Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.656
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Aging (Albany NY) ; 16(9): 8279-8305, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38728370

RESUMO

BACKGROUND: Cancer-associated fibroblasts (CAFs) are one of the most predominant cellular subpopulations in the tumor stroma and play an integral role in cancer occurrence and progression. However, the prognostic role of CAFs in breast cancer remains poorly understood. METHODS: We identified a number of CAF-related biomarkers in breast cancer by combining single-cell and bulk RNA-seq analyses. Based on univariate Cox regression as well as Least Absolute Shrinkage and Selection Operator (LASSO) regression analysis, a novel CAF-associated prognostic model was developed. Breast cancer patients were grouped according to the median risk score and further analyzed for outcome, clinical characteristic, pathway activity, genomic feature, immune landscape, and drug sensitivity. RESULTS: A total of 341 CAF-related biomarkers were identified from single-cell and bulk RNA-seq analyses. We eventually screened eight candidate prognostic genes, including CERCAM, EMP1, SDC1, PRKG1, XG, TNN, WLS, and PDLIM4, and constructed the novel CAF-related prognostic model. Grouped by the median risk score, high-risk patients showed a significantly worse prognosis and exhibited distinct pathway activities such as uncontrolled cell cycle progression, angiogenesis, and activation of glycolysis. In addition, the combined risk score and tumor mutation burden significantly improved the ability to predict patient prognosis. Importantly, patients in the high-risk group had a higher infiltration of M2 macrophages and a lower infiltration of CD8+ T cells and activated NK cells. Finally, we calculated the IC50 for a range of anticancer drugs and personalized the treatment regimen for each patient. CONCLUSION: Integrating single-cell and bulk RNA-seq analyses, we identified a list of compositive CAF-associated biomarkers and developed a novel CAF-related prognostic model for breast cancer. This robust CAF-derived gene signature acts as an excellent predictor of patient outcomes and treatment responses in breast cancer.


Assuntos
Biomarcadores Tumorais , Neoplasias da Mama , Fibroblastos Associados a Câncer , RNA-Seq , Análise de Célula Única , Humanos , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Feminino , Fibroblastos Associados a Câncer/metabolismo , Prognóstico , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Regulação Neoplásica da Expressão Gênica , Microambiente Tumoral/genética , Transcriptoma , Perfilação da Expressão Gênica
2.
Genet Res (Camb) ; 2024: 4285171, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38715622

RESUMO

Bladder cancer has recently seen an alarming increase in global diagnoses, ascending as a predominant cause of cancer-related mortalities. Given this pressing scenario, there is a burgeoning need to identify effective biomarkers for both the diagnosis and therapeutic guidance of bladder cancer. This study focuses on evaluating the potential of high-definition computed tomography (CT) imagery coupled with RNA-sequencing analysis to accurately predict bladder tumor stages, utilizing deep residual networks. Data for this study, including CT images and RNA-Seq datasets for 82 high-grade bladder cancer patients, were sourced from the TCIA and TCGA databases. We employed Cox and lasso regression analyses to determine radiomics and gene signatures, leading to the identification of a three-factor radiomics signature and a four-gene signature in our bladder cancer cohort. ROC curve analyses underscored the strong predictive capacities of both these signatures. Furthermore, we formulated a nomogram integrating clinical features, radiomics, and gene signatures. This nomogram's AUC scores stood at 0.870, 0.873, and 0.971 for 1-year, 3-year, and 5-year predictions, respectively. Our model, leveraging radiomics and gene signatures, presents significant promise for enhancing diagnostic precision in bladder cancer prognosis, advocating for its clinical adoption.


Assuntos
Estadiamento de Neoplasias , Redes Neurais de Computação , Tomografia Computadorizada por Raios X , Neoplasias da Bexiga Urinária , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/diagnóstico por imagem , Neoplasias da Bexiga Urinária/patologia , Humanos , Tomografia Computadorizada por Raios X/métodos , Masculino , Feminino , RNA-Seq/métodos , Idoso , Nomogramas , Pessoa de Meia-Idade , Biomarcadores Tumorais/genética , Curva ROC , Prognóstico , Transcriptoma , Radiômica
3.
BMC Bioinformatics ; 25(1): 181, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38720247

RESUMO

BACKGROUND: RNA sequencing combined with machine learning techniques has provided a modern approach to the molecular classification of cancer. Class predictors, reflecting the disease class, can be constructed for known tissue types using the gene expression measurements extracted from cancer patients. One challenge of current cancer predictors is that they often have suboptimal performance estimates when integrating molecular datasets generated from different labs. Often, the quality of the data is variable, procured differently, and contains unwanted noise hampering the ability of a predictive model to extract useful information. Data preprocessing methods can be applied in attempts to reduce these systematic variations and harmonize the datasets before they are used to build a machine learning model for resolving tissue of origins. RESULTS: We aimed to investigate the impact of data preprocessing steps-focusing on normalization, batch effect correction, and data scaling-through trial and comparison. Our goal was to improve the cross-study predictions of tissue of origin for common cancers on large-scale RNA-Seq datasets derived from thousands of patients and over a dozen tumor types. The results showed that the choice of data preprocessing operations affected the performance of the associated classifier models constructed for tissue of origin predictions in cancer. CONCLUSION: By using TCGA as a training set and applying data preprocessing methods, we demonstrated that batch effect correction improved performance measured by weighted F1-score in resolving tissue of origin against an independent GTEx test dataset. On the other hand, the use of data preprocessing operations worsened classification performance when the independent test dataset was aggregated from separate studies in ICGC and GEO. Therefore, based on our findings with these publicly available large-scale RNA-Seq datasets, the application of data preprocessing techniques to a machine learning pipeline is not always appropriate.


Assuntos
Aprendizado de Máquina , Neoplasias , RNA-Seq , Humanos , RNA-Seq/métodos , Neoplasias/genética , Transcriptoma/genética , Análise de Sequência de RNA/métodos , Perfilação da Expressão Gênica/métodos , Biologia Computacional/métodos
4.
Front Immunol ; 15: 1397541, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38774870

RESUMO

Aim: Despite the significant therapeutic outcomes achieved in systemic treatments for liver hepatocellular carcinoma (LIHC), it is an objective reality that only a low proportion of patients exhibit an improved objective response rate (ORR) to current immunotherapies. Antibody-dependent cellular phagocytosis (ADCP) immunotherapy is considered the new engine for precision immunotherapy. Based on this, we aim to develop an ADCP-based LIHC risk stratification system and screen for relevant targets. Method: Utilizing a combination of single-cell RNA sequencing (scRNA-seq) and bulk RNA-seq data, we screened for ADCP modulating factors in LIHC and identified differentially expressed genes along with their involved functional pathways. A risk scoring model was established by identifying ADCP-related genes with prognostic value through LASSO Cox regression analysis. The risk scoring model was then subjected to evaluations of immune infiltration and immunotherapy relevance, with pan-cancer analysis and in vitro experimental studies conducted on key targets. Results: Building on the research by Kamber RA et al., we identified GYPA, CLDN18, and IRX5 as potential key target genes regulating ADCP in LIHC. These genes demonstrated significant correlations with immune infiltration cells, such as M1-type macrophages, and the effectiveness of immunotherapy in LIHC, as well as a close association with clinical pathological staging and patient prognosis. Pan-cancer analysis revealed that CLDN18 was prognostically and immunologically relevant across multiple types of cancer. Validation through tissue and cell samples confirmed that GYPA and CLDN18 were upregulated in liver cancer tissues and cells. Furthermore, in vitro knockdown of CLDN18 inhibited the malignancy capabilities of liver cancer cells. Conclusion: We have identified an ADCP signature in LIHC comprising three genes. Analysis based on a risk scoring model derived from these three genes, coupled with subsequent experimental validation, confirmed the pivotal role of M1-type macrophages in ADCP within LIHC, establishing CLDN18 as a critical ADCP regulatory target in LIHC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , RNA-Seq , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/imunologia , Neoplasias Hepáticas/terapia , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/imunologia , Carcinoma Hepatocelular/terapia , Prognóstico , Imunoterapia/métodos , Regulação Neoplásica da Expressão Gênica , Biomarcadores Tumorais/genética , Análise de Célula Única , Fagocitose/genética , Microambiente Tumoral/imunologia , Microambiente Tumoral/genética , Perfilação da Expressão Gênica , Masculino , Claudinas/genética , Feminino , Análise da Expressão Gênica de Célula Única
5.
Technol Cancer Res Treat ; 23: 15330338241252610, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38766816

RESUMO

Background: Immunotherapy plays a significant role in the treatment of hepatocellular carcinoma (HCC). Members of the S100 protein family (S100s) have been widely implicated in the pathogenesis and progression of tumors. However, the exact mechanism by which S100s contribute to tumor immunity remains unclear. Methods: To explore the role of S100s in HCC immune cells, we collected and comparatively analyzed single-cell RNA sequencing (scRNA-seq) data of HCC and hepatitis B virus-associated HCC. By mapping cell classification and searching for S100s binding targets and downstream targets. Results: S100A6/S100A11 was differentially expressed in tumor T cells and involved in the nuclear factor (NF) κB pathway. Further investigation of the TCGA dataset revealed that patients with low S100A6/S100A11 expression had a better prognosis. Temporal cell trajectory analysis showed that the activation of the NF-κB pathway is at a critical stage and has an important impact on the tumor microenvironment. Conclusion: Our study revealed that S100A6/S100A11 could be involved in regulating the differentiation and cellular activity of T-cell subpopulations in HCC, and its low expression was positively correlated with prognosis. It may provide a new direction for immunotherapy of HCC and a theoretical basis for future clinical applications.


Assuntos
Carcinoma Hepatocelular , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas , RNA-Seq , Proteína A6 Ligante de Cálcio S100 , Proteínas S100 , Análise de Célula Única , Microambiente Tumoral , Humanos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/imunologia , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/etiologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/imunologia , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/metabolismo , Proteínas S100/genética , Proteínas S100/metabolismo , Prognóstico , Proteína A6 Ligante de Cálcio S100/genética , Proteína A6 Ligante de Cálcio S100/metabolismo , Microambiente Tumoral/imunologia , Microambiente Tumoral/genética , NF-kappa B/metabolismo , Biomarcadores Tumorais , Perfilação da Expressão Gênica , Biologia Computacional/métodos , Transdução de Sinais , Proteínas de Ciclo Celular
6.
BMC Cancer ; 24(1): 607, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38769480

RESUMO

BACKGROUND: Cancerous cells' identity is determined via a mixture of multiple factors such as genomic variations, epigenetics, and the regulatory variations that are involved in transcription. The differences in transcriptome expression as well as abnormal structures in peptides determine phenotypical differences. Thus, bulk RNA-seq and more recent single-cell RNA-seq data (scRNA-seq) are important to identify pathogenic differences. In this case, we rely on k-mer decomposition of sequences to identify pathogenic variations in detail which does not need a reference, so it outperforms more traditional Next-Generation Sequencing (NGS) analysis techniques depending on the alignment of the sequences to a reference. RESULTS: Via our alignment-free analysis, over esophageal and glioblastoma cancer patients, high-frequency variations over multiple different locations (repeats, intergenic regions, exons, introns) as well as multiple different forms (fusion, polyadenylation, splicing, etc.) could be discovered. Additionally, we have analyzed the importance of less-focused events systematically in a classic transcriptome analysis pipeline where these events are considered as indicators for tumor prognosis, tumor prediction, tumor neoantigen inference, as well as their connection with respect to the immune microenvironment. CONCLUSIONS: Our results suggest that esophageal cancer (ESCA) and glioblastoma processes can be explained via pathogenic microbial RNA, repeated sequences, novel splicing variants, and long intergenic non-coding RNAs (lincRNAs). We expect our application of reference-free process and analysis to be helpful in tumor and normal samples differential scRNA-seq analysis, which in turn offers a more comprehensive scheme for major cancer-associated events.


Assuntos
Glioblastoma , Análise de Célula Única , Transcriptoma , Humanos , Análise de Célula Única/métodos , Glioblastoma/genética , Glioblastoma/patologia , Perfilação da Expressão Gênica/métodos , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/patologia , Sequenciamento de Nucleotídeos em Larga Escala , RNA-Seq/métodos , Análise de Sequência de RNA/métodos , Regulação Neoplásica da Expressão Gênica , Neoplasias/genética , Neoplasias/patologia
7.
Brief Bioinform ; 25(3)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38770716

RESUMO

Temporal RNA-sequencing (RNA-seq) studies of bulk samples provide an opportunity for improved understanding of gene regulation during dynamic phenomena such as development, tumor progression or response to an incremental dose of a pharmacotherapeutic. Moreover, single-cell RNA-seq (scRNA-seq) data implicitly exhibit temporal characteristics because gene expression values recapitulate dynamic processes such as cellular transitions. Unfortunately, temporal RNA-seq data continue to be analyzed by methods that ignore this ordinal structure and yield results that are often difficult to interpret. Here, we present Error Modelled Gene Expression Analysis (EMOGEA), a framework for analyzing RNA-seq data that incorporates measurement uncertainty, while introducing a special formulation for those acquired to monitor dynamic phenomena. This method is specifically suited for RNA-seq studies in which low-count transcripts with small-fold changes lead to significant biological effects. Such transcripts include genes involved in signaling and non-coding RNAs that inherently exhibit low levels of expression. Using simulation studies, we show that this framework down-weights samples that exhibit extreme responses such as batch effects allowing them to be modeled with the rest of the samples and maintain the degrees of freedom originally envisioned for a study. Using temporal experimental data, we demonstrate the framework by extracting a cascade of gene expression waves from a well-designed RNA-seq study of zebrafish embryogenesis and an scRNA-seq study of mouse pre-implantation and provide unique biological insights into the regulation of genes in each wave. For non-ordinal measurements, we show that EMOGEA has a much higher rate of true positive calls and a vanishingly small rate of false negative discoveries compared to common approaches. Finally, we provide two packages in Python and R that are self-contained and easy to use, including test data.


Assuntos
RNA-Seq , Peixe-Zebra , Animais , Peixe-Zebra/genética , RNA-Seq/métodos , Perfilação da Expressão Gênica/métodos , Análise de Célula Única/métodos , Camundongos , Análise de Sequência de RNA/métodos , Software
8.
Sci Rep ; 14(1): 10873, 2024 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-38740918

RESUMO

In addition to presenting significant diagnostic and treatment challenges, lung adenocarcinoma (LUAD) is the most common form of lung cancer. Using scRNA-Seq and bulk RNA-Seq data, we identify three genes referred to as HMR, FAM83A, and KRT6A these genes are related to necroptotic anoikis-related gene expression. Initial validation, conducted on the GSE50081 dataset, demonstrated the model's ability to categorize LUAD patients into high-risk and low-risk groups with significant survival differences. This model was further applied to predict responses to PD-1/PD-L1 blockade therapies, utilizing the IMvigor210 and GSE78220 cohorts, and showed strong correlation with patient outcomes, highlighting its potential in personalized immunotherapy. Further, LUAD cell lines were analyzed using quantitative PCR (qPCR) and Western blot analysis to confirm their expression levels, further corroborating the model's relevance in LUAD pathophysiology. The mutation landscape of these genes was also explored, revealing their broad implication in various cancer types through a pan-cancer analysis. The study also delved into molecular subclustering, revealing distinct expression profiles and associations with different survival outcomes, emphasizing the model's utility in precision oncology. Moreover, the diversity of immune cell infiltration, analyzed in relation to the necroptotic anoikis signature, suggested significant implications for immune evasion mechanisms in LUAD. While the findings present a promising stride towards personalized LUAD treatment, especially in immunotherapy, limitations such as the retrospective nature of the datasets and the need for larger sample sizes are acknowledged. Prospective clinical trials and further experimental research are essential to validate these findings and enhance the clinical applicability of our prognostic model.


Assuntos
Adenocarcinoma de Pulmão , Anoikis , Antígeno B7-H1 , Imunoterapia , Neoplasias Pulmonares , Receptor de Morte Celular Programada 1 , RNA-Seq , Humanos , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/imunologia , Adenocarcinoma de Pulmão/tratamento farmacológico , Adenocarcinoma de Pulmão/patologia , Adenocarcinoma de Pulmão/mortalidade , Anoikis/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/mortalidade , Prognóstico , Imunoterapia/métodos , Receptor de Morte Celular Programada 1/genética , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Análise de Célula Única , Regulação Neoplásica da Expressão Gênica , Linhagem Celular Tumoral , Inibidores de Checkpoint Imunológico/uso terapêutico , Inibidores de Checkpoint Imunológico/farmacologia , Biomarcadores Tumorais/genética
9.
PLoS One ; 19(5): e0302696, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38753612

RESUMO

Pathway enrichment analysis is a ubiquitous computational biology method to interpret a list of genes (typically derived from the association of large-scale omics data with phenotypes of interest) in terms of higher-level, predefined gene sets that share biological function, chromosomal location, or other common features. Among many tools developed so far, Gene Set Enrichment Analysis (GSEA) stands out as one of the pioneering and most widely used methods. Although originally developed for microarray data, GSEA is nowadays extensively utilized for RNA-seq data analysis. Here, we quantitatively assessed the performance of a variety of GSEA modalities and provide guidance in the practical use of GSEA in RNA-seq experiments. We leveraged harmonized RNA-seq datasets available from The Cancer Genome Atlas (TCGA) in combination with large, curated pathway collections from the Molecular Signatures Database to obtain cancer-type-specific target pathway lists across multiple cancer types. We carried out a detailed analysis of GSEA performance using both gene-set and phenotype permutations combined with four different choices for the Kolmogorov-Smirnov enrichment statistic. Based on our benchmarks, we conclude that the classic/unweighted gene-set permutation approach offered comparable or better sensitivity-vs-specificity tradeoffs across cancer types compared with other, more complex and computationally intensive permutation methods. Finally, we analyzed other large cohorts for thyroid cancer and hepatocellular carcinoma. We utilized a new consensus metric, the Enrichment Evidence Score (EES), which showed a remarkable agreement between pathways identified in TCGA and those from other sources, despite differences in cancer etiology. This finding suggests an EES-based strategy to identify a core set of pathways that may be complemented by an expanded set of pathways for downstream exploratory analysis. This work fills the existing gap in current guidelines and benchmarks for the use of GSEA with RNA-seq data and provides a framework to enable detailed benchmarking of other RNA-seq-based pathway analysis tools.


Assuntos
Benchmarking , RNA-Seq , Humanos , RNA-Seq/métodos , Biologia Computacional/métodos , Neoplasias/genética , Bases de Dados Genéticas , Perfilação da Expressão Gênica/métodos
10.
Nat Commun ; 15(1): 3732, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38702309

RESUMO

Immunotherapy with chimeric antigen receptor T cells for pediatric solid and brain tumors is constrained by available targetable antigens. Cancer-specific exons present a promising reservoir of targets; however, these have not been explored and validated systematically in a pan-cancer fashion. To identify cancer specific exon targets, here we analyze 1532 RNA-seq datasets from 16 types of pediatric solid and brain tumors for comparison with normal tissues using a newly developed workflow. We find 2933 exons in 157 genes encoding proteins of the surfaceome or matrisome with high cancer specificity either at the gene (n = 148) or the alternatively spliced isoform (n = 9) level. Expression of selected alternatively spliced targets, including the EDB domain of fibronectin 1, and gene targets, such as COL11A1, are validated in pediatric patient derived xenograft tumors. We generate T cells expressing chimeric antigen receptors specific for the EDB domain or COL11A1 and demonstrate that these have antitumor activity. The full target list, explorable via an interactive web portal ( https://cseminer.stjude.org/ ), provides a rich resource for developing immunotherapy of pediatric solid and brain tumors using gene or AS targets with high expression specificity in cancer.


Assuntos
Neoplasias Encefálicas , Éxons , Receptores de Antígenos Quiméricos , Humanos , Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/genética , Animais , Éxons/genética , Criança , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos Quiméricos/imunologia , Receptores de Antígenos Quiméricos/metabolismo , Camundongos , Imunoterapia/métodos , Processamento Alternativo , Fibronectinas/genética , Fibronectinas/metabolismo , Fibronectinas/imunologia , Ensaios Antitumorais Modelo de Xenoenxerto , Regulação Neoplásica da Expressão Gênica , RNA-Seq , Linfócitos T/imunologia , Linfócitos T/metabolismo , Linhagem Celular Tumoral , Imunoterapia Adotiva/métodos
11.
Nat Commun ; 15(1): 3946, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38729950

RESUMO

Disease modeling with isogenic Induced Pluripotent Stem Cell (iPSC)-differentiated organoids serves as a powerful technique for studying disease mechanisms. Multiplexed coculture is crucial to mitigate batch effects when studying the genetic effects of disease-causing variants in differentiated iPSCs or organoids, and demultiplexing at the single-cell level can be conveniently achieved by assessing natural genetic barcodes. Here, to enable cost-efficient time-series experimental designs via multiplexed bulk and single-cell RNA-seq of hybrids, we introduce a computational method in our Vireo Suite, Vireo-bulk, to effectively deconvolve pooled bulk RNA-seq data by genotype reference, and thereby quantify donor abundance over the course of differentiation and identify differentially expressed genes among donors. Furthermore, with multiplexed scRNA-seq and bulk RNA-seq, we demonstrate the usefulness and necessity of a pooled design to reveal donor iPSC line heterogeneity during macrophage cell differentiation and to model rare WT1 mutation-driven kidney disease with chimeric organoids. Our work provides an experimental and analytic pipeline for dissecting disease mechanisms with chimeric organoids.


Assuntos
Diferenciação Celular , Células-Tronco Pluripotentes Induzidas , Organoides , RNA-Seq , Análise de Célula Única , Organoides/metabolismo , Análise de Célula Única/métodos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Humanos , Diferenciação Celular/genética , RNA-Seq/métodos , Análise de Sequência de RNA/métodos , Macrófagos/metabolismo , Macrófagos/citologia , Animais , Análise da Expressão Gênica de Célula Única
12.
Sci Data ; 11(1): 448, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38702329

RESUMO

Time-critical transcriptional events in the immune microenvironment are important for response to immune checkpoint blockade (ICB), yet these events are difficult to characterise and remain incompletely understood. Here, we present whole tumor RNA sequencing data in the context of treatment with ICB in murine models of AB1 mesothelioma and Renca renal cell cancer. We sequenced 144 bulk RNAseq samples from these two cancer types across 4 time points prior and after treatment with ICB. We also performed single-cell sequencing on 12 samples of AB1 and Renca tumors an hour before ICB administration. Our samples were equally distributed between responders and non-responders to treatment. Additionally, we sequenced AB1-HA mesothelioma tumors treated with two sample dissociation protocols to assess the impact of these protocols on the quality transcriptional information in our samples. These datasets provide time-course information to transcriptionally characterize the ICB response and provide detailed information at the single-cell level of the early tumor microenvironment prior to ICB therapy.


Assuntos
Carcinoma de Células Renais , Inibidores de Checkpoint Imunológico , Neoplasias Renais , Mesotelioma , Microambiente Tumoral , Animais , Camundongos , Carcinoma de Células Renais/tratamento farmacológico , Carcinoma de Células Renais/genética , Inibidores de Checkpoint Imunológico/uso terapêutico , Neoplasias Renais/tratamento farmacológico , Neoplasias Renais/genética , Mesotelioma/tratamento farmacológico , Mesotelioma/genética , RNA-Seq , Análise de Sequência de RNA , Análise de Célula Única
13.
Commun Biol ; 7(1): 619, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38783092

RESUMO

Identification of somatic mutations (SMs) is essential for characterizing cancer genomes. While DNA-seq is the prevalent method for identifying SMs, RNA-seq provides an alternative strategy to discover tumor mutations in the transcribed genome. Here, we have developed a machine learning based pipeline to discover SMs based on RNA-seq data (designated as RNA-SMs). Subsequently, we have conducted a pan-cancer analysis to systematically identify RNA-SMs from over 8,000 tumors in The Cancer Genome Atlas (TCGA). In this way, we have identified over 105,000 novel SMs that had not been reported in previous TCGA studies. These novel SMs have significant clinical implications in designing targeted therapy for improved patient outcomes. Further, we have combined the SMs identified by both RNA-seq and DNA-seq analyses to depict an updated mutational landscape across 32 cancer types. This new online SM atlas, OncoDB ( https://oncodb.org ), offers a more complete view of gene mutations that underline the development and progression of various cancers.


Assuntos
Mutação , Neoplasias , Humanos , Neoplasias/genética , Análise de Sequência de RNA/métodos , Aprendizado de Máquina , RNA-Seq , Bases de Dados Genéticas
14.
J Ovarian Res ; 17(1): 82, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38627854

RESUMO

BACKGROUND: To establish a prognostic risk profile for ovarian cancer (OC) patients based on cancer-associated fibroblasts (CAFs) and gain a comprehensive understanding of their role in OC progression, prognosis, and therapeutic efficacy. METHODS: Data on OC single-cell RNA sequencing (scRNA-seq) and total RNA-seq were collected from the GEO and TCGA databases. Seurat R program was used to analyze scRNA-seq data and identify CAFs clusters corresponding to CAFs markers. Differential expression analysis was performed on the TCGA dataset to identify prognostic genes. A CAF-associated risk signature was designed using Lasso regression and combined with clinicopathological variables to develop a nomogram. Functional enrichment and the immune landscape were also analyzed. RESULTS: Five CAFs clusters were identified in OC using scRNA-seq data, and 2 were significantly associated with OC prognosis. Seven genes were selected to develop a CAF-based risk signature, primarily associated with 28 pathways. The signature was a key independent predictor of OC prognosis and relevant in predicting the results of immunotherapy interventions. A novel nomogram combining CAF-based risk and disease stage was developed to predict OC prognosis. CONCLUSION: The study highlights the importance of CAFs in OC progression and suggests potential for innovative treatment strategies. A CAF-based risk signature provides a highly accurate prediction of the prognosis of OC patients, and the developed nomogram shows promising results in predicting the OC prognosis.


Assuntos
Fibroblastos Associados a Câncer , Neoplasias Ovarianas , Humanos , Feminino , Prognóstico , Análise da Expressão Gênica de Célula Única , RNA-Seq , Neoplasias Ovarianas/genética , Microambiente Tumoral/genética
15.
PLoS One ; 19(4): e0298004, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38635528

RESUMO

BACKGROUND: Liver hepatocellular carcinoma (LIHC) is a prevalent form of primary liver cancer. Research has demonstrated the contribution of tumor stem cells in facilitating tumor recurrence, metastasis, and treatment resistance. Despite this, there remains a lack of established cancer stem cells (CSCs)-associated genes signatures for effectively predicting the prognosis and guiding the treatment strategies for patients diagnosed with LIHC. METHODS: The single-cell RNA sequencing (scRNA-seq) and bulk RNA transcriptome data were obtained based on public datasets and computerized firstly using CytoTRACE package and One Class Linear Regression (OCLR) algorithm to evaluate stemness level, respectively. Then, we explored the association of stemness indicators (CytoTRACE score and stemness index, mRNAsi) with survival outcomes and clinical characteristics by combining clinical information and survival analyses. Subsequently, weighted co-expression network analysis (WGCNA) and Cox were applied to assess mRNAsi-related genes in bulk LIHC data and construct a prognostic model for LIHC patients. Single-sample gene-set enrichment analysis (ssGSEA), Cell-type Identification By Estimating Relative Subsets Of RNA Transcripts (CIBERSORT) and Tumor Immune Estimation Resource (TIMER) analysis were employed for immune infiltration assessment. Finally, the potential immunotherapeutic response was predicted by the Tumor Immune Dysfunction and Exclusion (TIDE), and the tumor mutation burden (TMB). Additionally, pRRophetic package was applied to evaluate the sensitivity of high and low-risk groups to common chemotherapeutic drugs. RESULTS: A total of four genes (including STIP1, H2AFZ, BRIX1, and TUBB) associated with stemness score (CytoTRACE score and mRNAsi) were identified and constructed a risk model that could predict prognosis in LIHC patients. It was observed that high stemness cells occurred predominantly in the late stages of LIHC and that poor overall survival in LIHC patients was also associated with high mRNAsi scores. In addition, pathway analysis confirmed the biological uniqueness of the two risk groups. Personalized treatment predictions suggest that patients with a low risk benefited more from immunotherapy, while those with a high risk group may be conducive to chemotherapeutic drugs. CONCLUSION: The current study developed a novel prognostic risk signature with genes related to CSCs, which provides novel ideas for the diagnosis, prognosis and treatment of LIHC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/terapia , Análise da Expressão Gênica de Célula Única , RNA-Seq , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/terapia , Recidiva Local de Neoplasia , Prognóstico , Células-Tronco Neoplásicas , RNA
16.
J Transl Med ; 22(1): 346, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38605381

RESUMO

BACKGROUND: Acute pancreatitis (AP) is a clinically common acute abdominal disease, whose pathogenesis remains unclear. The severe patients usually have multiple complications and lack specific drugs, leading to a high mortality and poor outcome. Acinar cells are recognized as the initial site of AP. However, there are no precise single-cell transcriptomic profiles to decipher the landscape of acinar cells during AP, which are the missing pieces of jigsaw we aimed to complete in this study. METHODS: A single-cell sequencing dataset was used to identify the cell types in pancreas of AP mice and to depict the transcriptomic maps in acinar cells. The pathways' activities were evaluated by gene sets enrichment analysis (GSEA) and single-cell gene sets variation analysis (GSVA). Pseudotime analysis was performed to describe the development trajectories of acinar cells. We also constructed the protein-protein interaction (PPI) network and identified the hub genes. Another independent single-cell sequencing dataset of pancreas samples from AP mice and a bulk RNA sequencing dataset of peripheral blood samples from AP patients were also analyzed. RESULTS: In this study, we identified genetic markers of each cell type in the pancreas of AP mice based on single-cell sequencing datasets and analyzed the transcription changes in acinar cells. We found that acinar cells featured acinar-ductal metaplasia (ADM), as well as increased endocytosis and vesicle transport activity during AP. Notably, the endoplasmic reticulum stress (ERS) and ER-associated degradation (ERAD) pathways activated by accumulation of unfolded/misfolded proteins in acinar cells could be pivotal for the development of AP. CONCLUSION: We deciphered the distinct roadmap of acinar cells in the early stage of AP at single-cell level. ERS and ERAD pathways are crucially important for acinar homeostasis and the pathogenesis of AP.


Assuntos
Pancreatite , Humanos , Camundongos , Animais , Pancreatite/genética , Células Acinares/metabolismo , RNA-Seq , Doença Aguda , Estresse do Retículo Endoplasmático
17.
J Immunother Cancer ; 12(4)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38688579

RESUMO

BACKGROUND: Glioblastoma (GBM) is a fatal primary brain malignancy in adults. Previous studies have shown that cytomegalovirus (CMV) is a risk factor for tumorigenesis and aggressiveness for glioblastoma. However, little is known about how CMV infection affects immune cells in the tumor microenvironment of GBM. Furthermore, there has been almost no engineered T-cell receptor (TCR)-T targeting CMV for GBM research to date. METHODS: We evaluated the CMV infection status of patients with GBM's tumor tissue by immune electron microscopy, immunofluorescence, and droplet digital PCR. We performed single-cell RNA sequencing for CMV-infected GBM to investigate the effects of CMV on the GBM immune microenvironment. CellChat was applied to analyze the interaction between cells in the GBM tumor microenvironment. Additionally, we conducted single-cell TCR/B cell receptor (BCR) sequencing and Grouping of Lymphocyte Interactions with Paratope Hotspots 2 algorithms to acquire specific CMV-TCR sequences. Genetic engineering was used to introduce CMV-TCR into primary T cells derived from patients with CMV-infected GBM. Flow cytometry was used to measure the proportion and cytotoxicity status of T cells in vitro. RESULTS: We identified two novel immune cell subpopulations in CMV-infected GBM, which were bipositive CD68+SOX2+ tumor-associated macrophages and FXYD6+ T cells. We highlighted that the interaction between bipositive TAMs or cancer cells and T cells was predominantly focused on FXYD6+ T cells rather than regulatory T cells (Tregs), whereas, FXYD6+ T cells were further identified as a group of novel immunosuppressive T cells. CMV-TCR-T cells showed significant therapeutic effects on the human-derived orthotopic GBM mice model. CONCLUSIONS: These findings provided an insight into the underlying mechanism of CMV infection promoting the GBM immunosuppression, and provided a novel potential immunotherapy strategy for patients with GBM.


Assuntos
Citomegalovirus , Glioblastoma , Humanos , Glioblastoma/imunologia , Glioblastoma/virologia , Glioblastoma/patologia , Camundongos , Citomegalovirus/imunologia , Animais , Infecções por Citomegalovirus/imunologia , Receptores de Antígenos de Linfócitos T/metabolismo , Receptores de Antígenos de Linfócitos T/imunologia , Receptores de Antígenos de Linfócitos T/genética , Neoplasias Encefálicas/imunologia , Microambiente Tumoral/imunologia , RNA-Seq , Feminino , Masculino , Análise da Expressão Gênica de Célula Única
18.
Nucleic Acids Res ; 52(9): e44, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38597610

RESUMO

Grouping gene expression into gene set activity scores (GSAS) provides better biological insights than studying individual genes. However, existing gene set projection methods cannot return representative, robust, and interpretable GSAS. We developed NetActivity, a machine learning framework that generates GSAS based on a sparsely-connected autoencoder, where each neuron in the inner layer represents a gene set. We proposed a three-tier training that yielded representative, robust, and interpretable GSAS. NetActivity model was trained with 1518 GO biological processes terms and KEGG pathways and all GTEx samples. NetActivity generates GSAS robust to the initialization parameters and representative of the original transcriptome, and assigned higher importance to more biologically relevant genes. Moreover, NetActivity returns GSAS with a more consistent definition and higher interpretability than GSVA and hipathia, state-of-the-art gene set projection methods. Finally, NetActivity enables combining bulk RNA-seq and microarray datasets in a meta-analysis of prostate cancer progression, highlighting gene sets related to cell division, key for disease progression. When applied to metastatic prostate cancer, gene sets associated with cancer progression were also altered due to drug resistance, while a classical enrichment analysis identified gene sets irrelevant to the phenotype. NetActivity is publicly available in Bioconductor and GitHub.


Assuntos
Neoplasias da Próstata , Humanos , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Neoplasias da Próstata/metabolismo , Masculino , Aprendizado de Máquina , Perfilação da Expressão Gênica/métodos , Transcriptoma/genética , Regulação Neoplásica da Expressão Gênica , RNA-Seq/métodos , Algoritmos
19.
Nat Commun ; 15(1): 3634, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38688897

RESUMO

Central nervous system (CNS) tumors are the leading cause of pediatric cancer death, and these patients have an increased risk for developing secondary neoplasms. Due to the low prevalence of pediatric CNS tumors, major advances in targeted therapies have been lagging compared to other adult tumors. We collect single nuclei RNA-seq data from 84,700 nuclei of 35 pediatric CNS tumors and three non-tumoral pediatric brain tissues and characterize tumor heterogeneity and transcriptomic alterations. We distinguish cell subpopulations associated with specific tumor types including radial glial cells in ependymomas and oligodendrocyte precursor cells in astrocytomas. In tumors, we observe pathways important in neural stem cell-like populations, a cell type previously associated with therapy resistance. Lastly, we identify transcriptomic alterations among pediatric CNS tumor types compared to non-tumor tissues, while accounting for cell type effects on gene expression. Our results suggest potential tumor type and cell type-specific targets for pediatric CNS tumor treatment. Here we address current gaps in understanding single nuclei gene expression profiles of previously under-investigated tumor types and enhance current knowledge of gene expression profiles of single cells of various pediatric CNS tumors.


Assuntos
Neoplasias do Sistema Nervoso Central , Ependimoma , Regulação Neoplásica da Expressão Gênica , Transcriptoma , Humanos , Criança , Neoplasias do Sistema Nervoso Central/genética , Neoplasias do Sistema Nervoso Central/patologia , Neoplasias do Sistema Nervoso Central/metabolismo , Ependimoma/genética , Ependimoma/patologia , Ependimoma/metabolismo , Pré-Escolar , Astrocitoma/genética , Astrocitoma/patologia , Astrocitoma/metabolismo , Perfilação da Expressão Gênica/métodos , Feminino , RNA-Seq , Masculino , Adolescente , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/patologia , Núcleo Celular/metabolismo , Núcleo Celular/genética
20.
Int J Biol Markers ; 39(2): 168-183, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38646803

RESUMO

BACKGROUND: The comprehensive expression level and potential molecular role of Cyclin A2 (CCNA2) in uterine corpus endometrial carcinoma (UCEC) remains undiscovered. METHODS: UCEC and normal endometrium tissues from in-house and public databases were collected for investigating protein and messenger RNA expression of CCNA2. The transcription factors of CCNA2 were identified by the Cistrome database. The prognostic significance of CCNA2 in UCEC was evaluated through univariate and multivariate Cox regression as well as Kaplan-Meier curve analysis. Single-cell RNA-sequencing (scRNA-seq) analysis was performed to explore cell types in UCEC, and the AUCell algorithm was used to investigate the activity of CCNA2 in different cell types. RESULTS: A total of 32 in-house UCEC and 30 normal endometrial tissues as well as 720 UCEC and 165 control samples from public databases were eligible and collected. Integrated calculation showed that the CCNA2 expression was up-regulated in the UCEC tissues (SMD = 2.43, 95% confidence interval 2.23∼2.64). E2F1 and FOXM1 were identified as transcription factors due to the presence of binding peaks on transcription site of CCNA2. CCNA2 predicted worse prognosis in UCEC. However, CCNA2 was not an independent prognostic factor in UCEC. The scRNA-seq analysis disclosed five cell types: B cells, T cells, monocytes, natural killer cells, and epithelial cells in UCEC. The expression of CCNA2 was mainly located in B cells and T cells. Moreover, CCNA2 was active in T cells and B cells using the AUCell algorithm. CONCLUSION: CCNA2 was up-regulated and mainly located in T cells and B cells in UCEC. Overexpression of CCNA2 predicted unfavorable prognosis of UCEC.


Assuntos
Ciclina A2 , Neoplasias do Endométrio , Humanos , Feminino , Ciclina A2/genética , Ciclina A2/metabolismo , Neoplasias do Endométrio/genética , Neoplasias do Endométrio/patologia , Neoplasias do Endométrio/metabolismo , Prognóstico , Pessoa de Meia-Idade , Análise Serial de Tecidos/métodos , RNA-Seq , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Análise da Expressão Gênica de Célula Única
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA