética , Vírus de RNA/genética , RNA Guia de Cinetoplastídeos/farmacologia , RNA Viral/farmacologia , Agrobacterium tumefaciens
6.
Front Immunol ; 11: 8, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32038656

RESUMO

Strong innate and adaptive immune responses are paramount in combating viral infections. Dendritic cells (DCs) detect viral infections via cytosolic RIG-I like receptors (RLRs) RIG-I and MDA5 leading to MAVS-induced immunity. The DEAD-box RNA helicase DDX3 senses abortive human immunodeficiency virus 1 (HIV-1) transcripts and induces MAVS-dependent type I interferon (IFN) responses, suggesting that abortive HIV-1 RNA transcripts induce antiviral immunity. Little is known about the induction of antiviral immunity by DDX3-ligand abortive HIV-1 RNA. Here we synthesized a 58 nucleotide-long capped RNA (HIV-1 Cap-RNA58) that mimics abortive HIV-1 RNA transcripts. HIV-1 Cap-RNA58 induced potent type I IFN responses in monocyte-derived DCs, monocytes, macrophages and primary CD1c+ DCs. Compared with RLR agonist poly-I:C, HIV-1 Cap-RNA58 induced comparable levels of type I IFN responses, identifying HIV-1 Cap-RNA58 as a potent trigger of antiviral immunity. In monocyte-derived DCs, HIV-1 Cap-RNA58 activated the transcription factors IRF3 and NF-κB. Moreover, HIV-1 Cap-RNA58 induced DC maturation and the expression of pro-inflammatory cytokines. HIV-1 Cap-RNA58-stimulated DCs induced proliferation of CD4+ and CD8+ T cells and differentiated naïve T helper (TH) cells toward a TH2 phenotype. Importantly, treatment of DCs with HIV-1 Cap-RNA58 resulted in an efficient antiviral innate immune response that reduced ongoing HIV-1 replication in DCs. Our data strongly suggest that HIV-1 Cap-RNA58 induces potent innate and adaptive immune responses, making it an interesting addition in vaccine design strategies.


Assuntos
Imunidade Adaptativa , Infecções por HIV/imunologia , HIV-1/genética , Interações entre Hospedeiro e Microrganismos/imunologia , Imunidade Inata , RNA Viral/farmacologia , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Células Dendríticas/imunologia , Células Dendríticas/virologia , Infecções por HIV/virologia , Humanos , Fator Regulador 3 de Interferon/metabolismo , Interferon Tipo I/metabolismo , Macrófagos/imunologia , Macrófagos/virologia , Monócitos/imunologia , Monócitos/virologia , NF-kappa B/metabolismo , RNA Viral/síntese química , RNA Viral/imunologia , Transdução de Sinais/efeitos dos fármacos , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia , Transcrição Gênica
7.
Gynecol Endocrinol ; 36(4): 346-350, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31595804

RESUMO

The aim of this study was to evaluate the effect of virus infection on estradiol (E2) production in human ovarian granulosa cells. Polyriboinosinic polyribocytidylic acid [Poly (I: C)], a synthetic analog of viral double stranded RNA that can be recognized by Toll like receptor 3 (TLR3), was used to imitate virus infection. Granulosa cells (GCs) obtained from patients undergoing in vitro fertilization and embryo transfer (IVF-ET) were cultured in vitro and treated with Poly (I: C), FSH, or both. Concentration of E2 was assayed by electrochemiluminescence. The mRNA and protein expression of TLR3 and aromatase were determined by real-time quantitative PCR (qPCR) and Western blot, respectively. The results showed that expression of TLR3 mRNA was significantly increased after Poly (I: C) stimulation. Poly (I: C) decreased E2 synthesis in FSH-treated GCs. Poly (I: C) inhibited the expression of aromatase in FSH-treated GCs. This study demonstrated that Poly (I: C) inhibits the synthesis of estradiol by granulosa cells under the stimulation of FSH, which might contribute to disturbance of follicular development and ovulation.


Assuntos
Estradiol/metabolismo , Hormônio Foliculoestimulante/farmacologia , Células da Granulosa/efeitos dos fármacos , Poli I-C/farmacologia , Adulto , Células Cultivadas , Feminino , Células da Granulosa/metabolismo , Células da Granulosa/virologia , Humanos , Folículo Ovariano/efeitos dos fármacos , Folículo Ovariano/metabolismo , Folículo Ovariano/virologia , RNA Viral/farmacologia , Viroses/metabolismo , Viroses/patologia , Adulto Jovem
8.
Elife ; 82019 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-30735121

RESUMO

MicroRNA-122 (miR-122) is the most abundant microRNA in hepatocytes and a central player in liver biology and disease. Herein, we report a previously unknown role for miR-122 in hepatocyte intrinsic innate immunity. Restoration of miR-122 levels in hepatoma cells markedly enhanced the activation of interferons (IFNs) in response to a variety of viral nucleic acids or simulations, especially in response to hepatitis C virus RNA and poly (I:C). Mechanistically, miR-122 downregulated the phosphorylation (Tyr705) of STAT3, thereby removing the negative regulation of STAT3 on IFN-signaling. STAT3 represses IFN expression by inhibiting interferon regulatory factor 1 (IRF1), whereas miR-122 targets MERTK, FGFR1 and IGF1R, three receptor tyrosine kinases (RTKs) that directly promote STAT3 phosphorylation. This work identifies a miR-122-RTKs/STAT3-IRF1-IFNs regulatory circuitry, which may play a pivotal role in regulating hepatocyte innate immunity. These findings renewed our knowledge of miR-122's function and have important implications for the treatment of hepatitis viruses.


Assuntos
Hepatite/genética , Imunidade Inata/genética , Fator Regulador 1 de Interferon/genética , MicroRNAs/genética , Fator de Transcrição STAT3/genética , Linhagem Celular Tumoral , Hepacivirus/genética , Hepacivirus/patogenicidade , Hepatite/patologia , Hepatite/virologia , Hepatócitos/metabolismo , Hepatócitos/virologia , Interações Hospedeiro-Patógeno/genética , Humanos , Interferons/genética , Fígado/metabolismo , Fígado/patologia , Fígado/virologia , RNA Viral/farmacologia , Transdução de Sinais , Replicação Viral/genética
9.
Stem Cells ; 35(5): 1197-1207, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28276156

RESUMO

We have revealed a critical role for innate immune signaling in nuclear reprogramming to pluripotency, and in the nuclear reprogramming required for somatic cell transdifferentiation. Activation of innate immune signaling causes global changes in the expression and activity of epigenetic modifiers to promote epigenetic plasticity. In our previous articles, we focused on the role of toll-like receptor 3 (TLR3) in this signaling pathway. Here, we define the role of another innate immunity pathway known to participate in response to viral RNA, the retinoic acid-inducible gene 1 receptor (RIG-1)-like receptor (RLR) pathway. This pathway is represented by the sensors of viral RNA, RIG-1, LGP2, and melanoma differentiation-associated protein 5 (MDA5). We first found that TLR3 deficiency only causes a partial inhibition of nuclear reprogramming to pluripotency in mouse tail-tip fibroblasts, which motivated us to determine the contribution of RLR. We found that knockdown of interferon beta promoter stimulator 1, the common adaptor protein for the RLR family, substantially reduced nuclear reprogramming induced by retroviral or by modified messenger RNA expression of Oct 4, Sox2, KLF4, and c-MYC (OSKM). Importantly, a double knockdown of both RLR and TLR3 pathway led to a further decrease in induced pluripotent stem cell (iPSC) colonies suggesting an additive effect of both these pathways on nuclear reprogramming. Furthermore, in murine embryonic fibroblasts expressing a doxycycline (dox)-inducible cassette of the genes encoding OSKM, an RLR agonist increased the yield of iPSCs. Similarly, the RLR agonist enhanced nuclear reprogramming by cell permeant peptides of the Yamanaka factors. Finally, in the dox-inducible system, RLR activation promotes activating histone marks in the promoter region of pluripotency genes. To conclude, innate immune signaling mediated by RLR plays a critical role in nuclear reprogramming. Manipulation of innate immune signaling may facilitate nuclear reprogramming to achieve pluripotency. Stem Cells 2017;35:1197-1207.


Assuntos
Reprogramação Celular/genética , Proteína DEAD-box 58/metabolismo , Receptores de Superfície Celular/metabolismo , Transdução de Sinais , Animais , Reprogramação Celular/efeitos dos fármacos , Epigênese Genética/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Células HEK293 , Humanos , Fator 4 Semelhante a Kruppel , Ligantes , Camundongos Knockout , Células-Tronco Pluripotentes/efeitos dos fármacos , Células-Tronco Pluripotentes/metabolismo , RNA Viral/farmacologia , Cauda , Receptor 3 Toll-Like/metabolismo
10.
Nat Plants ; 3: 16207, 2017 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-28067898

RESUMO

Topical application of pathogen-specific double-stranded RNA (dsRNA) for virus resistance in plants represents an attractive alternative to transgenic RNA interference (RNAi). However, the instability of naked dsRNA sprayed on plants has been a major challenge towards its practical application. We demonstrate that dsRNA can be loaded on designer, non-toxic, degradable, layered double hydroxide (LDH) clay nanosheets. Once loaded on LDH, the dsRNA does not wash off, shows sustained release and can be detected on sprayed leaves even 30 days after application. We provide evidence for the degradation of LDH, dsRNA uptake in plant cells and silencing of homologous RNA on topical application. Significantly, a single spray of dsRNA loaded on LDH (BioClay) afforded virus protection for at least 20 days when challenged on sprayed and newly emerged unsprayed leaves. This innovation translates nanotechnology developed for delivery of RNAi for human therapeutics to use in crop protection as an environmentally sustainable and easy to adopt topical spray.


Assuntos
Silicatos de Alumínio/farmacologia , Nanoestruturas/química , Doenças das Plantas/prevenção & controle , Vírus de Plantas/efeitos dos fármacos , Interferência de RNA , RNA de Cadeia Dupla/farmacologia , RNA Viral/farmacologia , Arabidopsis/fisiologia , Argila , Doenças das Plantas/virologia , Vírus de Plantas/genética , Nicotiana/fisiologia , Vigna/fisiologia
11.
Am J Respir Cell Mol Biol ; 56(4): 506-520, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27911568

RESUMO

Airway remodeling is resultant of a complex multicellular response associated with a progressive decline of pulmonary function in patients with chronic airway disease. Here, repeated infections with respiratory viruses are linked with airway remodeling through largely unknown mechanisms. Although acute activation of the Toll-like receptor (TLR) 3 pathway by extracellular polyinosinic:polycytidylic acid (poly[I:C]) induces innate signaling through the NF-κB transcription factor in normal human small airway epithelial cells, prolonged (repetitive or tonic) poly(I:C) stimulation produces chronic stress fiber formation, mesenchymal transition, and activation of a fibrotic program. Chronic poly(I:C) stimulation enhanced the expression of core mesenchymal regulators Snail family zinc finger 1, zinc finger E-box binding homeobox, mesenchymal intermediate filaments (vimentin), and extracellular matrix proteins (fibronectin-1), and collagen 1A. This mesenchymal transition was prevented by silencing expression of NF-κB/RelA or administration of a small-molecule inhibitor of the IκB kinase, BMS345541. Acute poly(I:C) exposure in vivo induced profound neutrophilic airway inflammation. When administered repetitively, poly(I:C) resulted in enhanced fibrosis observed by lung micro-computed tomography, second harmonic generation microscopy of optically cleared lung tissue, and by immunohistochemistry. Epithelial flattening, expansion of the epithelial mesenchymal trophic unit, and enhanced Snail family zinc finger 1 and fibronectin 1 expression in airway epithelium were also observed. Repetitive poly(I:C)-induced airway remodeling, fibrosis, and epithelial-mesenchymal transition was inhibited by BMS345541 administration. Based on this novel model of viral inflammation-induced remodeling, we conclude that NF-κB is a major controller of epithelial-mesenchymal transition and pulmonary fibrosis, a finding that has potentially important relevance to airway remodeling produced by repetitive viral infections.


Assuntos
Remodelação das Vias Aéreas , Transição Epitelial-Mesenquimal , Mesoderma/patologia , NF-kappa B/metabolismo , Pneumonia/patologia , Pneumonia/fisiopatologia , Fibrose Pulmonar/fisiopatologia , RNA Viral/farmacologia , Remodelação das Vias Aéreas/efeitos dos fármacos , Animais , Líquido da Lavagem Broncoalveolar , Doença Crônica , Colágeno/metabolismo , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Humanos , Pulmão/patologia , Mesoderma/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Neutrófilos/patologia , Pneumonia/complicações , Pneumonia/diagnóstico por imagem , Poli I-C/farmacologia , Fibrose Pulmonar/complicações , Fibrose Pulmonar/metabolismo , Fibrose Pulmonar/patologia , Transdução de Sinais/efeitos dos fármacos , Receptor 3 Toll-Like/metabolismo , Microtomografia por Raio-X
12.
Mol Ther ; 24(1): 135-45, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26548591

RESUMO

Inactivated Sendai virus (hemagglutinating virus of Japan; HVJ) envelope (HVJ-E) induces anticancer immunity and cancer cell-selective apoptosis through the recognition of viral RNA genome fragments by retinoic acid-inducible gene-I (RIG-I). Here, we discovered that the "copy-back" type of defective-interfering (DI) particles that exist in the Cantell strain of HVJ induced the human PC3 prostate cancer cell death more effectively than the Sendai/52 strain or Cantell strain, which contain fewer DI particles. DI particle genomic RNA (~550 bases) activated proapoptotic genes such as Noxa and/or TNF-related apoptosis-inducing ligand (TRAIL) in human prostate cancer cells to induce cancer cell-selective apoptosis. DI particle-derived RNA was synthesized by in vitro transcription (in vitro transcribed (IVT)-B2). IVT-B2 RNA, which has a double-stranded region in its secondary structure, promoted a stronger anticancer effect than IVT-HN RNA, which does not have a double-stranded region in its secondary structure. The intratumoral transfection of IVT-B2 significantly reduced the volume of a human prostate tumor and induced tumor cell apoptosis in the xenograft mouse model. Moreover, the involvement of natural killer (NK) cells in IVT-B2-RNA-induced anticancer effects was also suggested. These findings provide a novel nucleic acid medicine for the treatment of cancer.


Assuntos
Vírus Defeituosos/genética , Neoplasias da Próstata/terapia , RNA de Cadeia Dupla/administração & dosagem , RNA Viral/administração & dosagem , Vírus Sendai/genética , Animais , Apoptose , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Camundongos , Proteínas Quinases Ativadas por Mitógeno , Terapia Viral Oncolítica , Neoplasias da Próstata/genética , Proteínas Serina-Treonina Quinases , RNA de Cadeia Dupla/química , RNA de Cadeia Dupla/farmacologia , RNA Viral/química , RNA Viral/farmacologia , Ligante Indutor de Apoptose Relacionado a TNF/genética , Ensaios Antitumorais Modelo de Xenoenxerto
13.
DNA Cell Biol ; 34(6): 391-9, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25803620

RESUMO

Viral factor has been implicated in the etiopathogenesis of vitiligo. To elucidate the effects of viral double-stranded RNA (dsRNA) on melanocytes and to explore the underlying mechanisms, primary cultured normal human melanocytes were treated with synthetic viral dsRNA analog poly(I:C). The results demonstrated that poly(I:C)-triggered apoptosis when transfected into melanocytes, while extracellular poly(I:C) did not have that effect. Intracellular poly(I:C)-induced melanocyte death was decreased by RIG-I or MDA5 siRNA, but not by TLR3 siRNA. Both intracellular and extracellular poly(I:C) induced the expression of IFNB, TNF, IL6, and IL8. However, extracellular poly(I:C) demonstrated a much weaker induction capacity of cytokine genes than intracellular poly(I:C). Further analysis revealed that phosphorylation of TBK1, IRF3, IRF7, and TAK1 was differentially induced by intra- or extracellular poly(I:C). NFκB inhibitor Bay 11-7082 decreased the induction of all the cytokines by poly(I:C), suggesting the ubiquitous role of NFκB in the process. Poly(I:C) treatment also induced the phosphorylation of p38 and JNK in melanocytes. Both JNK and p38 inhibitors showed suppression on the cytokine induction by intra- or extracellular poly(I:C). However, only the JNK inhibitor decreased the intracellular poly(I:C)-induced melanocyte death. Taken together, this study provides the possible mechanism of viral factor in the pathogenesis of vitiligo.


Assuntos
Melanócitos/fisiologia , Poli I-C/farmacologia , RNA de Cadeia Dupla/farmacologia , Apoptose , Células Cultivadas , Citocinas/genética , Citocinas/metabolismo , Proteína DEAD-box 58 , RNA Helicases DEAD-box/metabolismo , Humanos , Helicase IFIH1 Induzida por Interferon , NF-kappa B/metabolismo , Fosforilação , Processamento de Proteína Pós-Traducional , RNA Viral/farmacologia , Receptores Imunológicos , Ativação Transcricional/efeitos dos fármacos , Vitiligo/virologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
14.
FEBS J ; 281(21): 4935-50, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25205475

RESUMO

Post-translational modification by the small ubiquitin-like modifier (SUMO) regulates the cellular response to different types of stress and plays a pivotal role in the control of oncogenic viral infections. Here we investigated the capacity of microRNAs (miRNAs) encoded by Epstein-Barr virus to interfere with the SUMO signaling network. Using a computational strategy that scores different properties of miRNA-mRNA target pairs, we identified a minimal set of 575 members of the SUMO interactome that may be targeted by one or more Epstein-Barr virus miRNAs. A significant proportion of the candidates cluster in a functional network that controls chromatin organization, stress, DNA damage and immune responses, apoptosis and transforming growth factor beta signaling. Multiple components of the transforming growth factor beta signaling pathway were inhibited upon upregulation of the BamHI-H rightward open reading frame 1 (BHRF1) encoded miRNAs in cells transduced with recombinant lentiviruses or entering the productive virus cycle. These findings point to the capacity of viral miRNAs to interfere with SUMO-regulated cellular functions that control key aspects of viral replication and pathogenesis.


Assuntos
Regulação Viral da Expressão Gênica , Herpesvirus Humano 4/fisiologia , MicroRNAs/farmacologia , Processamento de Proteína Pós-Traducional , RNA Viral/farmacologia , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/fisiologia , Regiões 3' não Traduzidas/genética , Apoptose , Dano ao DNA , Redes Reguladoras de Genes , Herpesvirus Humano 4/genética , Interações Hospedeiro-Patógeno , Humanos , Fases de Leitura Aberta , RNA/fisiologia , Transdução de Sinais , Sumoilação , Transdução Genética , Fator de Crescimento Transformador beta/fisiologia , Replicação Viral
15.
PLoS One ; 9(8): e104039, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25090652

RESUMO

Even though combined anti-retroviral therapy (cART) dramatically improves patient survival, they remain at a higher risk of being afflicted with non-infectious complications such as cardiovascular disease (CVD). This increased risk is linked to persistent inflammation and chronic immune activation. In this study, we assessed whether this complication is related to HIV-derived ssRNAs inducing in macrophages increases in TNFα release through TLR8 activation leading to foam cell formation. HIV ssRNAs induced foam cell formation in monocyte-derived macrophages (MDMs) in a dose-dependent manner. This response was reduced when either endocytosis or endosomal acidification was inhibited by dynasore or chloroquine, respectively. Using a flow cytometry FRET assay, we demonstrated that ssRNAs bind to TLR8 in HEK cells. In MDMs, ssRNAs triggered a TLR8-mediated inflammatory response that ultimately lead to foam cell formation. Targeted silencing of the TLR8 and MYD88 genes reduced foam cell formation. Furthermore, foam cell formation induced by these ssRNAs was blocked by an anti-TNFα neutralizing antibody. Taken together in MDMs, HIV ssRNAs are internalized; bind TLR8 in the endosome followed by endosomal acidification. TLR8 signaling then triggers TNFα release and ultimately leads to foam cell formation. As this response was inhibited by a blocking anti-TNFα antibody, drug targeting HIV ssRNA-driven TLR8 activation may serve as a potential therapeutic target to reduce chronic immune activation and inflammation leading to CVD in HIV+ patients.


Assuntos
Células Espumosas/efeitos dos fármacos , HIV/química , Macrófagos Alveolares/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , RNA Viral/farmacologia , Receptor 8 Toll-Like/genética , Anticorpos Neutralizantes/farmacologia , Líquido da Lavagem Broncoalveolar/citologia , Cloroquina/farmacologia , Endocitose/efeitos dos fármacos , Endossomos/efeitos dos fármacos , Endossomos/metabolismo , Células Espumosas/metabolismo , Células Espumosas/patologia , Regulação da Expressão Gênica , Células HEK293 , Humanos , Hidrazonas/farmacologia , Concentração de Íons de Hidrogênio , Inflamação/genética , Inflamação/metabolismo , Inflamação/patologia , Macrófagos/metabolismo , Macrófagos/patologia , Macrófagos Alveolares/metabolismo , Macrófagos Alveolares/patologia , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , Cultura Primária de Células , Ligação Proteica/efeitos dos fármacos , Transdução de Sinais , Receptor 8 Toll-Like/agonistas , Receptor 8 Toll-Like/metabolismo , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
16.
Antiviral Res ; 108: 56-64, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24942376

RESUMO

Japanese encephalitis virus, a serious mosquito-borne flavivirus, causes acute encephalitis in humans and many animals, with a high fatality rate. RNA interference is a reasonable antiviral mechanism for target gene silencing. In this study, four lentiviral shRNAs (LV-E1, LV-E2, LV-NS3 and LV-NS4b) were constructed. The results showed that four recombinant lentiviruses suppressed JEV replication in vitro. Through treatment with LV-E1 or LV-E2, the TCID50 values were reduced by 10(3)-fold during 120h post-challenge; the relative expression of viral mRNA was <7% or 13% in mouse and human neuroblastoma cells. Lentiviral shRNAs displayed robust inhibitory activity in various cells and against different genotypes of JEV. In vivo, pre-treatments of LV-E1 or LV-E2 resulted in no viral particles being observed in suckling mice brain sections. For 21days of observation, 100% of mice were protected against lethal JEV injection by two pre-treatments with LV-E1 or LV-E2; the survival of the mice pre-challenged with lethal JEV was 88.3%/66.7% by treatment with LV-E1 or LV-E2. LV-E1 and LV-E2 suppressed the induction of inflammatory mediators effectively in neuroblastoma cells and mice. Lentiviral shRNAs significantly inhibit JEV infection for long-term in vitro and in vivo and effectively reduce the inflammatory response and relieve encephalitis symptoms, highlighting the feasibility of using lentivirus-mediated RNAi for potential therapy in JEV infection.


Assuntos
Antivirais/administração & dosagem , Vírus da Encefalite Japonesa (Espécie)/fisiologia , Encefalite Japonesa/virologia , Lentivirus/genética , Interferência de RNA , RNA Viral/administração & dosagem , Interferência Viral , Animais , Antivirais/farmacologia , Antivirais/uso terapêutico , Encéfalo/patologia , Encéfalo/virologia , Modelos Animais de Doenças , Vírus da Encefalite Japonesa (Espécie)/genética , Encefalite Japonesa/tratamento farmacológico , Encefalite Japonesa/patologia , Feminino , Inflamação/patologia , Camundongos Endogâmicos BALB C , RNA Viral/farmacologia , RNA Viral/uso terapêutico , Análise de Sobrevida , Carga Viral , Cultura de Vírus , Replicação Viral
17.
Mol Hum Reprod ; 20(7): 701-8, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24723465

RESUMO

There has been growing interest in the role of viral infections and their association with adverse pregnancy outcomes. However, little is known about the impact viral infections have on the fetal membranes (FM). Toll-like receptors (TLR) are thought to play a role in infection-associated inflammation at the maternal-fetal interface. Therefore, the objective of this study was to characterize the cytokine profile and antiviral response in human FMs exposed to viral dsRNA, which activates TLR3, and viral ssRNA, which activates TLR8; and to determine the mechanisms involved. The viral dsRNA analog, Poly(I:C), induced up-regulated secretion of MIP-1α, MIP-1ß, RANTES and TNF-α, and down-regulated interleukin (IL)-2 and VEGF secretion. In contrast, viral ssRNA induced a broader panel of cytokines in the FMs by up-regulating the secretion of IL-1ß, IL-2, IL-6, G-CSF, MCP-1, MIP-1α, MIP-1ß, RANTES, TNF-α and GRO-α. Using inhibitory peptides against TLR adapter proteins, FM secretion of MIP-1ß and RANTES in response to Poly(I:C) was MyD88 dependent; MIP-1α secretion was dependent on MyD88 and TRIF; and TNF-α production was independent of MyD88 and TRIF. Viral ssRNA-induced FM secretion of IL-1ß, IL-2, IL-6, G-CSF, MIP-1α, RANTES and GRO-α was dependent on MyD88 and TRIF; MIP-1ß was dependent upon TRIF, but not MyD88; and TNF-α and MCP-1 secretion was dependent on neither. Poly(I:C), but not ssRNA, induced an FM antiviral response by up-regulating the expression of IFNß, myxovirus-resistance A, 2',5'-oligoadenylate synthetase and apolipoprotein B mRNA-editing enzyme-catalytic polypeptide-like 3G. These findings demonstrate that human FMs respond to two viral signatures by generating distinct inflammatory cytokine/chemokine profiles and antiviral responses through different mechanisms.


Assuntos
Citocinas/metabolismo , Membranas Extraembrionárias/efeitos dos fármacos , Poli I-C/farmacologia , RNA de Cadeia Dupla/farmacologia , RNA Viral/farmacologia , Membranas Extraembrionárias/metabolismo , Feminino , Humanos , Gravidez , Regulação para Cima/efeitos dos fármacos
18.
J Neuroinflammation ; 11: 67, 2014 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-24694234

RESUMO

BACKGROUND: Neuroinflammation plays a critical role in the pathogenesis of Alzheimer's disease (AD) and involves activation of the innate immune response via recognition of diverse stimuli by pattern recognition receptors (PRRs). The inflammatory inducers and precise innate signaling pathway contributing to AD pathology remain largely undefined. RESULTS: In the present study we analyzed expression levels of innate immune proteins in temporal and occipital cortices from preclinical (no cognitive impairment, NCI, N = 22) to mild cognitive impairment (MCI, N = 20) associated with AD pathology (N = 20) and AD patients (N = 23). We found that retinoic acid-inducible gene-I (RIG-1) is significantly elevated in the temporal cortex and plasma in patients with MCI. In addition, primary human astrocytes stimulated with the RIG-1 ligand 5'ppp RNA showed increased expression of amyloid precursor protein (APP) and amyloid-ß (Aß), supporting the idea that RIG-1 is involved in the pathology of MCI associated with early progression to AD. CONCLUSION: These findings suggest that RIG-1 may play a critical role in incipient AD.


Assuntos
Doença de Alzheimer/sangue , Doença de Alzheimer/patologia , RNA Helicases DEAD-box/metabolismo , Lobo Occipital/metabolismo , Lobo Temporal/metabolismo , Idoso , Idoso de 80 Anos ou mais , Peptídeos beta-Amiloides/metabolismo , Peptídeos beta-Amiloides/farmacologia , Precursor de Proteína beta-Amiloide/metabolismo , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Células Cultivadas , Disfunção Cognitiva/sangue , Disfunção Cognitiva/patologia , Proteína DEAD-box 58 , Relação Dose-Resposta a Droga , Feminino , Expressão Gênica/efeitos dos fármacos , Humanos , Fator Regulador 3 de Interferon/metabolismo , Masculino , Pessoa de Meia-Idade , Lobo Occipital/citologia , Fragmentos de Peptídeos/farmacologia , RNA Viral/farmacologia , Receptores Imunológicos , Lobo Temporal/citologia
19.
PLoS One ; 9(4): e95927, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24759703

RESUMO

Upon viral infections, pattern recognition receptors (PRRs) recognize pathogen-associated molecular patterns (PAMPs) and stimulate an antiviral state associated with the production of type I interferons (IFNs) and inflammatory markers. Type I IFNs play crucial roles in innate antiviral responses by inducing expression of interferon-stimulated genes and by activating components of the adaptive immune system. Although pegylated IFNs have been used to treat hepatitis B and C virus infections for decades, they exert substantial side effects that limit their use. Current efforts are directed toward the use of PRR agonists as an alternative approach to elicit host antiviral responses in a manner similar to that achieved in a natural infection. RIG-I is a cytosolic PRR that recognizes 5' triphosphate (5'ppp)-containing RNA ligands. Due to its ubiquitous expression profile, induction of the RIG-I pathway provides a promising platform for the development of novel antiviral agents and vaccine adjuvants. In this study, we investigated whether structured RNA elements in the genome of coxsackievirus B3 (CVB3), a picornavirus that is recognized by MDA5 during infection, could activate RIG-I when supplied with 5'ppp. We show here that a 5'ppp-containing cloverleaf (CL) RNA structure is a potent RIG-I inducer that elicits an extensive antiviral response that includes induction of classical interferon-stimulated genes, as well as type III IFNs and proinflammatory cytokines and chemokines. In addition, we show that prophylactic treatment with CVB3 CL provides protection against various viral infections including dengue virus, vesicular stomatitis virus and enterovirus 71, demonstrating the antiviral efficacy of this RNA ligand.


Assuntos
Antivirais/farmacologia , Picornaviridae/genética , Infecções por Vírus de RNA/imunologia , RNA Viral/química , Receptores do Ácido Retinoico/metabolismo , Animais , Antivirais/uso terapêutico , Linhagem Celular , Citocinas/metabolismo , RNA Helicases DEAD-box/metabolismo , Fibroblastos/citologia , Fibroblastos/imunologia , Fibroblastos/virologia , Células HeLa , Humanos , Camundongos , Modelos Moleculares , Conformação de Ácido Nucleico , Picornaviridae/química , Picornaviridae/imunologia , Polifosfatos/farmacologia , Infecções por Vírus de RNA/prevenção & controle , Infecções por Vírus de RNA/virologia , RNA Viral/imunologia , RNA Viral/metabolismo , RNA Viral/farmacologia , RNA Viral/uso terapêutico , Receptores do Ácido Retinoico/genética
20.
J Med Primatol ; 42(5): 247-53, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23905748

RESUMO

BACKGROUND: During progressive simian immunodeficiency virus (SIV) infection, the ability of innate mononuclear phagocytes to function when responding to the invading pathogen has yet to be determined. METHODS: We generated single-stranded RNA (ssRNA) oligonucleotides from the infecting strain of virus and utilized them to stimulate mononuclear phagocytes from blood and lymph nodes of naïve and SIVmac251-infected rhesus macaques. RESULTS: Soon after infection and continuing through to chronic disease, plasmacytoid dendritic cells (pDC), monocytes, and macrophages from SIV-infected macaques were less able to produce pro-inflammatory cytokines after exposure to virus-derived toll-like receptor (TLR) agonists. In contrast, myeloid dendritic cells (mDC) became hyper-responsive during acute and stable chronic infection. CONCLUSIONS: Plasmacytoid dendritic cells, monocytes, and macrophages may not instigate continued immune activation by recognizing the single-stranded RNA from SIV as they are left dysfunctional after infection. Conversely, mDC functionality may be beneficial as their hyper-responsiveness is related to slowed disease progression.


Assuntos
Sistema Fagocitário Mononuclear/patologia , Sistema Fagocitário Mononuclear/virologia , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/patologia , Vírus da Imunodeficiência Símia/imunologia , Receptores Toll-Like/agonistas , Doença Aguda , Animais , Doença Crônica , Células Dendríticas/imunologia , Células Dendríticas/patologia , Células Dendríticas/virologia , Macaca mulatta , Macrófagos/imunologia , Macrófagos/patologia , Macrófagos/virologia , Masculino , Monócitos/imunologia , Monócitos/patologia , Monócitos/virologia , Sistema Fagocitário Mononuclear/imunologia , RNA Viral/farmacologia , Síndrome de Imunodeficiência Adquirida dos Símios/metabolismo , Vírus da Imunodeficiência Símia/patogenicidade , Receptores Toll-Like/metabolismo , Receptores Toll-Like/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA