Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Mol Biol ; 425(20): 3888-906, 2013 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-23727144

RESUMO

The 2-thiouridine (s(2)U) at the wobble position of certain bacterial and eukaryotic tRNAs enhances aminoacylation kinetics, assists proper codon-anticodon base pairing at the ribosome A-site, and prevents frameshifting during translation. By mass spectrometry of affinity-purified native Escherichia coli tRNA1(Gln)UUG, we show that the complete modification at the wobble position 34 is 5-carboxyaminomethyl-2-thiouridine (cmnm(5)s(2)U). The crystal structure of E. coli glutaminyl-tRNA synthetase (GlnRS) bound to native tRNA1(Gln) and ATP demonstrates that cmnm(5)s(2)U34 improves the order of a previously unobserved 11-amino-acid surface loop in the distal ß-barrel domain of the enzyme and imparts other local rearrangements of nearby amino acids that create a binding pocket for the 2-thio moiety. Together with previously solved structures, these observations explain the degenerate recognition of C34 and modified U34 by GlnRS. Comparative pre-steady-state aminoacylation kinetics of native tRNA1(Gln), synthetic tRNA1(Gln) containing s(2)U34 as sole modification, and unmodified wild-type and mutant tRNA1(Gln) and tRNA2(Gln) transcripts demonstrates that the exocyclic sulfur moiety improves tRNA binding affinity to GlnRS 10-fold compared with the unmodified transcript and that an additional fourfold improvement arises from the presence of the cmnm(5) moiety. Measurements of Gln-tRNA(Gln) interactions at the ribosome A-site show that the s(2)U modification enhances binding affinity to the glutamine codons CAA and CAG and increases the rate of GTP hydrolysis by E. coli EF-Tu by fivefold.


Assuntos
Anticódon/genética , Biossíntese de Proteínas/fisiologia , RNA de Transferência/química , RNA de Transferência/genética , Tiouridina/análogos & derivados , Trifosfato de Adenosina/metabolismo , Aminoacil-tRNA Sintetases/metabolismo , Anticódon/química , Sequência de Bases , Cristalografia por Raios X , Escherichia coli/genética , Escherichia coli/metabolismo , Simulação de Acoplamento Molecular , Conformação de Ácido Nucleico , Nucleosídeos/química , Nucleosídeos/metabolismo , Ligação Proteica , Conformação Proteica , RNA de Transferência/metabolismo , RNA de Transferência de Glutamina/química , RNA de Transferência de Glutamina/genética , RNA de Transferência de Glutamina/metabolismo , Ribossomos/metabolismo , Tiouridina/metabolismo
2.
J Biomol Struct Dyn ; 30(6): 701-15, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22731388

RESUMO

In the present work we report, for the first time, a novel difference in the molecular mechanism of the activation step of aminoacylation reaction between the class I and class II aminoacyl tRNA synthetases (aaRSs). The observed difference is in the mode of nucleophilic attack by the oxygen atom of the carboxylic group of the substrate amino acid (AA) to the αP atom of adenosine triphosphate (ATP). The syn oxygen atom of the carboxylic group attacks the α-phosphorous atom (αP) of ATP in all class I aaRSs (except TrpRS) investigated, while the anti oxygen atom attacks in the case of class II aaRSs. The class I aaRSs investigated are GluRS, GlnRS, TyrRS, TrpRS, LeuRS, ValRS, IleRS, CysRS, and MetRS and class II aaRSs investigated are HisRS, LysRS, ProRS, AspRS, AsnRS, AlaRS, GlyRS, PheRS, and ThrRS. The variation of the electron density at bond critical points as a function of the conformation of the attacking oxygen atom measured by the dihedral angle ψ (C(α)-C') conclusively proves this. The result shows that the strength of the interaction of syn oxygen and αP is stronger than the interaction with the anti oxygen for class I aaRSs. This indicates that the syn oxygen is the most probable candidate for the nucleophilic attack in class I aaRSs. The result is further supported by the computation of the variation of the nonbonded interaction energies between αP atom and anti oxygen as well as syn oxygen in class I and II aaRSs, respectively. The difference in mechanism is explained based on the analysis of the electrostatic potential of the AA and ATP which shows that the relative arrangement of the ATP with respect to the AA is opposite in class I and class II aaRSs, which is correlated with the organization of the active site in respective aaRSs. A comparative study of the reaction mechanisms of the activation step in a class I aaRS (Glutaminyl tRNA synthetase) and in a class II aaRS (Histidyl tRNA synthetase) is carried out by the transition state analysis. The atoms in molecule analysis of the interaction between active site residues or ions and substrates are carried out in the reactant state and the transition state. The result shows that the observed novel difference in the mechanism is correlated with the organizations of the active sites of the respective aaRSs. The result has implication in understanding the experimentally observed different modes of tRNA binding in the two classes of aaRSs.


Assuntos
Aminoacil-tRNA Sintetases/química , Histidina-tRNA Ligase/química , Modelos Moleculares , Trifosfato de Adenosina/química , Algoritmos , Motivos de Aminoácidos , Domínio Catalítico , Simulação por Computador , Ligação Proteica , RNA de Transferência de Glutamina/química , RNA de Transferência de Histidina/química , Propriedades de Superfície , Termodinâmica
3.
Proc Natl Acad Sci U S A ; 105(27): 9186-91, 2008 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-18587046

RESUMO

Mitochondrial genomes generally encode a minimal set of tRNAs necessary for protein synthesis. However, a number of eukaryotes import tRNAs from the cytoplasm into their mitochondria. For instance, Saccharomyces cerevisiae imports cytoplasmic tRNA(Gln) into the mitochondrion without any added protein factors. Here, we examine the existence of a similar active tRNA import system in mammalian mitochondria. We have used subcellular RNA fractions from rat liver and human cells to perform RT-PCR with oligonucleotide primers specific for nucleus-encoded tRNA(CUG)(Gln) and tRNA(UUG)(Gln) species, and we show that these tRNAs are present in rat and human mitochondria in vivo. Import of in vitro transcribed tRNAs, but not of heterologous RNAs, into isolated mitochondria also demonstrates that this process is tRNA-specific and does not require the addition of cytosolic factors. Although this in vitro system requires ATP, it is resistant to inhibitors of the mitochondrial electrochemical gradient, a key component of protein import. tRNA(Gln) import into mammalian mitochondria proceeds by a mechanism distinct from protein import. We also show that both tRNA(Gln) species and a bacterial pre-tRNA(Asp) can be imported in vitro into mitochondria isolated from myoclonic epilepsy with ragged-red fiber cells if provided with sufficient ATP (2 mM). This work suggests that tRNA import is more widespread than previously thought and may be a universal trait of mitochondria. Mutations in mitochondrial tRNA genes have been associated with human disease; the tRNA import system described here could possibly be exploited for the manipulation of defective mitochondria.


Assuntos
Mamíferos/metabolismo , Mitocôndrias/metabolismo , Transporte de RNA , RNA de Transferência de Glutamina/metabolismo , Trifosfato de Adenosina/farmacologia , Animais , Sequência de Bases , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Citosol/efeitos dos fármacos , Citosol/metabolismo , Células HeLa , Humanos , Síndrome MERRF/patologia , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/patologia , Mitocôndrias Hepáticas/efeitos dos fármacos , Mitocôndrias Hepáticas/metabolismo , Dados de Sequência Molecular , Conformação de Ácido Nucleico/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , Transporte de RNA/efeitos dos fármacos , RNA de Transferência de Glutamina/química , RNA de Transferência de Glutamina/genética , Ratos , Solubilidade/efeitos dos fármacos
4.
Mol Biosyst ; 3(6): 408-18, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17533454

RESUMO

In nature, ribosomally synthesized proteins can contain at least 22 different amino acids: the 20 common amino acids as well as selenocysteine and pyrrolysine. Each of these amino acids is inserted into proteins codon-specifically via an aminoacyl-transfer RNA (aa-tRNA). In most cases, these aa-tRNAs are biosynthesized directly by a set of highly specific and accurate aminoacyl-tRNA synthetases (aaRSs). However, in some cases aaRSs with relaxed or novel substrate specificities cooperate with other enzymes to generate specific canonical and non-canonical aminoacyl-tRNAs.


Assuntos
Aminoacilação de RNA de Transferência , Aminoacil-tRNA Sintetases/metabolismo , Aspartato-tRNA Ligase/metabolismo , Bactérias/enzimologia , Aminoacil-RNA de Transferência/biossíntese , Aminoacil-RNA de Transferência/química , Aminoacil-RNA de Transferência/metabolismo , RNA de Transferência de Asparagina/biossíntese , RNA de Transferência de Asparagina/química , RNA de Transferência de Cisteína/biossíntese , RNA de Transferência de Cisteína/química , RNA de Transferência de Glutamina/biossíntese , RNA de Transferência de Glutamina/química
5.
Science ; 312(5782): 1950-4, 2006 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-16809540

RESUMO

Glutaminyl-transfer RNA (Gln-tRNA(Gln)) in archaea is synthesized in a pretranslational amidation of misacylated Glu-tRNA(Gln) by the heterodimeric Glu-tRNA(Gln) amidotransferase GatDE. Here we report the crystal structure of the Methanothermobacter thermautotrophicus GatDE complexed to tRNA(Gln) at 3.15 angstroms resolution. Biochemical analysis of GatDE and of tRNA(Gln) mutants characterized the catalytic centers for the enzyme's three reactions (glutaminase, kinase, and amidotransferase activity). A 40 angstrom-long channel for ammonia transport connects the active sites in GatD and GatE. tRNA(Gln) recognition by indirect readout based on shape complementarity of the D loop suggests an early anticodon-independent RNA-based mechanism for adding glutamine to the genetic code.


Assuntos
Código Genético , Glutamina/metabolismo , Methanobacteriaceae/enzimologia , Transferases de Grupos Nitrogenados/química , Transferases de Grupos Nitrogenados/metabolismo , RNA Arqueal/química , RNA de Transferência de Glutamina/química , Acilação , Trifosfato de Adenosina/metabolismo , Amônia/metabolismo , Anticódon , Sítios de Ligação , Domínio Catalítico , Simulação por Computador , Cristalografia por Raios X , Dimerização , Ligação de Hidrogênio , Magnésio/metabolismo , Methanobacteriaceae/genética , Modelos Moleculares , Mutação , Conformação de Ácido Nucleico , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , RNA Arqueal/metabolismo , RNA de Transferência de Glutamina/metabolismo
6.
Science ; 312(5782): 1954-8, 2006 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-16809541

RESUMO

The formation of glutaminyl transfer RNA (Gln-tRNA(Gln)) differs among the three domains of life. Most bacteria employ an indirect pathway to produce Gln-tRNA(Gln) by a heterotrimeric glutamine amidotransferase CAB (GatCAB) that acts on the misacylated Glu-tRNA(Gln). Here, we describe a series of crystal structures of intact GatCAB from Staphylococcus aureus in the apo form and in the complexes with glutamine, asparagine, Mn2+, and adenosine triphosphate analog. Two identified catalytic centers for the glutaminase and transamidase reactions are markedly distant but connected by a hydrophilic ammonia channel 30 A in length. Further, we show that the first U-A base pair in the acceptor stem and the D loop of tRNA(Gln) serve as identity elements essential for discrimination by GatCAB and propose a complete model for the overall concerted reactions to synthesize Gln-tRNA(Gln).


Assuntos
Amônia/metabolismo , Glutamina/química , Aminoacil-RNA de Transferência/metabolismo , RNA de Transferência de Glutamina/química , Staphylococcus aureus/enzimologia , Difosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Aminoaciltransferases/metabolismo , Apoenzimas/química , Apoenzimas/metabolismo , Asparagina/metabolismo , Pareamento de Bases , Domínio Catalítico , Cristalografia por Raios X , Glutaminase/metabolismo , Glutamina/metabolismo , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Magnésio/metabolismo , Manganês/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Conformação de Ácido Nucleico , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Subunidades Proteicas , RNA Bacteriano/química , RNA Bacteriano/metabolismo , Aminoacil-RNA de Transferência/química , RNA de Transferência de Glutamina/metabolismo , Staphylococcus aureus/genética , Staphylococcus aureus/metabolismo
7.
J Biol Chem ; 280(9): 8150-5, 2005 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-15611111

RESUMO

Gln-tRNA(Gln) is synthesized from Glu-tRNA(Gln) in most microorganisms by a tRNA-dependent amidotransferase in a reaction requiring ATP and an amide donor such as glutamine. GatDE is a heterodimeric amidotransferase that is ubiquitous in Archaea. GatD resembles bacterial asparaginases and is expected to function in amide donor hydrolysis. We show here that Methanothermobacter thermautotrophicus GatD acts as a glutaminase but only in the presence of both Glu-tRNA(Gln) and the other subunit, GatE. The fact that only Glu-tRNA(Gln) but not tRNA(Gln) could activate the glutaminase activity of GatD suggests that glutamine hydrolysis is coupled tightly to transamidation. M. thermautotrophicus GatDE enzymes that were mutated in GatD at each of the four critical asparaginase-active site residues lost the ability to hydrolyze glutamine and were unable to convert Glu-tRNA(Gln) to Gln-tRNA(Gln) when glutamine was the amide donor. However, ammonium chloride rescued the activities of these mutants, suggesting that the integrity of the ATPase and the transferase activities in the mutant GatDE enzymes was maintained. In addition, pyroglutamyl-tRNA(Gln) accumulated during the reaction catalyzed by the glutaminase-deficient mutants or by GatE alone. The pyroglutamyl-tRNA is most likely a cyclized by-product derived from gamma-phosphoryl-Glu-tRNA(Gln), the proposed high energy intermediate in Glu-tRNA(Gln) transamidation. That GatE alone could form the intermediate indicates that GatE is a Glu-tRNA(Gln) kinase. The activation of Glu-tRNA(Gln) via gamma-phosphorylation bears a similarity to the mechanism used by glutamine synthetase, which may point to an ancient link between glutamine synthesized for metabolism and translation.


Assuntos
Asparaginase/química , Ácido Glutâmico/química , RNA de Transferência de Glutamina/química , Trifosfato de Adenosina/química , Cloreto de Amônio/farmacologia , Archaea/metabolismo , Ácido Aspártico/química , Sítios de Ligação , Cromatografia em Camada Fina , Clonagem Molecular , Ativação Enzimática , Glutamato-Amônia Ligase/química , Glutaminase/química , Glutamina/química , Hidrólise , Lisina/química , Methanobacteriaceae/enzimologia , Modelos Químicos , Mutação , Fosforilação , Biossíntese de Proteínas , Proteínas Quinases/química , Proteínas Quinases/metabolismo , Ácido Pirrolidonocarboxílico/química , RNA de Transferência/química , Treonina/química
8.
J Mol Biol ; 328(2): 395-408, 2003 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-12691748

RESUMO

The 2.5 A crystal structure of Escherichia coli glutaminyl-tRNA synthetase in a quaternary complex with tRNA(Gln), an ATP analog and glutamate reveals that the non-cognate amino acid adopts a distinct binding mode within the active site cleft. In contrast to the binding of cognate glutamine, one oxygen of the charged glutamate carboxylate group makes a direct ion-pair interaction with the strictly conserved Arg30 residue located in the first half of the dinucleotide fold domain. The nucleophilic alpha-carboxylate moiety of glutamate is mispositioned with respect to both the ATP alpha-phosphate and terminal tRNA ribose groups, suggesting that a component of amino acid discrimination resides at the catalytic step of the reaction. Further, the other side-chain carboxylate oxygen of glutamate is found in a position identical to that previously proposed to be occupied by the NH(2) group of the cognate glutamine substrate. At this position, the glutamate oxygen accepts hydrogen bonds from the hydroxyl moiety of Tyr211 and a water molecule. These findings demonstrate that amino acid specificity by GlnRS cannot arise from hydrogen bonds donated by the cognate glutamine amide to these same moieties, as previously suggested. Instead, Arg30 functions as a negative determinant to drive binding of non-cognate glutamate into a non-productive orientation. The poorly differentiated cognate amino acid-binding site in GlnRS may be a consequence of the late emergence of this enzyme from the eukaryotic lineage of glutamyl-tRNA synthetases.


Assuntos
Trifosfato de Adenosina/análogos & derivados , Aminoacil-tRNA Sintetases/química , Aminoacil-tRNA Sintetases/metabolismo , Trifosfato de Adenosina/química , Trifosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Aminoacil-tRNA Sintetases/genética , Domínio Catalítico , Cristalografia por Raios X , Escherichia coli/enzimologia , Escherichia coli/genética , Evolução Molecular , Ácido Glutâmico/química , Ácido Glutâmico/metabolismo , Glutamina/química , Glutamina/metabolismo , Ligação de Hidrogênio , Cinética , Substâncias Macromoleculares , Modelos Moleculares , Dados de Sequência Molecular , RNA de Transferência de Glutamina/química , RNA de Transferência de Glutamina/metabolismo , Homologia de Sequência de Aminoácidos , Eletricidade Estática , Especificidade por Substrato , Água/metabolismo
9.
J Am Chem Soc ; 124(34): 9972-3, 2002 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-12188645

RESUMO

The incorporation of unnatural amino acid into selectable, amplifiable peptide and protein libraries expands the chemical diversity of such libraries, thus considerably facilitating the process of obtaining ligands with improved properties (affinity, specificity, and function), particularly against therapeutically interesting targets. Here, we report that biocytin, a biotin derivative of lysine, can be inserted into an mRNA-protein fusion molecule through amber stop codon suppression. We also demonstrate that templates containing the codon corresponding to the biocytin tRNA (a UAG stop codon) can be enriched by iterative cycles of selection against a streptavidin agarose matrix.


Assuntos
Aminoácidos/química , Perfilação da Expressão Gênica , Lisina/análogos & derivados , Biblioteca de Peptídeos , Peptídeos/síntese química , Sequência de Aminoácidos , Aminoácidos/genética , Animais , Sequência de Bases , Lisina/química , Dados de Sequência Molecular , Peptídeos/genética , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , RNA de Transferência de Glutamina/química , RNA de Transferência de Glutamina/genética , Moldes Genéticos , Tetrahymena/genética
10.
J Mol Biol ; 303(4): 503-14, 2000 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-11054287

RESUMO

The core of Escherichia coli tRNA(Cys) is important for aminoacylation of the tRNA by cysteine-tRNA synthetase. This core differs from the common tRNA core by having a G15:G48, rather than a G15:C48 base-pair. Substitution of G15:G48 with G15:C48 decreases the catalytic efficiency of aminoacylation by two orders of magnitude. This indicates that the design of the core is not compatible with G15:C48. However, the core of E. coli tRNA(Gln), which contains G15:C48, is functional for cysteine-tRNA synthetase. Here, guided by the core of E. coli tRNA(Gln), we sought to test and identify alternative functional design of the tRNA(Cys) core that contains G15:C48. Although analysis of the crystal structure of tRNA(Cys) and tRNA(Gln) implicated long-range tertiary base-pairs above and below G15:G48 as important for a functional core, we showed that this was not the case. The replacement of tertiary interactions involving 9, 21, and 59 in tRNA(Cys) with those in tRNA(Gln) did not construct a functional core that contained G15:C48. In contrast, substitution of nucleotides in the variable loop adjacent to 48 of the 15:48 base-pair created functional cores. Modeling studies of a functional core suggests that the re-constructed core arose from enhanced stacking interactions that compensated for the disruption caused by the G15:C48 base-pair. The repacked tRNA core displayed features that were distinct from those of the wild-type and provided evidence that stacking interactions are alternative means than long-range tertiary base-pairs to a functional core for aminoacylation.


Assuntos
Aminoacil-tRNA Sintetases/metabolismo , Escherichia coli/genética , Mutação/genética , Conformação de Ácido Nucleico , RNA de Transferência de Cisteína/química , RNA de Transferência de Cisteína/metabolismo , Acilação , Anticódon/genética , Pareamento de Bases/genética , Sequência de Bases , Escherichia coli/enzimologia , Cinética , Modelos Moleculares , Dados de Sequência Molecular , RNA Bacteriano/química , RNA Bacteriano/genética , RNA Bacteriano/metabolismo , RNA de Transferência de Cisteína/genética , RNA de Transferência de Glutamina/química , RNA de Transferência de Glutamina/genética , Especificidade por Substrato , Ésteres do Ácido Sulfúrico/metabolismo , Termodinâmica
11.
Neuromuscul Disord ; 10(7): 488-92, 2000 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-10996779

RESUMO

We report a novel mitochondrial DNA alteration in a 12-year-old boy with myopathy. We identified a single nucleotide insertion (an adenine) in the mitochondrial tRNA-glutamine gene. This addition of an additional adenine in a polyadenine stretch (at mitochondrial DNA positions 4366-4369), alters the length of the evolutionary conserved anticodon loop from seven to eight bases. The nt-4370 addition was heteroplasmic and was abundant in the patient's muscle. Lower proportions of mutated mitochondrial DNA were observed in skin fibroblasts, but were below detectable levels in white blood cells. A muscle biopsy of the patient showed ragged red fibers and an unusually high percentage of cytochrome c oxidase-deficient fibers (89%). The pathogenicity of the mutation was also evident by the fact that fibers harboring lower levels of the mutation showed normal cytochrome c oxidase activity. The insertion in the anticodon loop of tRNA(Gln) gene identified in our patient may provide a unique tool to study protein synthesis in human mitochondria.


Assuntos
DNA Mitocondrial/genética , Miopatias Mitocondriais/genética , Mutação Puntual , RNA de Transferência de Glutamina/genética , Adenina , Sequência de Bases , Criança , Análise Mutacional de DNA , Humanos , Masculino , Miopatias Mitocondriais/patologia , Dados de Sequência Molecular , Proteínas Musculares/biossíntese , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Conformação de Ácido Nucleico , RNA de Transferência de Glutamina/química
12.
J Mol Biol ; 299(2): 431-46, 2000 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-10860750

RESUMO

The position of the tertiary Levitt pair between nucleotides 15 and 48 in the transfer RNA core region suggests a key role in stabilizing the joining of the two helical domains, and in maintaining the relative orientations of the D and variable loops. E. coli tRNA(Gln) possesses the canonical Pu15-Py48 trans pairing at this position (G15-C48), while the tRNA(Cys) species from this organism instead features an unusual G15-G48 pair. To explore the structural context dependence of a G15-G48 Levitt pair, a number of tRNA(Gln) species containing G15-G48 were constructed and evaluated as substrates for glutaminyl and cysteinyl-tRNA synthetases. The glutaminylation efficiencies of these mutant tRNAs are reduced by two to tenfold compared with native tRNA(Gln), consistent with previous findings that the tertiary core of this tRNA plays a role in GlnRS recognition. Introduction of tRNA(Cys) identity nucleotides at the acceptor and anticodon ends of tRNA(Gln) produced a tRNA substrate which was efficiently aminoacylated by CysRS, even though the tertiary core region of this species contains the tRNA(Gln) G15-C48 pair. Surprisingly, introduction of G15-G48 into the non-cognate tRNA(Gln) tertiary core then significantly impairs CysRS recognition. By contrast, previous work has shown that CysRS aminoacylates tRNA(Cys) core regions containing G15-G48 with much better efficiency than those with G15-C48. Therefore, tertiary nucleotides surrounding the Levitt pair must significantly modulate the efficiency of aminoacylation by CysRS. To explore the detailed nature of the structural interdependence, crystal structures of two tRNA(Gln) mutants containing G15-G48 were determined bound to GlnRS. These structures show that the larger purine ring of G48 is accommodated by rotation into the syn position, with the N7 nitrogen serving as hydrogen bond acceptor from several groups of G15. The G15-G48 conformations differ significantly compared to that observed in the native tRNA(Cys) structure bound to EF-Tu, further implicating an important role for surrounding nucleotides in maintaining the integrity of the tertiary core and its consequent ability to present crucial recognition determinants to aminoacyl-tRNA synthetases.


Assuntos
Aminoacil-tRNA Sintetases/metabolismo , Escherichia coli/enzimologia , Escherichia coli/genética , Conformação de Ácido Nucleico , RNA de Transferência/química , RNA de Transferência/metabolismo , Aminoacil-tRNA Sintetases/química , Pareamento de Bases/genética , Sequência de Bases , Sítios de Ligação , Catálise , Cristalização , Cristalografia por Raios X , Ligação de Hidrogênio , Cinética , Modelos Moleculares , Dados de Sequência Molecular , Mutação/genética , Estabilidade de RNA , RNA Bacteriano/química , RNA Bacteriano/genética , RNA Bacteriano/metabolismo , RNA de Transferência/genética , RNA de Transferência de Cisteína/química , RNA de Transferência de Cisteína/genética , RNA de Transferência de Cisteína/metabolismo , RNA de Transferência de Glutamina/química , RNA de Transferência de Glutamina/genética , RNA de Transferência de Glutamina/metabolismo , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/metabolismo , Alinhamento de Sequência , Especificidade por Substrato
13.
Biochemistry ; 39(23): 6791-8, 2000 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-10841758

RESUMO

The conformation of a tRNA in its initial contact with its cognate aminoacyl-tRNA synthetase was investigated with the Escherichia coli glutamyl-tRNA synthetase-tRNA(Glu) complex. Covalent complexes between the periodate-oxidized tRNA(Glu) and its synthetase were obtained. These complexes are specific since none were formed with any other oxidized E. coli tRNA. The three major residues cross-linked to the 3'-terminal adenosine of oxidized tRNA(Glu) are Lys115, Arg209, and Arg48. Modeling of the tRNA(Glu)-glutamyl-tRNA synthetase based on the known crystal structures of Thermus thermophilus GluRS and of the E. coli tRNA(Gln)-glutaminyl-tRNA synthetase complex shows that these three residues are located in the pocket that binds the acceptor stem, and that Lys115, located in a 26 residue loop closed by coordination to a zinc atom in the tRNA acceptor stem-binding domain, is the first contact point of the 3'-terminal adenosine of tRNA(Glu). In our model, we assume that the 3'-terminal GCCA single-stranded segment of tRNA(Glu) is helical and extends the stacking of the acceptor stem. This assumption is supported by the fact that the 3' CCA sequence of tRNA(Glu) is not readily circularized in the presence of T4 RNA ligase under conditions where several other tRNAs are circularized. The two other cross-linked sites are interpreted as the contact sites of the 3'-terminal ribose on the enzyme during the unfolding and movement of the 3'-terminal GCCA segment to position the acceptor ribose in the catalytic site for aminoacylation.


Assuntos
Escherichia coli/enzimologia , Glutamato-tRNA Ligase/química , Conformação de Ácido Nucleico , RNA de Transferência de Ácido Glutâmico/química , Sequência de Aminoácidos , Aminoacil-tRNA Sintetases/química , Sítios de Ligação , Eletroforese em Gel Bidimensional , Escherichia coli/química , Modelos Moleculares , Dados de Sequência Molecular , Fragmentos de Peptídeos/análise , Ácido Periódico/química , RNA Ligase (ATP)/metabolismo , RNA de Transferência de Glutamina/química , Alinhamento de Sequência , Thermus thermophilus/química , Thermus thermophilus/enzimologia , Tripsina
14.
Nucleic Acids Res ; 27(18): 3631-7, 1999 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-10471730

RESUMO

Sequence-specific interactions between aminoacyl-tRNA synthetases and their cognate tRNAs ensure both accurate RNA recognition and the efficient catalysis of aminoacylation. The effects of tRNA(Trp)variants on the aminoacylation reaction catalyzed by wild-type Escherichia coli tryptophanyl-tRNA synthe-tase (TrpRS) have now been investigated by stopped-flow fluorimetry, which allowed a pre-steady-state analysis to be undertaken. This showed that tRNA(Trp)identity has some effect on the ability of tRNA to bind the reaction intermediate TrpRS-tryptophanyl-adenylate, but predominantly affects the rate at which trypto-phan is transferred from TrpRS-tryptophanyl adenylate to tRNA. Use of the binding ( K (tRNA)) and rate constants ( k (4)) to determine the energetic levels of the various species in the aminoacylation reaction showed a difference of approximately 2 kcal mol(-1)in the barrier to transition state formation compared to wild-type for both tRNA(Trp)A-->C73 and. These results directly show that tRNA identity contributes to the degree of complementarity to the transition state for tRNA charging in the active site of an aminoacyl-tRNA synthetase:aminoacyl-adenylate:tRNA complex.


Assuntos
Escherichia coli/enzimologia , Aminoacil-RNA de Transferência/biossíntese , RNA de Transferência de Triptofano/genética , RNA de Transferência de Triptofano/metabolismo , Triptofano-tRNA Ligase/metabolismo , Monofosfato de Adenosina/metabolismo , Sequência de Bases , Sítios de Ligação , Catálise , Escherichia coli/genética , Fluorescência , Cinética , Mutação , Conformação de Ácido Nucleico , Aminoacil-RNA de Transferência/química , Aminoacil-RNA de Transferência/metabolismo , RNA de Transferência de Glutamina/química , RNA de Transferência de Glutamina/genética , RNA de Transferência de Glutamina/metabolismo , RNA de Transferência de Triptofano/química , Especificidade por Substrato , Termodinâmica , Triptofano/metabolismo
15.
Science ; 285(5430): 1074-7, 1999 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-10446055

RESUMO

Isoleucyl-transfer RNA (tRNA) synthetase (IleRS) joins Ile to tRNA(Ile) at its synthetic active site and hydrolyzes incorrectly acylated amino acids at its editing active site. The 2.2 angstrom resolution crystal structure of Staphylococcus aureus IleRS complexed with tRNA(Ile) and Mupirocin shows the acceptor strand of the tRNA(Ile) in the continuously stacked, A-form conformation with the 3' terminal nucleotide in the editing active site. To position the 3' terminus in the synthetic active site, the acceptor strand must adopt the hairpinned conformation seen in tRNA(Gln) complexed with its synthetase. The amino acid editing activity of the IleRS may result from the incorrect products shuttling between the synthetic and editing active sites, which is reminiscent of the editing mechanism of DNA polymerases.


Assuntos
Isoleucina-tRNA Ligase/química , Isoleucina-tRNA Ligase/metabolismo , Mupirocina/metabolismo , RNA de Transferência de Isoleucina/química , RNA de Transferência de Isoleucina/metabolismo , Acilação , Monofosfato de Adenosina/análogos & derivados , Monofosfato de Adenosina/metabolismo , Aminoácidos/metabolismo , Sítios de Ligação , Cristalografia por Raios X , DNA Polimerase Dirigida por DNA/metabolismo , Glutamato-tRNA Ligase/química , Glutamato-tRNA Ligase/metabolismo , Isoleucina/metabolismo , Modelos Moleculares , Mupirocina/química , Conformação de Ácido Nucleico , Oligopeptídeos/metabolismo , Conformação Proteica , Estrutura Secundária de Proteína , RNA de Transferência de Glutamina/química , RNA de Transferência de Glutamina/metabolismo , Staphylococcus aureus/enzimologia , Especificidade por Substrato
16.
Structure ; 6(4): 439-49, 1998 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-9562563

RESUMO

BACKGROUND: Aminoacyl-tRNA synthetases covalently link a specific amino acid to the correct tRNA. The fidelity of this reaction is essential for accurate protein synthesis. Each synthetase has a specific molecular mechanism to distinguish the correct pair of substrates from the pool of amino acids and isologous tRNA molecules. In the case of glutaminyl-tRNA synthetase (GlnRS) the prior binding of tRNA is required for activation of glutamine by ATP. A complete understanding of amino acid specificity in GlnRS requires the determination of the structure of the synthetase with both tRNA and substrates bound. RESULTS: A stable glutaminly-adenylate analog, which inhibits GlnRS with a Ki of 1.32 microM, was synthesized and cocrystallized with GlnRS and tRNA2Gln. The crystal structure of this ternary complex has been refined at 2.4 A resolution and shows the interactions made between glutamine and its binding site. CONCLUSIONS: To select against glutamic acid or glutamate, both hydrogen atoms of the nitrogen of the glutamine sidechain are recognized. The hydroxyl group of Tyr211 and a water molecule are responsible for this recognition; both are obligate hydrogen-bond acceptors due to a network of interacting sidechains and water molecules. The prior binding of tRNAGln that is required for amino acid activation may result from the terminal nucleotide, A76, packing against and orienting Tyr211, which forms part of the amino acid binding site.


Assuntos
Aminoacil-tRNA Sintetases/química , Glutamina/química , RNA de Transferência de Glutamina/química , Trifosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Sítios de Ligação/fisiologia , Cristalografia por Raios X , Inibidores Enzimáticos/farmacologia , Escherichia coli/química , Escherichia coli/enzimologia , Glutamina/análogos & derivados , Ligação de Hidrogênio , Modelos Moleculares , Conformação Molecular , Dados de Sequência Molecular , Estrutura Molecular , Alinhamento de Sequência , Especificidade por Substrato
17.
Biochemistry ; 35(47): 14725-33, 1996 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-8942633

RESUMO

Three previously described mutant Escherichia coli glutaminyl-tRNA synthetase (GlnRS) proteins that incorrectly aminoacylate the amber suppressor derived from tRNATyr (supF) with glutamine were cocrystallized with wild-type tRNAGln and their structures determined. In two of the mutant enzymes studied, Asp235, which contacts base pair G3-C70 in the acceptor stem, has been changed to asparagine in GlnRS7 and to glycine in GlnRS10. These mutations result in changed interactions between Asn235 of GlnRS7 and G3-C70 of the tRNA and an altered water structure between Gly235 of GlnRS10 and base pair G3-C70. These structures suggest how the mutant enzymes can show only small changes in their ability to aminoacylate wild-type cognate tRNA on the one hand and yet show a lack of discrimination against a noncognate U3-A70 base pair on the other. In contrast, the change of Ile129 to Thr in GlnRS15 causes virtually no change in the structure of the complex, and the explanation for its ability to misacylate supF is unclear.


Assuntos
Trifosfato de Adenosina/química , Escherichia coli/enzimologia , Glutamato-tRNA Ligase/química , Conformação Proteica , RNA de Transferência de Glutamina/química , Acilação , Trifosfato de Adenosina/metabolismo , Sequência de Bases , Cristalografia por Raios X , Elétrons , Glutamato-tRNA Ligase/genética , Glutamato-tRNA Ligase/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Mutação , RNA Bacteriano , RNA de Transferência de Glutamina/metabolismo , Relação Estrutura-Atividade , Especificidade por Substrato
18.
Biochemistry ; 33(24): 7560-7, 1994 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-8011621

RESUMO

tRNA(2Gln) made in vitro by transcription with T7 RNA polymerase does not contain the pseudouridines at positions 38, 39, and 55, the 4-thiouridine at position 8, or any of the methylated bases found in the tRNA(2Gln) made in vivo. Cocrystals of unmodified tRNA(2Gln) complexed with glutaminyl-tRNA synthetase from Escherichia coli are isomorphous with those of the complex with modified tRNA(2Gln). A difference electron density map between the complexes with modified and unmodified tRNAs calculated at 2.5-A resolution shows no differences in the protein or tRNA structures, except for some very small shifts in atoms contacting the thiol at the 4 position of uridine 8 that are required to accommodate the smaller oxygen in the unmodified tRNA. Perhaps the most functionally significant change in the unmodified tRNA is the absence of the specifically bound water molecules that are observed to cross-link the N5 of the pseudo-uridines to their 5' phosphate. This suggests a possible role for pseudouridinylation in stabilization of the tRNA through water-mediated linking of these modified bases to the backbone, which is consistent with the lower thermal stability of the unmodified tRNA. An identical water-bridging structure is possible at four of the five other psuedo-uridines in known tRNA structures.


Assuntos
Trifosfato de Adenosina/metabolismo , Glutamato-tRNA Ligase/metabolismo , Pseudouridina/química , RNA de Transferência de Glutamina/química , RNA de Transferência de Glutamina/metabolismo , Anticódon , Sequência de Bases , Cristalização , Cristalografia por Raios X , Estabilidade de Medicamentos , Escherichia coli/química , Escherichia coli/enzimologia , Análise de Fourier , Glutamato-tRNA Ligase/química , Temperatura Alta , Metilação , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Molecular
19.
Biochimie ; 73(12): 1501-8, 1991 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-1725262

RESUMO

This paper focuses on several aspects of the specificity of mutants of Escherichia coli glutaminyl-tRNA synthetase (GlnRS) and tRNA(Gln). Temperature-sensitive mutants located in glnS, the gene for GlnRS, have been described previously. The mutations responsible for the temperature-sensitive phenotype were analyzed, and pseudorevertants of these mutants isolated and characterized. The nature of these mutations is discussed in terms of their location in the three-dimensional structure of the tRNA(Gln).GlnRS complex. In order to characterize the specificity of the aminoacylation reaction, mutant tRNA(Gln) species were synthesized with either a 2'-deoxy AMP or 3'-deoxy AMP as their 3'-terminal nucleotide. Subsequent assays for aminoacylation and ATP/PPi exchange activity established the esterification of glutamine to the 2'-hydroxyl of the terminal adenosine; there is no glutaminylation of the 3'-OH group. This correlates with the classification of GlnRS as a class I aminoacyl-tRNA synthetase. Mutations in tRNA(Gln) are discussed which affect the recognition of GlnRS and the current concept of glutamine identity in E coli is reviewed.


Assuntos
Escherichia coli/genética , Glutamato-tRNA Ligase/metabolismo , RNA de Transferência de Glutamina/metabolismo , Sequência de Bases , Sítios de Ligação , Regulação Bacteriana da Expressão Gênica , Glutamato-tRNA Ligase/genética , Dados de Sequência Molecular , Mutação , Conformação de Ácido Nucleico , RNA Bacteriano/genética , RNA Bacteriano/metabolismo , RNA de Transferência de Glutamina/química , RNA de Transferência de Glutamina/genética , Temperatura
20.
Biochimie ; 72(8): 589-98, 1990 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-2126463

RESUMO

In this review, I have brought together and compared the available data on the interaction between tRNA(Tyr) and tyrosyl-tRNA synthetases (TyrTS) of prokaryotic origins. The amino acid sequences of the heterologous TyrTS that can charge Escherichia coli tRNA(Tyr), show that the residues involved in the binding and recognition of tyrosine are strictly conserved whereas those involved in the interaction with tRNA(Tyr) are only weakly similar. The results of in vivo genetic complementation experiments indicate that the identity elements of tRNAs and the recognition mechanisms of such elements by the synthetases have been conserved during evolution. Heterologous or mutant tRNA(Tyr) are quantitatively charged by E coli TyrTS; the set of their common residues contains less than 10 elements if one excludes the invariant and semi-invariant residues of tRNAs. The residues of this set are candidates for a specific recognition by TyrTS. So far, adenosine-73 is the only residue for which a specific recognition of the base has been demonstrated. The residues that might serve as identity elements for E coli tRNA(Tyr) [McClain WH, Nicholas Jr HB (1987) J Mol Biol 194, 635-642] do not belong to the above set of conserved residues and therefore probably play negative roles, enabling tRNA(Tyr) to avoid non-cognate synthetases. Comparison of the charging and stability properties of mutant tRNA(Tyr) su +3 shows that bases 1 and 72 must pair (either by Watson-Crick or non-canonical hydrogen bonds) and adopt a geometry which is compatible with the helical structure of the acceptor stem in order for the mutant tRNA(Tyr) to be charged with tyrosine. If bases 1 and 72 or bases 2 and 71 cannot form such pairings, the suppressor phenotype of the mutant tRNA(Tyr)su +3 becomes thermosensitive. The weakening of base pair 1/72 by mutation or the change of adenosine-73 into guanosine results in the charging of tRNA(Tyr)su +3 with glutamine. Comparison of the structural model of the TyrTS/tRNA(Tyr) complex with the crystallographic structure of the GlnTS/tRNA(Gln) complex indicates that the mechanisms for the recognition of the acceptor arm are different in the 2 cases. Chemical attack and molecular modeling experiments have indicated that the acceptor end of tRNA(Tyr) ... CCCA3'-OH, remains mobile after the initial binding of tRNA(Tyr) to TyrTS.


Assuntos
Escherichia coli/genética , Geobacillus stearothermophilus/genética , RNA de Transferência de Tirosina/metabolismo , Tirosina-tRNA Ligase/metabolismo , Sequência de Bases , Escherichia coli/enzimologia , Geobacillus stearothermophilus/enzimologia , Glutamato-tRNA Ligase/química , Glutamato-tRNA Ligase/genética , Dados de Sequência Molecular , Mutação , Conformação Proteica , RNA de Transferência de Glutamina/química , RNA de Transferência de Glutamina/metabolismo , RNA de Transferência de Tirosina/química , Tirosina-tRNA Ligase/química , Tirosina-tRNA Ligase/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA