Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biochem Biophys Res Commun ; 412(4): 518-21, 2011 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-21741368

RESUMO

We report an 11-year-old boy with exercise-related myopathy, and a novel mutation m.5669G>A in the mitochondrial tRNA Asparagine gene (mt-tRNA(Asn), MTTN). Muscle biopsy studies showed COX-negative, SDH-positive fibers at histochemistry and biochemical defects of oxidative metabolism. The m.5669G>A mutation was present only in patient's muscle resulting in the first muscle-specific MTTN mutation. Mt-tRNA(Asn) steady-state levels and in silico predictions supported the pathogenicity of this mutation. A mitochondrial myopathy should be considered in the differential diagnosis of exercise intolerance in children.


Assuntos
DNA Mitocondrial/genética , Mitocôndrias Musculares/genética , Miopatias Mitocondriais/genética , Músculo Esquelético/metabolismo , RNA de Transferência de Asparagina/genética , RNA/genética , Sequência de Bases , Criança , Tolerância ao Exercício/genética , Humanos , Masculino , Miopatias Mitocondriais/patologia , Miopatias Mitocondriais/fisiopatologia , Dados de Sequência Molecular , Debilidade Muscular/genética , Debilidade Muscular/patologia , Músculo Esquelético/patologia , Conformação de Ácido Nucleico , RNA/química , RNA Mitocondrial , RNA de Transferência de Asparagina/química
2.
Nucleic Acids Res ; 37(11): 3747-55, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19376831

RESUMO

Aminoacyl-transfer RNAs contain four standardized units: amino acids, an invariant 3'-terminal CCA, trinucleotide anticodons and tRNA bodies. The degree of interchangeability of the three variable modules is poorly understood, despite its role in evolution and the engineering of translation to incorporate unnatural amino acids. Here, a purified translation system is used to investigate effects of various module swaps on the efficiency of multiple ribosomal incorporations of unnatural aminoacyl-tRNA substrates per peptide product. The yields of products containing three to five adjacent l-amino acids with unnatural side chains are low and cannot be improved by optimization or explained simply by any single factor tested. Though combinations of modules that allow quantitative single unnatural incorporations are found readily, finding combinations that enable efficient synthesis of products containing multiple unnatural amino acids is challenging. This implies that assaying multiple, as opposed to single, incorporations per product is a more stringent assay of substrate activity. The unpredictability of most results illustrates the multifactorial nature of substrate recognition and the value of synthetic biology for testing our understanding of translation. Data indicate that the degree of interchangeability of the modules of aminoacyl-tRNAs is low.


Assuntos
Biossíntese de Proteínas , RNA de Transferência Aminoácido-Específico/química , Ribossomos/metabolismo , Alilglicina/metabolismo , Aminoácidos/química , Sequência de Bases , Dados de Sequência Molecular , Biossíntese Peptídica , Peptídeos , RNA de Transferência de Asparagina/química , RNA de Transferência de Fenilalanina/química
3.
Mol Biosyst ; 3(6): 408-18, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17533454

RESUMO

In nature, ribosomally synthesized proteins can contain at least 22 different amino acids: the 20 common amino acids as well as selenocysteine and pyrrolysine. Each of these amino acids is inserted into proteins codon-specifically via an aminoacyl-transfer RNA (aa-tRNA). In most cases, these aa-tRNAs are biosynthesized directly by a set of highly specific and accurate aminoacyl-tRNA synthetases (aaRSs). However, in some cases aaRSs with relaxed or novel substrate specificities cooperate with other enzymes to generate specific canonical and non-canonical aminoacyl-tRNAs.


Assuntos
Aminoacilação de RNA de Transferência , Aminoacil-tRNA Sintetases/metabolismo , Aspartato-tRNA Ligase/metabolismo , Bactérias/enzimologia , Aminoacil-RNA de Transferência/biossíntese , Aminoacil-RNA de Transferência/química , Aminoacil-RNA de Transferência/metabolismo , RNA de Transferência de Asparagina/biossíntese , RNA de Transferência de Asparagina/química , RNA de Transferência de Cisteína/biossíntese , RNA de Transferência de Cisteína/química , RNA de Transferência de Glutamina/biossíntese , RNA de Transferência de Glutamina/química
4.
J Enzyme Inhib Med Chem ; 22(1): 77-82, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17373551

RESUMO

Asparaginyl-tRNA formation in Pseudomonas aeruginosa PAO1 involves a nondiscriminating aspartyl-tRNA synthetase (ND-AspRS) which forms Asp-tRNA(Asp) and Asp-tRNA(Asn), and a tRNA-dependent amidotransferase which transamidates the latter into Asn-tRNA(Asn). We report here that the inhibition of this ND-AspRS by L-aspartol adenylate (Asp-ol-AMP), a stable analog of the natural reaction intermediate L-aspartyl adenylate, is biphasic because the aspartylation of the two tRNA substrates of ND-AspRS, tRNA(Asp) and tRNA(Asn), are inhibited with different Ki values (41 microM and 215 microM, respectively). These results reveal that the two tRNA substrates of ND-AspRS interact differently with its active site. Yeast tRNA(Asp) transcripts with some identity elements replaced by those of tRNA(Asn) have their aspartylation inhibited with Ki values different from that for the wild-type transcript. Therefore, aminoacyl adenylate analogs, which are competitive inhibitors of their cognate aminoacyl-tRNA synthetase, can be used to probe rapidly the role of various structural elements in positioning the tRNA acceptor end in the active site.


Assuntos
Monofosfato de Adenosina/análogos & derivados , Aspartato-tRNA Ligase/antagonistas & inibidores , Ácido Aspártico/análogos & derivados , Inibidores Enzimáticos/farmacologia , RNA de Transferência de Asparagina/metabolismo , RNA de Transferência de Ácido Aspártico/metabolismo , Monofosfato de Adenosina/farmacologia , Ácido Aspártico/farmacologia , Sequência de Bases , Sítios de Ligação , Primers do DNA , Conformação de Ácido Nucleico , RNA de Transferência de Asparagina/química , RNA de Transferência de Ácido Aspártico/química
5.
Artigo em Inglês | MEDLINE | ID: mdl-14751792

RESUMO

Three queuosine derivatives (Q-derivatives) have been found at position 34 of four mammalian so-called Q-tRNAs: queuosine (Q) in tRNA(Asn) and tRNA(His), mannosyl-queuosine (manQ) in tRNA(Asp), and galactosyl-queuosine (galQ) in tRNA(Tyr). An analytical procedure based on the combined means of purified tRNA isolation from liver cells and ribonucleoside analysis by reverse-phase high performance liquid chromatography coupled with real-time UV-spectrometry (RPLC-UV) was developed for the quantitative analysis of the three Q-derivatives present in total tRNA from liver tissues and liver cell cultures. Using this analytical procedure, the rates of Q-tRNA modification were studied in total tRNAs from various mammalian hepatic cells. Our results show that the four Q-tRNAs are fully modified in liver tissues from adult mammals, regardless of the mammal species. However, a lack in the Q-modification level was observed in Q-tRNAs from newborn rat liver, as well in Q-tRNAs from normal rat liver cell cultures growing in a low queuine content medium, and from a rat hepatoma cell line. It is noteworthy that in all cases of Q-tRNA hypomodification, our analytical procedure showed that tRNA(Asp) is always the least affected by the hypomodification. The biological significance of this phenomenon is discussed.


Assuntos
Cromatografia Líquida de Alta Pressão , Fígado/química , Nucleosídeo Q/análogos & derivados , Nucleosídeo Q/análise , RNA de Transferência/química , Animais , Células Cultivadas , Galinhas , Hepatócitos/química , Neoplasias Hepáticas Experimentais , RNA de Transferência/isolamento & purificação , Aminoacil-RNA de Transferência/química , RNA de Transferência de Asparagina/química , Ratos , Células Tumorais Cultivadas
6.
Mol Cell Biol ; 17(12): 6831-7, 1997 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-9372914

RESUMO

We introduced mitochondrial DNA (mtDNA) from a patient with a mitochondrial myopathy into established mtDNA-less human osteosarcoma cells. The resulting transmitochondrial cybrid lines, containing either exclusively wild-type or mutated (G5703A transition in the tRNA[Asn] gene) mtDNA, were characterized and analyzed for oxidative phosphorylation function and steady-state levels of different RNA species. Functional studies showed that the G5703A mutation severely impairs oxidative phosphorylation function and mitochondrial protein synthesis. We detected a marked reduction in tRNA(Asn) steady-state levels which was not associated with an accumulation of intermediate transcripts containing tRNA(Asn) sequences or decreased transcription. Native polyacrylamide gel electrophoresis showed that the residual tRNA(Asn) fraction in mutant cybrids had an altered conformation, suggesting that the mutation destabilized the tRNA(Asn) secondary or tertiary structure. Our results suggest that the G5703 mutation causes a conformational change in the tRNA(Asn) which may impair aminoacylation. This alteration leads to a severe reduction in the functional tRNA(Asn) pool by increasing its in vivo degradation by mitochondrial RNases.


Assuntos
DNA Mitocondrial/genética , Mutação Puntual , RNA de Transferência de Asparagina/genética , Sequência de Bases , Humanos , Células Híbridas , Ácido Láctico/biossíntese , Mitocôndrias/genética , Mitocôndrias/metabolismo , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Fosforilação Oxidativa , Consumo de Oxigênio/genética , Fenótipo , Biossíntese de Proteínas , Processamento Pós-Transcricional do RNA/genética , RNA de Transferência de Asparagina/química , RNA de Transferência de Asparagina/metabolismo , Ribonucleases/metabolismo
7.
Mol Biol Evol ; 14(1): 91-104, 1997 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-9000757

RESUMO

Two novel mitochondrial gene arrangements are identified in an agamid lizard and a ranid frog. Statistical tests incorporating phylogeny indicate a link between novel vertebrate mitochondrial gene orders and movement of the origin of light-strand replication. A mechanism involving errors in light-strand replication and tandem duplication of genes is proposed for rearrangement of vertebrate mitochondrial genes. A second mechanism involving small direct repeats also is identified. These mechanisms implicate gene order as a reliable phylogenetic character. Shifts in gene order define major lineages without evidence of parallelism or reversal. The loss of the origin of light-strand replication from its typical vertebrate position evolves in parallel and, therefore, is a less reliable phylogenetic character. Gene junctions also evolve in parallel. Sequencing across multigenic regions, in particular transfer RNA genes, should be a major focus of future systematic studies to locate novel gene orders and to provide a better understanding of the evolution of the vertebrate mitochondrial genome.


Assuntos
Rearranjo Gênico , Vertebrados/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Primers do DNA/genética , Replicação do DNA/genética , DNA Mitocondrial/genética , Evolução Molecular , Genoma , Lagartos/genética , Dados de Sequência Molecular , Família Multigênica , Conformação de Ácido Nucleico , Filogenia , RNA de Transferência de Asparagina/química , RNA de Transferência de Asparagina/genética , RNA de Transferência de Cisteína/química , RNA de Transferência de Cisteína/genética , Ranidae/genética , Répteis/genética
8.
Biochem Mol Biol Int ; 32(6): 1161-72, 1994 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-8061634

RESUMO

The genes coding for tRNA-Cys (trnC), tRNA-Asn (trnN) and tRNA-Tyr (trnY) have been sequenced in a region of about 3.0 kb of the sunflower mitochondrial DNA. The trnC and trnY are genuine mitochondrial genes, while the trnN gene has a chloroplast origin. Despite their heterologous origin the three genes are transcribed. Their arrangement is the first detected in a highly conserved form in a specific group of advanced dicots.


Assuntos
DNA Mitocondrial/genética , Genes de Plantas , Helianthus/genética , RNA de Transferência Aminoácido-Específico/genética , Sequência de Bases , Northern Blotting , DNA Mitocondrial/química , Dados de Sequência Molecular , Hibridização de Ácido Nucleico , Reação em Cadeia da Polimerase , RNA de Transferência de Asparagina/química , RNA de Transferência de Asparagina/genética , RNA de Transferência de Cisteína/química , RNA de Transferência de Cisteína/genética , RNA de Transferência de Tirosina/química , RNA de Transferência de Tirosina/genética , Alinhamento de Sequência , Homologia de Sequência do Ácido Nucleico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA