Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 400
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Front Public Health ; 12: 1295643, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38756895

RESUMO

Leukemia is the most common cancer in children. Its incidence has been increasing worldwide since 1910th, suggesting the presence of common sources of the disease, most likely related to people's lifestyle and environment. Understanding the relationship between childhood leukemia and environmental conditions is critical to preventing the disease. This discussion article examines established potentially-carcinogenic environmental factors, such as vehicle emissions and fires, alongside space weather-related parameters like cosmic rays and the geomagnetic field. To discern the primary contributor, we analyze trends and annual variations in leukemia incidence among 0-14-year-olds in the United States, Canada, Australia, and Russia from 1990 to 2018. Comparisons are drawn with the number of vehicles (representing gasoline emissions) and fire-affected land areas (indicative of fire-related pollutants), with novel data for Russia introduced for the first time. While childhood leukemia incidence is rising in all countries under study, the rate of increase in Russia is twice that of other nations, possibly due to a delayed surge in the country's vehicle fleet compared to others. This trend in Russia may offer insights into past leukemia levels in the USA, Canada, and Australia. Our findings highlight vehicular emissions as the most substantial environmental hazard for children among the factors examined. We also advocate for the consideration of potential modulation of carcinogenic effects arising from variations in cosmic ray intensity, as well as the protective role of the geomagnetic field. To support the idea, we provide examples of potential space weather effects at both local and global scales. The additional analysis includes statistical data from 49 countries and underscores the significance of the magnetic field dip in the South Atlantic Anomaly in contributing to a peak in childhood leukemia incidence in Peru, Ecuador and Chile. We emphasize the importance of collectively assessing all potentially carcinogenic factors for the successful future predictions of childhood leukemia risk in each country.


Assuntos
Leucemia , Tempo (Meteorologia) , Humanos , Incidência , Leucemia/epidemiologia , Leucemia/etiologia , Federação Russa/epidemiologia , Criança , Pré-Escolar , Estados Unidos/epidemiologia , Austrália/epidemiologia , Canadá/epidemiologia , Lactente , Adolescente , Exposição Ambiental/estatística & dados numéricos , Exposição Ambiental/efeitos adversos , Recém-Nascido , Emissões de Veículos , Masculino , Feminino , População Urbana/estatística & dados numéricos , Radiação Cósmica/efeitos adversos
2.
Life Sci Space Res (Amst) ; 41: 166-170, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38670643

RESUMO

In this paper we recommend an appropriate compensation approach should be established for fatality and disabilities that may occur due to space radiation exposures of government or industry workers. A brief review of compensation approaches for nuclear energy and nuclear weapons development workers in the United States and other countries is described. We then summarize issues in the application of probability of causation calculation and provide examples of probability of causation (PC) calculations for missions to the International Space Station and Earth's moon or for Mars exploration. The main focus of this paper follows with a recommendation of a no-fault approach to compensation with the creation of appropriate insurance policies funded by employers to cover all disabilities or fatality, without requiring proof of causation or restriction to conditions that imply causation. Importantly we propose that the compensation described should be managed by recourse to private insurers.


Assuntos
Voo Espacial , Humanos , Exposição Ocupacional , Radiação Cósmica/efeitos adversos , Estados Unidos , Lesões por Radiação/etiologia , Lesões por Radiação/economia , Exposição à Radiação/efeitos adversos , Compensação e Reparação
3.
Life Sci Space Res (Amst) ; 41: 119-126, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38670638

RESUMO

The risk posed by prolonged exposure to space radiation represents a significant obstacle to long-duration human space exploration. Of the ion species present in the galactic cosmic ray spectrum, relativistic protons are the most abundant and as such are a relevant point of interest with regard to the radiation protection of space crews involved in future long-term missions to the Moon, Mars, and beyond. This work compared the shielding effectiveness of a number of standard and composite materials relevant to the design and development of future spacecraft or planetary surface habitats. Absorbed dose was measured using Al2O3:C optically stimulated luminescence dosimeters behind shielding targets of varying composition and depth using the 1 GeV nominal energy proton beam available at the NASA Space Radiation Laboratory at the Brookhaven National Laboratory in New York. Absorbed dose scored from computer simulations performed using the multi-purpose Monte Carlo radiation transport code FLUKA agrees well with measurements obtained via the shielding experiments. All shielding materials tested and modeled in this study were unable to reduce absorbed dose below that measured by the (unshielded) front detector, even after depths as large as 30 g/cm2. These results could be noteworthy given the broad range of proton energies present in the galactic cosmic ray spectrum, and the potential health and safety hazard such space radiation could represent to future human space exploration.


Assuntos
Radiação Cósmica , Método de Monte Carlo , Prótons , Proteção Radiológica , Voo Espacial , Proteção Radiológica/instrumentação , Proteção Radiológica/métodos , Humanos , Radiação Cósmica/efeitos adversos , Doses de Radiação , Astronave , Simulação por Computador
4.
Life Sci Space Res (Amst) ; 41: 210-217, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38670649

RESUMO

In addition to the continuous exposure to cosmic rays, astronauts in space are occasionally exposed to Solar Particle Events (SPE), which involve less energetic particles but can deliver much higher doses. The latter can exceed several Gy in a few hours for the most intense SPEs, for which non-stochastic effects are thus a major concern. To identify adequate shielding conditions that would allow respecting the dose limits established by the various space agencies, the absorbed dose in the considered organ/tissue must be multiplied by the corresponding Relative Biological Effectiveness (RBE), which is a complex quantity depending on several factors including particle type and energy, considered biological effect, level of effect (and thus absorbed dose), etc. While in several studies only the particle-type dependence of RBE is taken into account, in this work we developed and applied a new approach where, thanks to an interface between the FLUKA Monte Carlo transport code and the BIANCA biophysical model, the RBE dependence on particle energy and absorbed dose was also considered. Furthermore, we included in the considered SPE spectra primary particles heavier than protons, which in many studies are neglected. This approach was then applied to the October 2003 SPE (the most intense SPE of solar cycle 23, also known as "Halloween event") and the January 2005 event, which was characterized by a lower fluence but a harder spectrum, i.e., with higher-energy particles. The calculation outcomes were then discussed and compared with the current dose limits established for skin and blood forming organs in case of 30-days missions. This work showed that the BIANCA model, if interfaced to a radiation transport code, can be used to calculate the RBE values associated to Solar Particle Events. More generally, this work emphasizes the importance of taking into account the RBE dependence on particle energy and dose when calculating equivalent doses.


Assuntos
Radiação Cósmica , Eficiência Biológica Relativa , Atividade Solar , Radiação Cósmica/efeitos adversos , Humanos , Voo Espacial , Método de Monte Carlo , Astronautas , Doses de Radiação
5.
Life Sci Space Res (Amst) ; 41: 29-42, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38670650

RESUMO

During a human mission to Mars, astronauts would be continuously exposed to galactic cosmic rays (GCR) consisting of high energy protons and heavier ions coming from outside our solar system. Due to their high energy, GCR ions can penetrate spacecraft and space habitat structures, directly reaching human organs. Additionally, they generate secondary particles when interacting with shielding materials and human tissues. Baryon secondaries have been the focus of many previous studies, while meson and lepton secondaries have been considered to a much lesser extent. In this work, we focus on assessing the tissue-specific dose equivalents and the effective dose for males of secondary mesons and leptons for the interplanetary cruise phase and the surface phase on Mars. We also provide the energy distribution of the secondary pions in each human organ since they are dominant compared to other mesons and leptons. For this calculation, the PHITS3.27 Monte Carlo simulation toolkit is used to compute the energy spectra of particles in organs in a realistic human phantom. Based on the simulation data, the dose equivalent has been estimated with radiation quality factors in ICRP Publication 60 and in the latest NASA Space Cancer Risk model (NSCR-2022). The effective dose is then assessed with the tissue weighting factors in ICRP Publication 103 and in the NSCR model, separately. The results indicate that the contribution of secondary mesons and leptons to the total effective dose is 6.1 %, 9.1 %, and 11.3 % with the NSCR model in interplanetary space behind 5, 20, and 50 g/cm2 aluminum shielding, respectively, with similar values using the ICRP model. The outcomes of this work lead to an improved understanding of the potential health risks induced by secondary particles for exploration missions to Mars and other destinations.


Assuntos
Radiação Cósmica , Marte , Doses de Radiação , Voo Espacial , Radiação Cósmica/efeitos adversos , Humanos , Astronautas , Método de Monte Carlo , Masculino
6.
Life Sci Space Res (Amst) ; 41: 43-51, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38670651

RESUMO

Prolonged manned space flight exposure risks to galactic comic radiation, has led to uncertainties in a variety of health risks. Our previous work, utilizing either single ion or multiple ion radiation exposure conducted at the NSRL (NASA Space Radiation Laboratory, Brookhaven, NY) demonstrated that HZE ion components of the GCR result in persistent inflammatory signaling, increased mutations, and higher rates of cancer initiation and progression. With the development of the 33-beam galactic cosmic radiation simulations (GCRsim) at the NSRL, we can more closely test on earth the radiation environment found in space. With a previously used lung cancer susceptible mouse model (K-rasLA-1), we performed acute exposure experiments lasting 1-2 h, and chronic exposure experiments lasting 2-6 weeks with a total dose of 50 cGy and 75 cGy. We obtained histological samples from a subset of mice 100 days post-irradiation, and the remaining mice were monitored for overall survival up to 1-year post-irradiation. When we compared acute exposures (1-2 hrs.) and chronic exposure (2-6 weeks), we found a trend in the increase of lung adenocarcinoma respectively for a total dose of 50 cGy and 75 cGy. Furthermore, when we added neutron exposure to the 75 cGy of GCRsim, we saw a further increase in the incidence of adenocarcinoma. We interpret these findings to suggest that the risks of carcinogenesis are heightened with doses anticipated during a round trip to Mars, and this risk is magnified when coupled with extra neutron exposure that are expected on the Martian surface. We also observed that risks are reduced when the NASA official 33-beam GCR simulations are provided at high dose rates compared to low dose rates.


Assuntos
Radiação Cósmica , Progressão da Doença , Neoplasias Pulmonares , Neoplasias Induzidas por Radiação , Animais , Radiação Cósmica/efeitos adversos , Camundongos , Neoplasias Induzidas por Radiação/etiologia , Neoplasias Induzidas por Radiação/patologia , Neoplasias Pulmonares/etiologia , Neoplasias Pulmonares/patologia , Voo Espacial , Feminino , Masculino
7.
Life Sci Space Res (Amst) ; 41: 74-79, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38670655

RESUMO

Future NASA missions will require astronauts to travel farther and spend longer durations in space than ever before. This will also expose astronauts to longer periods of several physical and psychological challenges, including exposure to space radiation (SR) and periods of social isolation (SI), which could have unknown negative effects on physical and mental health. Each also has the potential to negatively impact sleep which can reduce the ability to cope with stressful experiences and lead to sensorimotor, neurocognitive, and physical deficits. The effects of SI and SR on gross motor performance has been shown to vary, and depend on, individual differences in stress resilience and vulnerability based on our established animal model in which stress produces different effects on sleep. In this study, the impact that SI and SR, either alone or together, had on fine motor skill performance (bilateral tactile adhesive removal task (BTAR)) was assessed in male rats. We also examined emotional, exploratory, and other off-task behavioral responses during testing and assessed whether sensorimotor performance and emotion varied with individual differences in resilience and vulnerability. BTAR task performance was differentially impacted by SI and SR, and were further influenced by the stress resilience/vulnerability phenotype of the rats. These findings further demonstrate that identifying individual responses to stressors that can impact sensorimotor ability and behavior necessary to perform mission-related tasks will be of particular importance for astronauts and future missions. Should similar effects occur in humans, there may be considerable inter-individual variability in the impact that inflight stressors have on astronauts and their ability to perform mission-related tasks.


Assuntos
Comportamento Animal , Radiação Cósmica , Destreza Motora , Isolamento Social , Animais , Radiação Cósmica/efeitos adversos , Masculino , Ratos , Destreza Motora/efeitos da radiação , Comportamento Animal/efeitos da radiação , Estresse Psicológico , Voo Espacial
8.
Int J Radiat Biol ; 100(5): 777-790, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38471034

RESUMO

PURPOSE: To identify sensitive genes for space radiation, we integrated the transcriptomic samples of spaceflight mice from GeneLab and predicted the radiation doses absorbed by individuals in space. METHODS AND MATERIALS: A single-sample network (SSN) for each individual sample was constructed. Then, using machine learning and genetic algorithms, we built the regression models to predict the absorbed dose equivalent based on the topological structure of SSNs. Moreover, we analyzed the SSNs from each tissue and compared the similarities and differences among them. RESULTS: Our model exhibited excellent performance with the following metrics: R2=0.980, MSE=6.74e-04, and the Pearson correlation coefficient of 0.990 (p value <.0001) between predicted and actual values. We identified 20 key genes, the majority of which had been proven to be associated with radiation. However, we uniquely established them as space radiation sensitive genes for the first time. Through further analysis of the SSNs, we discovered that the different tissues exhibited distinct mechanisms in response to space stressors. CONCLUSIONS: The topology structures of SSNs effectively predicted radiation doses under spaceflight conditions, and the SSNs revealed the gene regulatory patterns within the organisms under space stressors.


Assuntos
Radiação Cósmica , Voo Espacial , Animais , Camundongos , Radiação Cósmica/efeitos adversos , Doses de Radiação , Relação Dose-Resposta à Radiação , Aprendizado de Máquina , Redes Reguladoras de Genes/efeitos da radiação , Transcriptoma/efeitos da radiação
9.
Sci Rep ; 14(1): 7334, 2024 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-38409284

RESUMO

Exposure to cosmic ionizing radiation is an innate risk of the spaceflight environment that can cause DNA damage and altered cellular function. In astronauts, longitudinal monitoring of physiological systems and interactions between these systems are important to consider for mitigation strategies. In addition, assessments of sex-specific biological responses in the unique environment of spaceflight are vital to support future exploration missions that include both females and males. Here we assessed sex-specific, multi-system immune and endocrine responses to simulated cosmic radiation. For this, 24-week-old, male and female C57Bl/6J mice were exposed to simplified five-ion, space-relevant galactic cosmic ray (GCRsim) radiation at 15 and 50 cGy, to simulate predicted radiation exposures that would be experienced during lunar and Martian missions, respectively. Blood and adrenal tissues were collected at 3- and 14-days post-irradiation for analysis of immune and endocrine biosignatures and pathways. Sexually dimorphic adrenal gland weights and morphology, differential total RNA expression with corresponding gene ontology, and unique immune phenotypes were altered by GCRsim. In brief, this study offers new insights into sexually dimorphic immune and endocrine kinetics following simulated cosmic radiation exposure and highlights the necessity for personalized translational approaches for astronauts during exploration missions.


Assuntos
Radiação Cósmica , Marte , Voo Espacial , Camundongos , Masculino , Feminino , Animais , Meio Ambiente Extraterreno , Caracteres Sexuais , Radiação Ionizante , Astronautas , Radiação Cósmica/efeitos adversos , Imunidade
10.
Sci Rep ; 14(1): 1324, 2024 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-38225252

RESUMO

Despite surging interest in space travel in recent decades, the impacts of prolonged, elevated exposure to galactic cosmic radiation (GCR) on human health remain poorly understood. This form of ionizing radiation causes significant changes to biological systems including damage to DNA structure by altering epigenetic phenotype with emphasis on DNA methylation. Building on previous work by Kennedy et al. (Sci Rep 8(1): 6709. 10.1038/S41598-018-24755-8), we evaluated spatial DNA methylation patterns triggered by high-LET (56Fe, 28Si) and low-LET (X-ray) radiation and the influence of chromosome positioning and epigenetic architecture in distinct radial layers of cell nucleus. Next, we validated our results using gene expression data of mice irradiated with simulated GCR and JAXA astronauts. We showed that primarily 56Fe induces a persistent DNA methylation increase whereas 28Si and X-ray induce a decrease DNA methylation which is not persistent with time. Moreover, we highlighted the role of nuclear chromatin architecture in cell response to external radiation. In summary, our study provides novel insights towards epigenetic and transcriptomic response as well as chromatin multidimensional structure influence on galactic cosmic radiation damage.


Assuntos
Radiação Cósmica , Humanos , Camundongos , Animais , Radiação Cósmica/efeitos adversos , Metilação de DNA , Posicionamento Cromossômico , Epigênese Genética , Cromatina/genética
11.
Life Sci Space Res (Amst) ; 40: 1-7, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38245334

RESUMO

In this paper we use the NASA Space Cancer Risk (NSCR version 2022) model to predict cancer and circulatory disease risks using energy spectra representing the largest SPE's observed in the space age. Because tissue dose-rates behind shielding for large SPE's lead to low dose-rates (<0.2 Gy/h) we consider the integrated risk for several historical periods of high solar activity, including July-November, 1960 events and August-October 1989 events along with the February 1956 and August 1972 events. The galactic cosmic ray (GCR) contribution to risks is considered in predictions. Results for these largest historical events show risk of exposure induced death (REID) are mitigated to < 1.2 % with a 95 % confidence interval with passive radiation shielding of 20 g/cm2 aluminum, while larger amounts would support the application of the ALARA principle. Annual GCR risks are predicted to surpass the risks from large SPEs by ∼30 g/cm2 of aluminum shielding.


Assuntos
Radiação Cósmica , Neoplasias , Voo Espacial , Humanos , Atividade Solar , Radiação Cósmica/efeitos adversos , Alumínio , Neoplasias/epidemiologia , Neoplasias/etiologia , Doses de Radiação
12.
Life Sci Space Res (Amst) ; 40: 166-175, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38245342

RESUMO

Future space travel to the earth's moon or the planet Mars will likely lead to the selection of experienced International Space Station (ISS) or lunar crew persons for subsequent lunar or mars missions. Major concerns for space travel are galactic cosmic ray (GCR) risks of cancer and circulatory diseases. However large uncertainties in risk prediction occur due to the quantitative and qualitative differences in heavy ion microscopic energy deposition leading to differences in biological effects compared to low LET radiation. In addition, there are sparse radiobiology data and absence of epidemiology data for heavy ions and other high LET radiation. Non-targeted effects (NTEs) are found in radiobiology studies to increase the biological effectiveness of high LET radiation at low dose for cancer related endpoints. In this paper the most recent version of the NASA Space Cancer Risk model (NSCR-2022) is used to predict mission risks while considering NTEs in solid cancer risk predictions. I discuss predictions of space radiation risks of cancer and circulatory disease mortality for US Whites and US Asian-Pacific Islander (API) populations for 6-month ISS, 80-day lunar missions, and combined ISS-lunar mission. Model predictions suggest NTE increase cancer risks by about ∼2.3 fold over a model that ignores NTEs. US API are predicted to have a lower cancer risks of about 30% compared to US Whites. Cancer risks are slightly less than additive for multiple missions, which is due to the decease of risk with age of exposure and the increased competition with background risks as radiation risks increase. The inclusion of circulatory risks increases mortality estimates about 25% and 37% for females and males, respectively in the model ignoring NTEs, and 20% and 30% when NTEs are assumed to modify solid cancer risk. The predictions made here for combined ISS and lunar missions suggest risks are within risk limit recommendations by the National Council on Radiation Protection and Measurements (NCRP) for such missions.


Assuntos
Radiação Cósmica , Neoplasias Induzidas por Radiação , Voo Espacial , Masculino , Feminino , Humanos , Astronautas , Lua , Radiação Cósmica/efeitos adversos , Neoplasias Induzidas por Radiação/epidemiologia , Neoplasias Induzidas por Radiação/etiologia , Doses de Radiação
13.
Z Med Phys ; 34(1): 14-30, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37507310

RESUMO

The Partner Agencies of the International Space Station (ISS) maintain separate career exposure limits and shared Flight Rules that control the ionising radiation exposures that crewmembers can experience due to ambient environments throughout their space missions. In low Earth orbit as well as further out in space, energetic ions referred to as galactic cosmic radiation (GCR) easily penetrate spacecraft and spacecraft contents and consequently are always present at low dose rates. Protons and electrons that are trapped in the Earth's geomagnetic field are encountered intermittently, and a rare energetic solar particle event (SPE) may expose crew to (mostly) energetic protons. Space radiation protection goals are to optimize radiation exposures to maintain deleterious late effects at known and acceptable levels and to prevent any early effects that might compromise crew health and mission success. The conventional radiation protection metric effective dose provides a basic framework for limiting exposures associated with human spaceflight and can be communicated to all stakeholders. Additional metrics and uncertainty analyses are required to understand more completely and to convey nuanced information about potential impacts to an individual astronaut or to a space mission. Missions to remote destinations well beyond low Earth orbit (BLEO) are upcoming and bestow additional challenges that shape design and radiation protection needs. NASA has recently adopted a more permissive career exposure limit based upon effective dose and new restrictions on mission exposures imposed by nuclear technologies. This manuscript reviews the exposure limits that apply to the ISS crewmembers. This work was performed in collaboration with the advisory and guidance efforts of International Commission on Radiological Protection (ICRP) Task Group 115 and will be summarized in an upcoming ICRP Report.


Assuntos
Radiação Cósmica , Monitoramento de Radiação , Humanos , Doses de Radiação , Prótons , Radiação Cósmica/efeitos adversos , Medição de Risco
14.
Z Med Phys ; 34(1): 44-63, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37455230

RESUMO

Most of the astronauts experience visual illusions, apparent flashes of light (LF) in absence of light. The first reported observation of this phenomenon was in July 1969 by Buzz Aldrin, in the debriefing following the Apollo 11 mission. Several ground-based experiments in the 1970s tried to clarify the mechanisms behind these light flashes and to evaluate possible related risks. These works were supported by dedicated experiments in space on the following Apollo flights and in Low Earth Orbit (LEO). It was soon demonstrated that the LF could be caused by charged particles (present in the space radiation) traveling through the eye, and, possibly, some other visual cortical areas. In the 1990s the interest in these phenomena increased again and additional experiments in Low Earth Orbit and others ground-based were started. Recently patients undergoing proton and heavy ion therapy for eye or head and neck tumors have reported the perception of light flashes, opening a new channel to investigate these phenomena. In this paper the many LF studies will be reviewed, presenting an historical and scientific perspective consistent with the combined set of observations, offering a single comprehensive summary aimed to provide further insights on these phenomena. While the light flashes appear not to be a risk by themselves, they might provide information on the amount of radiation induced radicals in the astronauts' eyes. Understanding their generation mechanisms might also support radiation countermeasures development. However, even given the substantial progress outlined in this paper, many questions related to their generation are still under debate, so additional studies are suggested. Finally, it is also conceivable that further LF investigations could provide evidence about the possible interaction of single particles in space with brain function, impacting with the crew ability to optimally perform a mission.


Assuntos
Radiação Cósmica , Radioterapia com Íons Pesados , Ilusões , Voo Espacial , Humanos , Prótons , Fosfenos , Radiação Cósmica/efeitos adversos
15.
Nat Commun ; 14(1): 7779, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38012180

RESUMO

Astronauts will encounter extended exposure to galactic cosmic radiation (GCR) during deep space exploration, which could impair brain function. Here, we report that in male mice, acute or chronic GCR exposure did not modify reward sensitivity but did adversely affect attentional processes and increased reaction times. Potassium (K+)-stimulation in the prefrontal cortex (PFC) elevated dopamine (DA) but abolished temporal DA responsiveness after acute and chronic GCR exposure. Unlike acute GCR, chronic GCR increased levels of all other neurotransmitters, with differences evident between groups after higher K+-stimulation. Correlational and machine learning analysis showed that acute and chronic GCR exposure differentially reorganized the connection strength and causation of DA and other PFC neurotransmitter networks compared to controls which may explain space radiation-induced neurocognitive deficits.


Assuntos
Radiação Cósmica , Exposição à Radiação , Voo Espacial , Camundongos , Masculino , Animais , Humanos , Astronautas , Radiação Cósmica/efeitos adversos , Cognição
16.
Radiat Res ; 200(5): 421-430, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37758050

RESUMO

The ionizing radiation exposure to crew on current and future space missions can significantly increase their health risks for cancers, degenerative diseases, and other acute and late effects. A common approach for estimating risk to crew is by completing stochastic (e.g., Monte Carlo) or deterministic particle transport simulations. Within the simulated environment, a small fraction of the particle histories tracked will interact with the astronaut or detector, particularly for larger spacecraft such as the International Space Station, Tiangong Space Station or Lunar Gateway. These simulations can be computationally intensive as they require a very large number of particle histories to achieve a low statistical uncertainty. Variance reduction techniques are applied to simulations to reduce the computational time of the simulation while maintaining the same (or less) statistical uncertainty. The variance reduction technique developed herein involves applying a directional source bias to an isotropic radiation field, such as galactic cosmic rays, to reduce the quantity of particles that have a low probability of interacting with the astronaut or detector. A custom application has been developed utilizing the Geant4 Toolkit that computes the trajectories and energies of particles in three dimensions in the International Space Station using the Monte Carlo method. The results demonstrate the impact of our variance reduction technique on effective dose equivalence depending on: primary and secondary particle type (proton, neutron, photon, heavy ion, etc.), geometric volumes and spacecraft materials. Our variance reduction technique can be tuned by the user to optimize the simulation time depending on their objectives and enables rapid testing of different shield configurations and materials. This variance reduction technique is implemented easily using several input parameters for boundary conditions. Recommended values are presented for rapid implementation in simulations.


Assuntos
Radiação Cósmica , Astronave , Humanos , Astronautas , Radiação Cósmica/efeitos adversos , Nêutrons , Doses de Radiação
17.
Radiat Res ; 200(3): 256-265, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37527363

RESUMO

During the planned missions to Mars, astronauts will be faced with many potential health hazards including prolonged exposure to space radiation. Ground-based studies have shown that exposure to space radiation impairs the performance of male rats in cognitive flexibility tasks which involve processes that are essential to rapidly and efficiently adapting to different situations. However, there is presently a paucity of information on the effects of space radiation on cognitive flexibility in female rodents. This study has determined the impact that exposure to a low (10 cGy) dose of ions from the simplified 5-ion galactic cosmic ray simulation [https://www.bnl.gov/nsrl/userguide/SimGCRSim.php (07/2023)] (GCRSim) beam or 250 MeV/n 4He ions has on the ability of female Wistar rats to perform in constrained [attentional set shifting (ATSET)] and unconstrained cognitive flexibility (UCFlex) tasks. Female rats exposed to GCRSim exhibited multiple decrements in ATSET performance. Firstly, GCRSim exposure impaired performance in the compound discrimination (CD) stage of the ATSET task. While the ability of rats to identify the rewarded cue was not compromised, the time the rats required to do so significantly increased. Secondly, both 4He and GCRSim exposure reduced the ability of rats to reach criterion in the compound discrimination reversal (CDR) stage. Approximately 20% of the irradiated rats were unable to complete the CDR task; furthermore, the irradiated rats that did reach criterion took more attempts to do so than did the sham-treated animals. Radiation exposure also altered the magnitude and/or nature of practice effects. A comparison of performance metrics from the pre-screen and post-exposure ATSET task revealed that while the sham-treated rats completed the post-exposure CD stage of the ATSET task in 30% less time than for completion of the pre-screen ATSET task, the irradiated rats took 30-50% longer to do so. Similarly, while sham-treated rats completed the CDR stage in ∼10% fewer attempts in the post-exposure task compared to the pre-screen task, in contrast, the 4He- and GCRSim-exposed cohorts took more (∼2-fold) attempts to reach criterion in the post-exposure task than in the pre-screen task. In conclusion, this study demonstrates that female rats are susceptible to radiation-induced loss of performance in the constrained ATSET cognitive flexibility task. Moreover, exposure to radiation leads to multiple performance decrements, including loss of practice effects, an increase in anterograde interference and reduced ability or unwillingness to switch attention. Should similar effects occur in humans, astronauts may have a compromised ability to perform complex tasks.


Assuntos
Radiação Cósmica , Humanos , Ratos , Masculino , Feminino , Animais , Ratos Wistar , Relação Dose-Resposta à Radiação , Radiação Cósmica/efeitos adversos , Atenção/efeitos da radiação , Cognição
18.
Sci Rep ; 13(1): 12479, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37528144

RESUMO

The impact of deep space cosmic rays on food resources is as important as the risks of cosmic rays to the human body. This study demonstrates the potential for neutrons as secondary radiation in deep space spacecraft to cause meat activation and oxidative modification of proteins and lipids. We conducted a series of experiments such as the neutron irradiation experiment, the radioactivation analysis and the biochemical analysis. Neutrons with energies from 1 to 5 MeV with doses from 0.01 Gy to 4 Gy were irradiated by the RIKEN accelerated-driven neutron source (RANS). Radioactive nuclei, 24Na, 42K, and 38Cl, were detected in the neutron-irradiated meat. The modification products of the proteins by oxidative nitration, 6-nitrotryptophan (6NO2Trp), and by a lipid peroxidation, 4-hydroxy-2-nonenal (4-HNE), were detected in several proteins with neutron dose dependent. The proteome analysis showed that many oxidative modifications were detected in actin and myosin which are major proteins of myofibrils. This study is of crucial importance not only as risk factors for human space exploration, but also as fundamental effects of radiation on the components of the human body.


Assuntos
Radiação Cósmica , Radioatividade , Voo Espacial , Humanos , Astronave , Nêutrons , Radiação Cósmica/efeitos adversos , Doses de Radiação
19.
Biomaterials ; 301: 122267, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37633022

RESUMO

Cosmic radiation is the most serious risk that will be encountered during the planned missions to the Moon and Mars. There is a compelling need to understand the effects, safety thresholds, and mechanisms of radiation damage in human tissues, in order to develop measures for radiation protection during extended space travel. As animal models fail to recapitulate the molecular changes in astronauts, engineered human tissues and "organs-on-chips" are valuable tools for studying effects of radiation in vitro. We have developed a bioengineered tissue platform for studying radiation damage in individualized settings. To demonstrate its utility, we determined the effects of radiation using engineered models of two human tissues known to be radiosensitive: engineered cardiac tissues (eCT, a target of chronic radiation damage) and engineered bone marrow (eBM, a target of acute radiation damage). We report the effects of high-dose neutrons, a proxy for simulated galactic cosmic rays, on the expression of key genes implicated in tissue responses to ionizing radiation, phenotypic and functional changes in both tissues, and proof-of-principle application of radioprotective agents. We further determined the extent of inflammatory, oxidative stress, and matrix remodeling gene expression changes, and found that these changes were associated with an early hypertrophic phenotype in eCT and myeloid skewing in eBM. We propose that individualized models of human tissues have potential to provide insights into the effects and mechanisms of radiation during deep-space missions and allow testing of radioprotective measures.


Assuntos
Radiação Cósmica , Humanos , Engenharia Biomédica , Radiação Cósmica/efeitos adversos , Hipertrofia
20.
Sci Rep ; 13(1): 9348, 2023 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-37291163

RESUMO

The South Atlantic Anomaly (SAA) is a geographical region over the South Atlantic Ocean where the inner Van Allen radiation belt extends down particularly close to Earth. This leads to highly increased levels of ionizing radiation and related impacts on spacecraft in Low Earth Orbits, e.g., correspondingly increased radiation exposure of astronauts and electronic components on the International Space Station. According to an urban legend, the SAA is also supposed to affect the radiation field in the atmosphere even down to the altitudes of civil aviation. In order to identify and quantify any additional contributions to the omnipresent radiation exposure due to the Galactic Cosmic Radiation at flight altitudes, comprehensive measurements were performed crossing the geographical region of the SAA at an altitude of 13 km in a unique flight mission-Atlantic Kiss. No indication of increased radiation exposure was found.


Assuntos
Radiação Cósmica , Exposição à Radiação , Monitoramento de Radiação , Voo Espacial , Altitude , Doses de Radiação , Astronave , Radiação Cósmica/efeitos adversos , Oceano Atlântico , América do Sul
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA