Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.945
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 10637, 2024 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-38724569

RESUMO

Hadron therapy is an advanced radiation modality for treating cancer, which currently uses protons and carbon ions. Hadrons allow for a highly conformal dose distribution to the tumour, minimising the detrimental side-effects due to radiation received by healthy tissues. Treatment with hadrons requires sub-millimetre spatial resolution and high dosimetric accuracy. This paper discusses the design, fabrication and performance tests of a detector based on Gas Electron Multipliers (GEM) coupled to a matrix of thin-film transistors (TFT), with an active area of 60 × 80 mm2 and 200 ppi resolution. The experimental results show that this novel detector is able to detect low-energy (40 kVp X-rays), high-energy (6 MeV) photons used in conventional radiation therapy and protons and carbon ions of clinical energies used in hadron therapy. The GEM-TFT is a compact, fully scalable, radiation-hard detector that measures secondary electrons produced by the GEMs with sub-millimetre spatial resolution and a linear response for proton currents from 18 pA to 0.7 nA. Correcting known detector defects may aid in future studies on dose uniformity, LET dependence, and different gas mixture evaluation, improving the accuracy of QA in radiotherapy.


Assuntos
Radiometria , Radiometria/instrumentação , Radiometria/métodos , Humanos , Radioterapia/métodos , Radioterapia/normas , Radioterapia/instrumentação , Garantia da Qualidade dos Cuidados de Saúde , Elétrons , Dosagem Radioterapêutica , Neoplasias/radioterapia , Desenho de Equipamento , Terapia com Prótons/instrumentação , Terapia com Prótons/métodos
2.
Radiat Res ; 201(5): 440-448, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38714319

RESUMO

The development of effective uses of biodosimetry in large-scale events has been hampered by residual, i.e., "legacy" thinking based on strategies that scale up from biodosimetry in small accidents. Consequently, there remain vestiges of unrealistic assumptions about the likely magnitude of victims in "large" radiation events and incomplete analyses of the logistics for making biodosimetry measurements/assessments in the field for primary triage. Elements remain from an unrealistic focus on developing methods to use biodosimetry in the initial stage of triage for a million or more victims. Based on recent events and concomitant increased awareness of the potential for large-scale events as well as increased sophistication in planning and experience in the development of biodosimetry, a more realistic assessment of the most effective roles of biodosimetry in large-scale events is urgently needed. We argue this leads to a conclusion that the most effective utilization of biodosimetry in very large events would occur in a second stage of triage, after initially winnowing the population by identifying those most in need of acute medical attention, based on calculations of geographic sites where significant exposures could have occurred. Understanding the potential roles and limitations of biodosimetry in large-scale events involving significant radiation exposure should lead to development of the most effective and useful biodosimetric techniques for each stage of triage for acute radiation syndrome injuries, i.e., based on more realistic assumptions about the underlying event and the logistics for carrying out biodosimetry for large populations.


Assuntos
Síndrome Aguda da Radiação , Liberação Nociva de Radioativos , Triagem , Humanos , Síndrome Aguda da Radiação/etiologia , Medição de Risco , Triagem/métodos , Radiometria/métodos
3.
Nan Fang Yi Ke Da Xue Xue Bao ; 44(4): 773-779, 2024 Apr 20.
Artigo em Chinês | MEDLINE | ID: mdl-38708512

RESUMO

OBJECTIVE: To investigate the dosimetric difference between manual and inverse optimization in 3-dimensional (3D) brachytherapy for gynecologic tumors. METHODS: This retrospective study was conducted among a total of 110 patients with gynecologic tumors undergoing intracavitary combined with interstitial brachytherapy or interstitial brachytherapy. Based on the original images, the brachytherapy plans were optimized for each patient using Gro, IPSA1, IPSA2 (with increased volumetric dose limits on the basis of IPSA1) and HIPO algorithms. The dose-volume histogram (DVH) parameters of the clinical target volume (CTV) including V200, V150, V100, D90, D98 and CI, and the dosimetric parameters D2cc, D1cc, and D0.1cc for the bladder, rectum, and sigmoid colon were compared among the 4 plans. RESULTS: Among the 4 plans, Gro optimization took the longest time, followed by HIPO, IPSA2 and IPSA1 optimization. The mean D90, D98, and V100 of HIPO plans were significantly higher than those of Gro and IPSA plans, and D90 and V100 of IPSA1, IPSA2 and HIPO plans were higher than those of Gro plans (P < 0.05), but the CI of the 4 plans were similar (P > 0.05). For the organs at risk (OARs), the HIPO plan had the lowest D2cc of the bladder and rectum; the bladder absorbed dose of Gro plans were significantly greater than those of IPSA1 and HIPO (P < 0.05). The D2cc and D1cc of the rectum in IPSA1, IPSA2 and HIPO plans were better than Gro (P < 0.05). The D2cc and D1cc of the sigmoid colon did not differ significantly among the 4 plans. CONCLUSION: Among the 4 algorithms, the HIPO algorithm can better improve dose coverage of the target and lower the radiation dose of the OARs, and is thus recommended for the initial plan optimization. Clinically, the combination of manual optimization can achieve more individualized dose distribution of the plan.


Assuntos
Algoritmos , Braquiterapia , Neoplasias dos Genitais Femininos , Radiometria , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador , Humanos , Braquiterapia/métodos , Feminino , Estudos Retrospectivos , Neoplasias dos Genitais Femininos/radioterapia , Planejamento da Radioterapia Assistida por Computador/métodos , Radiometria/métodos
5.
J Appl Clin Med Phys ; 25(5): e14343, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38569013

RESUMO

PURPOSE: Single-isocenter multi-target intracranial stereotactic radiotherapy (SIMT) is an effective treatment for brain metastases with complex treatment plans and delivery optimization necessitating rigorous quality assurance. This work aims to assess five methods for quality assurance of SIMT treatment plans in terms of their suitability and sensitivity to delivery errors. METHODS: Sun Nuclear ArcCHECK and SRS MapCHECK, GafChromic EBT Radiochromic Film, machine log files, and Varian Portal Dosimetry were all used to measure 15 variations of a single SIMT plan. Variations of the original plan were created with Python. They comprised various degrees of systematic MLC offsets per leaf up to 2 mm, random per-leaf variations with differing minimum and maximum magnitudes, simulated collimator, and dose miscalibrations (MU scaling). The erroneous plans were re-imported into Eclipse and plan-quality degradation was assessed by comparing each plan variation to the original clinical plan in terms of the percentage of clinical goals passing relative to the original plan. Each erroneous plan could be then ranked by the plan-quality degradation percentage following recalculation in the TPS so that the effects of each variation could be correlated with γ pass rates and detector suitability. RESULTS & CONCLUSIONS: It was found that 2%/1 mm is a good starting point for the ArcCHECK, Portal Dosimetry, and the SRS MapCHECK methods, respectively, and provides clinically relevant error detection sensitivity. Looser dose criteria of 5%/1 mm or 5%/1.5 mm are suitable for film dosimetry and log-file-based methods. The statistical methods explored can be expanded to other areas of patient-specific QA and detector assessment.


Assuntos
Neoplasias Encefálicas , Garantia da Qualidade dos Cuidados de Saúde , Radiocirurgia , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador , Radioterapia de Intensidade Modulada , Humanos , Planejamento da Radioterapia Assistida por Computador/métodos , Neoplasias Encefálicas/radioterapia , Radiocirurgia/métodos , Radiocirurgia/instrumentação , Garantia da Qualidade dos Cuidados de Saúde/normas , Radioterapia de Intensidade Modulada/métodos , Aceleradores de Partículas/instrumentação , Radiometria/métodos , Radiometria/instrumentação , Algoritmos
6.
J Appl Clin Med Phys ; 25(5): e14345, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38664894

RESUMO

PURPOSE: To establish the clinical applicability of deep-learning organ-at-risk autocontouring models (DL-AC) for brain radiotherapy. The dosimetric impact of contour editing, prior to model training, on performance was evaluated for both CT and MRI-based models. The correlation between geometric and dosimetric measures was also investigated to establish whether dosimetric assessment is required for clinical validation. METHOD: CT and MRI-based deep learning autosegmentation models were trained using edited and unedited clinical contours. Autosegmentations were dosimetrically compared to gold standard contours for a test cohort. D1%, D5%, D50%, and maximum dose were used as clinically relevant dosimetric measures. The statistical significance of dosimetric differences between the gold standard and autocontours was established using paired Student's t-tests. Clinically significant cases were identified via dosimetric headroom to the OAR tolerance. Pearson's Correlations were used to investigate the relationship between geometric measures and absolute percentage dose changes for each autosegmentation model. RESULTS: Except for the right orbit, when delineated using MRI models, the dosimetric statistical analysis revealed no superior model in terms of the dosimetric accuracy between the CT DL-AC models or between the MRI DL-AC for any investigated brain OARs. The number of patients where the clinical significance threshold was exceeded was higher for the optic chiasm D1% than other OARs, for all autosegmentation models. A weak correlation was consistently observed between the outcomes of dosimetric and geometric evaluations. CONCLUSIONS: Editing contours before training the DL-AC model had no significant impact on dosimetry. The geometric test metrics were inadequate to estimate the impact of contour inaccuracies on dose. Accordingly, dosimetric analysis is needed to evaluate the clinical applicability of DL-AC models in the brain.


Assuntos
Neoplasias Encefálicas , Aprendizado Profundo , Imageamento por Ressonância Magnética , Órgãos em Risco , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador , Tomografia Computadorizada por Raios X , Humanos , Órgãos em Risco/efeitos da radiação , Imageamento por Ressonância Magnética/métodos , Tomografia Computadorizada por Raios X/métodos , Neoplasias Encefálicas/radioterapia , Neoplasias Encefálicas/diagnóstico por imagem , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/métodos , Radiometria/métodos , Processamento de Imagem Assistida por Computador/métodos
7.
Biomed Phys Eng Express ; 10(3)2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38652667

RESUMO

Utilising Machine Learning (ML) models to predict dosimetric parameters in pencil beam scanning proton therapy presents a promising and practical approach. The study developed Artificial Neural Network (ANN) models to predict proton beam spot size and relative positional errors using 9000 proton spot data. The irradiation log files as input variables and corresponding scintillation detector measurements as the label values. The ANN models were developed to predict six variables: spot size in thex-axis,y-axis, major axis, minor axis, and relative positional errors in thex-axis andy-axis. All ANN models used a Multi-layer perception (MLP) network using one input layer, three hidden layers, and one output layer. Model performance was validated using various statistical tools. The log file recorded spot size and relative positional errors, which were compared with scintillator-measured data. The Root Mean Squared Error (RMSE) values for the x-spot and y-spot sizes were 0.356 mm and 0.362 mm, respectively. Additionally, the maximum variation for the x-spot relative positional error was 0.910 mm, while for the y-spot, it was 1.610 mm. The ANN models exhibit lower prediction errors. Specifically, the RMSE values for spot size prediction in the x, y, major, and minor axes are 0.053 mm, 0.049 mm, 0.053 mm, and 0.052 mm, respectively. Additionally, the relative spot positional error prediction model for the x and y axes yielded maximum errors of 0.160 mm and 0.170 mm, respectively. The normality of models was validated using the residual histogram and Q-Q plot. The data over fit, and bias were tested using K (k = 5) fold cross-validation, and the maximum RMSE value of the K fold cross-validation among all the six ML models was less than 0.150 mm (R-Square 0.960). All the models showed excellent prediction accuracy. Accurately predicting beam spot size and positional errors enhances efficiency in routine dosimetric checks.


Assuntos
Redes Neurais de Computação , Terapia com Prótons , Radiometria , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador , Terapia com Prótons/métodos , Radiometria/métodos , Humanos , Planejamento da Radioterapia Assistida por Computador/métodos , Algoritmos , Aprendizado de Máquina , Reprodutibilidade dos Testes , Prótons
8.
Zhongguo Yi Liao Qi Xie Za Zhi ; 48(2): 150-155, 2024 Mar 30.
Artigo em Chinês | MEDLINE | ID: mdl-38605613

RESUMO

Objective: A quality control (QC) system based on the electronic portal imaging device (EPID) system was used to realize the Multi-Leaf Collimator (MLC) position verification and dose verification functions on Primus and VenusX accelerators. Methods: The MLC positions were calculated by the maximum gradient method of gray values to evaluate the deviation. The dose of images acquired by EPID were reconstructed using the algorithm combining dose calibration and dose calculation. The dose data obtained by EPID and two-dimensional matrix (MapCheck/PTW) were compared with the dose calculated by Pinnacle/TiGRT TPS for γ passing rate analysis. Results: The position error of VenusX MLC was less than 1 mm. The position error of Primus MLC was significantly reduced after being recalibrated under the instructions of EPID. For the dose reconstructed by EPID, the average γ passing rates of Primus were 98.86% and 91.39% under the criteria of 3%/3 mm, 10% threshold and 2%/2 mm, 10% threshold, respectively. The average γ passing rates of VenusX were 98.49% and 91.11%, respectively. Conclusion: The EPID-based accelerator quality control system can improve the efficiency of accelerator quality control and reduce the workload of physicists.


Assuntos
Planejamento da Radioterapia Assistida por Computador , Radioterapia de Intensidade Modulada , Planejamento da Radioterapia Assistida por Computador/métodos , Dosagem Radioterapêutica , Algoritmos , Calibragem , Eletrônica , Radioterapia de Intensidade Modulada/métodos , Radiometria/métodos
9.
Biomed Phys Eng Express ; 10(3)2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38579691

RESUMO

Background.Modern radiation therapy technologies aim to enhance radiation dose precision to the tumor and utilize hypofractionated treatment regimens. Verifying the dose distributions associated with these advanced radiation therapy treatments remains an active research area due to the complexity of delivery systems and the lack of suitable three-dimensional dosimetry tools. Gel dosimeters are a potential tool for measuring these complex dose distributions. A prototype tabletop solid-tank fan-beam optical CT scanner for readout of gel dosimeters was recently developed. This scanner does not have a straight raypath from source to detector, thus images cannot be reconstructed using filtered backprojection (FBP) and iterative techniques are required.Purpose.To compare a subset of the top performing algorithms in terms of image quality and quantitatively determine the optimal algorithm while accounting for refraction within the optical CT system. The following algorithms were compared: Landweber, superiorized Landweber with the fast gradient projection perturbation routine (S-LAND-FGP), the fast iterative shrinkage/thresholding algorithm with total variation penalty term (FISTA-TV), a monotone version of FISTA-TV (MFISTA-TV), superiorized conjugate gradient with the nonascending perturbation routine (S-CG-NA), superiorized conjugate gradient with the fast gradient projection perturbation routine (S-CG-FGP), superiorized conjugate gradient with with two iterations of CG performed on the current iterate and the nonascending perturbation routine (S-CG-2-NA).Methods.A ray tracing simulator was developed to track the path of light rays as they traverse the different mediums of the optical CT scanner. Two clinical phantoms and several synthetic phantoms were produced and used to evaluate the reconstruction techniques under known conditions. Reconstructed images were analyzed in terms of spatial resolution, signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), signal non-uniformity (SNU), mean relative difference (MRD) and reconstruction time. We developed an image quality based method to find the optimal stopping iteration window for each algorithm. Imaging data from the prototype optical CT scanner was reconstructed and analysed to determine the optimal algorithm for this application.Results.The optimal algorithms found through the quantitative scoring metric were FISTA-TV and S-CG-2-NA. MFISTA-TV was found to behave almost identically to FISTA-TV however MFISTA-TV was unable to resolve some of the synthetic phantoms. S-CG-NA showed extreme fluctuations in the SNR and CNR values. S-CG-FGP had large fluctuations in the SNR and CNR values and the algorithm has less noise reduction than FISTA-TV and worse spatial resolution than S-CG-2-NA. S-LAND-FGP had many of the same characteristics as FISTA-TV; high noise reduction and stability from over iterating. However, S-LAND-FGP has worse SNR, CNR and SNU values as well as longer reconstruction time. S-CG-2-NA has superior spatial resolution to all algorithms while still maintaining good noise reduction and is uniquely stable from over iterating.Conclusions.Both optimal algorithms (FISTA-TV and S-CG-2-NA) are stable from over iterating and have excellent edge detection with ESF MTF 50% values of 1.266 mm-1and 0.992 mm-1. FISTA-TV had the greatest noise reduction with SNR, CNR and SNU values of 424, 434 and 0.91 × 10-4, respectively. However, low spatial resolution makes FISTA-TV only viable for large field dosimetry. S-CG-2-NA has better spatial resolution than FISTA-TV with PSF and LSF MTF 50% values of 1.581 mm-1and 0.738 mm-1, but less noise reduction. S-CG-2-NA still maintains good SNR, CNR, and SNU values of 168, 158 and 1.13 × 10-4, respectively. Thus, S-CG-2-NA is a well rounded reconstruction algorithm that would be the preferable choice for small field dosimetry.


Assuntos
Processamento de Imagem Assistida por Computador , Tomografia Computadorizada por Raios X , Processamento de Imagem Assistida por Computador/métodos , Tomografia Computadorizada por Raios X/métodos , Radiometria/métodos , Razão Sinal-Ruído , Algoritmos
10.
Asian Pac J Cancer Prev ; 25(4): 1425-1432, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38680004

RESUMO

AIM: This study comprehensively investigated pre-treatment quality assurance (QA) for 100 cancer patients undergoing stereotactic treatments (SRS/SRT) using various detectors. METHODS: The study conducted QA for SRS/SRT treatments planned with a 6MV SRS beam at a dose rate of 1,000 MU/min, utilizing Eclipse v13.6 Treatment Planning System (TPS). Point dose measurements employed 0.01cm3 and 0.13cm3 cylindrical ionization chambers, while planar dose verification utilized Gafchromic EBT-XD Film and Portal Imager (aS1000). Plans were categorized by target volume, and a thorough analysis compared point dose agreements, planar dose gamma pass rates, and their correlations with chamber volume mean dose, detector type, and point dose agreement. Additionally, the consistency between different ionization chambers was assessed. RESULTS: Point dose agreement generally improved with increasing target volume, except for volumes over 10cm3 with 0.01cm3 chambers, showing a contrary trend. Significant differences (p<0.05) were observed between TPS and measured doses for both chambers. Gamma pass rate improved with increasing target volume in EBT XD and aS1000 analyses, except for the >10cm3 group in EBT XD. EBT XD demonstrated better agreement with TPS for target volumes up to 10cm3 compared to aS1000, with a statistically significant difference (p<0.05) between the detectors. Strong correlations were found between chamber point dose and chamber volume mean dose agreement, as well as between the two gamma criteria analyses of the same detector type in the planar dose correlation analysis. However, weak correlations were discovered for other analyses. CONCLUSION: This study found weak correlation between different detector types in pre-treatment QA for point dose and planar dose evaluation. However, within a specific detector type, strong correlation was observed for different point dose evaluation methods and gamma criteria. This highlights the importance of cautious interpretation of QA results, particularly for SRS QA, due to the lack of correlation between detector types.


Assuntos
Neoplasias , Garantia da Qualidade dos Cuidados de Saúde , Radiocirurgia , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador , Humanos , Radiocirurgia/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Planejamento da Radioterapia Assistida por Computador/normas , Garantia da Qualidade dos Cuidados de Saúde/normas , Neoplasias/radioterapia , Radiometria/métodos , Radioterapia de Intensidade Modulada/métodos
11.
Phys Med Biol ; 69(10)2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38640918

RESUMO

Objective. In this experimental work we compared the determination of absorbed dose to water using four ionization chambers (ICs), a PTW-34045 Advanced Markus, a PTW-34001 Roos, an IBA-PPC05 and a PTW-30012 Farmer, irradiated under the same conditions in one continuous- and in two pulsed-scanned proton beams.Approach. The ICs were positioned at 2 cm depth in a water phantom in four square-field single-energy scanned-proton beams with nominal energies between 80 and 220 MeV and in the middle of 10 × 10 × 10 cm3dose cubes centered at 10 cm or 12.5 cm depth in water. The water-equivalent thickness (WET) of the entrance window and the effective point of measurement was considered when positioning the plane parallel (PP) ICs and the cylindrical ICs, respectively. To reduce uncertainties, all ICs were calibrated at the same primary standards laboratory. We used the beam quality (kQ) correction factors for the ICs under investigation from IAEA TRS-398, the newly calculated Monte Carlo (MC) values and the anticipated IAEA TRS-398 updated recommendations.Main results. Dose differences among the four ICs ranged between 1.5% and 3.7% using both the TRS-398 and the newly recommendedkQvalues. The spread among the chambers is reduced with the newlykQvalues. The largest differences were observed between the rest of the ICs and the IBA-PPC05 IC, obtaining lower dose with the IBA-PPC05.Significance. We provide experimental data comparing different types of chambers in different proton beam qualities. The observed dose differences between the ICs appear to be related to inconsistencies in the determination of thekQvalues. For PP ICs, MC studies account for the physical thickness of the entrance window rather than the WET. The additional energy loss that the wall material invokes is not negligible for the IBA-PPC05 and might partially explain the lowkQvalues determined for this IC. To resolve this inconsistency and to benchmark MC values,kQvalues measured using calorimetry are needed.


Assuntos
Radiometria , Radiometria/instrumentação , Radiometria/métodos , Método de Monte Carlo , Terapia com Prótons/instrumentação , Prótons , Imagens de Fantasmas , Padrões de Referência , Incerteza , Água , Calibragem
12.
Radiat Prot Dosimetry ; 200(7): 670-676, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38665036

RESUMO

Silicon has been developed as a microdosemeter, as it can provide sensitive volumes at submicrometric levels, does not need a gas supply, has a fast response, and has low power consumption. However, since the energy response in silicon is not the same as that in tissue, a spectral conversion from silicon to tissue is necessary to obtain the probability distribution of energy deposition in tissue. In this work, we present a method for microdosimetric spectra conversion from silicon to tissue based on the scaled Fourier transformation and the geometric scaling factor, which shows relatively good results in the spectral conversion from diamond to tissue. The results illustrate that the method can convert the energy deposition spectra from silicon to tissue with proper accuracy. Meanwhile, the inconsistency between the converted and actual spectra due to the inherent difference was also observed. Whereas, the reasons for the disagreement are different. For the plateau part of the Bragg curve, the discrepancy between the converted and actual spectra is due to the poor tissue equivalent of silicon. For the proximal part of the Bragg curve, the spectral difference is attributed to the different shapes of the energy deposition spectra obtained in silicon and water, which is the same as that in the diamond. In summary, this method can be employed in the tissue equivalent conversion of silicon microdosemeter, but the poor tissue equivalent of silicon limited the accuracy of this method. In addition, the correction for the deviation between the converted and calculated spectra due to the difference in spectral shapes is required to improve the practicality of this mod.


Assuntos
Silício , Silício/química , Humanos , Radioterapia com Íons Pesados , Imagens de Fantasmas , Dosagem Radioterapêutica , Radiometria/métodos , Radiometria/instrumentação , Desenho de Equipamento , Análise de Fourier
13.
Radiat Oncol ; 19(1): 40, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38509543

RESUMO

PURPOSE: To assess a large panel of MR compatible detectors on the full range of measurements required for a 0.35 T MR-linac commissioning by using a specific statistical method represented as a continuum of comparison with the Monte Carlo (MC) TPS calculations. This study also describes the commissioning tests and the secondary MC dose calculation validation. MATERIAL AND METHODS: Plans were created on the Viewray TPS to generate MC reference data. Absolute dose points, PDD, profiles and output factors were extracted and compared to measurements performed with ten different detectors: PTW 31010, 31021, 31022, Markus 34045 and Exradin A28 MR ionization chambers, SN Edge shielded diode, PTW 60019 microdiamond, PTW 60023 unshielded diode, EBT3 radiochromic films and LiF µcubes. Three commissioning steps consisted in comparison between calculated and measured dose: the beam model validation, the output calibration verification in four different phantoms and the commissioning tests recommended by the IAEA-TECDOC-1583. MAIN RESULTS: The symmetry for the high resolution detectors was higher than the TPS data of about 1%. The angular responses of the PTW 60023 and the SN Edge were - 6.6 and - 11.9% compared to the PTW 31010 at 60°. The X/Y-left and the Y-right penumbras measured by the high resolution detectors were in good agreement with the TPS values except for the PTW 60023 for large field sizes. For the 0.84 × 0.83 cm2 field size, the mean deviation to the TPS of the uncorrected OF was - 1.7 ± 1.6% against - 4.0 ± 0.6% for the corrected OF whereas we found - 4.8 ± 0.8% for passive dosimeters. The mean absolute dose deviations to the TPS in different phantoms were 0 ± 0.4%, - 1.2 ± 0.6% and 0.5 ± 1.1% for the PTW 31010, PTW 31021 and Exradin A28 MR respectively. CONCLUSIONS: The magnetic field effects on the measurements are considerably reduced at low magnetic field. The PTW 31010 ionization chamber can be used with confidence in different phantoms for commissioning and QA tests requiring absolute dose verifications. For relative measurements, the PTW 60019 presented the best agreement for the full range of field size. For the profile assessment, shielded diodes had a behaviour similar to the PTW 60019 and 60023 while the ionization chambers were the most suitable detectors for the symmetry. The output correction factors published by the IAEA TRS 483 seem to be applicable at low magnetic field pending the publication of new MR specific values.


Assuntos
Aceleradores de Partículas , Radiometria , Humanos , Radiometria/métodos , Método de Monte Carlo , Imagens de Fantasmas , Calibragem
14.
Sci Rep ; 14(1): 7134, 2024 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-38532018

RESUMO

We aimed to investigate the deliverability of dynamic conformal arc therapy (DCAT) by gantry wobble owing to the intrinsic inter-segment break of the Elekta linear accelerator (LINAC) and its adverse influence on the dose to the patient. The deliverability of DCAT was evaluated according to the plan parameters, which affect the gantry rotation speed and resultant positional inaccuracies; the deliverability according to the number of control points and dose rates was investigated by using treatment machine log files and dosimetry devices, respectively. A non-negligible degradation in DCAT deliverability due to gantry wobble was observed in both the treatment machine log files and dosimetry devices. The resulting dose-delivery error occurred below a certain number of control points or above a certain dose rate. Dose simulations in the patient domain showed a similar impact on deteriorated deliverability. For targets located primarily in the isocenter, the dose differences were negligible, whereas for organs at risk located mainly off-isocenter, the dose differences were significant up to - 8.77%. To ensure safe and accurate radiotherapy, optimal plan parameters should be selected, and gantry angle-specific validations should be conducted before treatment.


Assuntos
Radioterapia Conformacional , Radioterapia de Intensidade Modulada , Humanos , Dosagem Radioterapêutica , Radioterapia Conformacional/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Aceleradores de Partículas , Radiometria/métodos , Radioterapia de Intensidade Modulada/métodos
15.
Radiat Prot Dosimetry ; 200(6): 538-543, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38441907

RESUMO

The objective of this study is dosimetric comparison between the O-ring Halcyon and C-arm Clinac iX linac for volumetric modulated arc therapy (VMAT) plans for head & neck (H&N) cancer and carcinoma cervix patients. Total 60 patients of H&N cancer and carcinoma cervix were enrolled prospectively from March 2021 to March 2023. VMAT plans with 6 MV photons for Halcyon and Clinac iX were generated and compared for each patient by dose volume histogram for planning target volume coverage and organ at risk (OAR) sparing. There were no differences in between both the linacs for PTV D2% and D98%, homogeneity index, conformity index, Dmax (maximum dose) and Dmean (mean dose) of OAR. Halcyon had significantly shorter treatment time compared to Clinac iX. Halcyon delivered higher integral dose and monitor units. O-ring Halcyon produces VMAT plans comparable to other C-arm linacs for H&N and carcinoma cervix patients.


Assuntos
Neoplasias de Cabeça e Pescoço , Órgãos em Risco , Aceleradores de Partículas , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador , Radioterapia de Intensidade Modulada , Neoplasias do Colo do Útero , Humanos , Radioterapia de Intensidade Modulada/métodos , Feminino , Neoplasias do Colo do Útero/radioterapia , Planejamento da Radioterapia Assistida por Computador/métodos , Aceleradores de Partículas/instrumentação , Neoplasias de Cabeça e Pescoço/radioterapia , Órgãos em Risco/efeitos da radiação , Radiometria/métodos , Estudos Prospectivos , Pessoa de Meia-Idade , Adulto
16.
Biomed Phys Eng Express ; 10(3)2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38507785

RESUMO

The aim of this study was to use computer simulation to analyze the impact of the aluminum fixing support on the Reference Air Kerma (RAK), a physical quantity obtained in a calibration system that was experimentally developed in the Laboratory of Radiological Sciences of the University of the State of Rio de Janeiro (LCR-UERJ). Correction factors due to scattered radiation and the geometry of the192Ir sources were also sought to be determined. The computational simulation was validated by comparing some parameters of the experimental results with the computational results. These parameters were: verification of the inverse square law of distance, determination of (RAKR), analysis of the source spectrum with and without encapsulation, and the sensitivity curve of the Sourcecheck 4PI ionization chamber response, as a function of the distance from the source along the axial axis, using the microSelectron-v2 (mSv2) and GammaMedplus (GMp) sources. Kerma was determined by activity in the Reference air, with calculated values of 1.725 × 10-3U. Bq-1and 1.710 × 10-3U. Bq-1for the ionization chamber NE 2571 and TN 30001, respectively. The expanded uncertainty for these values was 0.932% and 0.919%, respectively, for a coverage factor (k = 2). The correction factor due to the influence of the aluminum fixing support for measurements at 1 cm and 10 cm from the source was 0.978 and 0.969, respectively. The geometric correction factor of the sources was ksg= 1.005 with an expanded uncertainty of 0.7% for a coverage factor (k = 2). This value has a difference of approximately 0.2% compared to the experimental values.


Assuntos
Simulação por Computador , Radioisótopos de Irídio , Radiometria , Calibragem , Radiometria/métodos , Radioisótopos de Irídio/uso terapêutico , Humanos , Ar , Alumínio , Método de Monte Carlo , Doses de Radiação , Braquiterapia/métodos , Braquiterapia/normas , Dosagem Radioterapêutica , Espalhamento de Radiação
17.
Phys Med Biol ; 69(9)2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38530300

RESUMO

Objective.The successful implementation of FLASH radiotherapy in clinical settings, with typical dose rates >40 Gy s-1, requires accurate real-time dosimetry.Approach.Silicon carbide (SiC) p-n diode dosimeters designed for the stringent requirements of FLASH radiotherapy have been fabricated and characterized in an ultra-high pulse dose rate electron beam. The circular SiC PiN diodes were fabricated at IMB-CNM (CSIC) in 3µm epitaxial 4H-SiC. Their characterization was performed in PTB's ultra-high pulse dose rate reference electron beam. The SiC diode was operated without external bias voltage. The linearity of the diode response was investigated up to doses per pulse (DPP) of 11 Gy and pulse durations ranging from 3 to 0.5µs. Percentage depth dose measurements were performed in ultra-high dose per pulse conditions. The effect of the total accumulated dose of 20 MeV electrons in the SiC diode sensitivity was evaluated. The temperature dependence of the response of the SiC diode was measured in the range 19 °C-38 °C. The temporal response of the diode was compared to the time-resolved beam current during each electron beam pulse. A diamond prototype detector (flashDiamond) and Alanine measurements were used for reference dosimetry.Main results.The SiC diode response was independent both of DPP and of pulse dose rate up to at least 11 Gy per pulse and 4 MGy s-1, respectively, with tolerable deviation for relative dosimetry (<3%). When measuring the percentage depth dose under ultra-high dose rate conditions, the SiC diode performed comparably well to the reference flashDiamond. The sensitivity reduction after 100 kGy accumulated dose was <2%. The SiC diode was able to follow the temporal structure of the 20 MeV electron beam even for irregular pulse estructures. The measured temperature coefficient was (-0.079 ± 0.005)%/°C.Significance.The results of this study demonstrate for the first time the suitability of silicon carbide diodes for relative dosimetry in ultra-high dose rate pulsed electron beams up to a DPP of 11 Gy per pulse.


Assuntos
Compostos Inorgânicos de Carbono , Dosímetros de Radiação , Radiometria , Radiometria/métodos , Compostos de Silício , Elétrons
18.
J Appl Clin Med Phys ; 25(4): e14213, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38425126

RESUMO

PURPOSE: To develop a Total Body Irradiation (TBI) technique using IMRT at extended SSD that can be performed in any size Linac room. METHODS: Patients studied were placed on a platform close to the floor, directly under the gantry with cranial-caudal axis parallel to the gantry rotation plane and at SSD ∼200 cm. Two abutting fields with the same external isocenter at gantry angles of ±21˚, collimator angle of 90˚, and field size of 25 × 40 cm2 are employed for both supine and prone positions. An iterative optimization algorithm was developed to generate a uniform dose at the patient mid-plane with adequate shielding to critical organs such as lungs and kidneys. The technique was validated in both phantom and patient CT images for treatment planning, and dose measurement and QA were performed in phantom. RESULTS: A uniform dose distribution in the mid-plane within ±5% of the prescription dose was reached after a few iterations. This was confirmed with ion-chamber measurements in phantom. The mean dose to lungs and kidneys can be adjusted according to clinical requirements and can be as low as ∼25% of the prescription dose. For a typical prescription dose of 200 cGy/fraction, the total MU was ∼2400/1200 for the superior/inferior field. The overall treatment time for both supine/prone positions was ∼54 min to meet the maximum absorbed dose rate criteria of 15 cGy/min. IMRT QA with portal dosimetry shows excellent agreement. CONCLUSIONS: We have developed a promising TBI technique using abutting IMRT fields at extended SSD. The patient is in a comfortable recumbent position with good reproducibility and less motion during treatment. An additional benefit of this technique is that full 3D dose distribution is available from the TPS with a DVH summary for organs of interest. The technique allows precise sparing of lungs and kidneys and can be executed in any linac room.


Assuntos
Radioterapia de Intensidade Modulada , Humanos , Radioterapia de Intensidade Modulada/métodos , Irradiação Corporal Total , Planejamento da Radioterapia Assistida por Computador/métodos , Reprodutibilidade dos Testes , Radiometria/métodos , Dosagem Radioterapêutica
19.
Sci Rep ; 14(1): 6119, 2024 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-38480827

RESUMO

Non-invasive methods of detecting radiation exposure show promise to improve upon current approaches to biological dosimetry in ease, speed, and accuracy. Here we developed a pipeline that employs Fourier transform infrared (FTIR) spectroscopy in the mid-infrared spectrum to identify a signature of low dose ionizing radiation exposure in mouse ear pinnae over time. Mice exposed to 0.1 to 2 Gy total body irradiation were repeatedly measured by FTIR at the stratum corneum of the ear pinnae. We found significant discriminative power for all doses and time-points out to 90 days after exposure. Classification accuracy was maximized when testing 14 days after exposure (specificity > 0.9 with a sensitivity threshold of 0.9) and dropped by roughly 30% sensitivity at 90 days. Infrared frequencies point towards biological changes in DNA conformation, lipid oxidation and accumulation and shifts in protein secondary structure. Since only hundreds of samples were used to learn the highly discriminative signature, developing human-relevant diagnostic capabilities is likely feasible and this non-invasive procedure points toward rapid, non-invasive, and reagent-free biodosimetry applications at population scales.


Assuntos
Exposição à Radiação , Radiometria , Humanos , Camundongos , Animais , Espectroscopia de Infravermelho com Transformada de Fourier , Análise de Fourier , Radiometria/métodos , Proteínas , Radiação Ionizante , Exposição à Radiação/análise , Doses de Radiação
20.
Appl Radiat Isot ; 207: 111235, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38430824

RESUMO

The use of radiopharmaceuticals has gained a special place in the diagnosis and treatment of cancers and evaluation of the function of different organs of the body. In this study, the absorbed dose distribution of organs after injection of 188Re-Mu-9 has been investigated using MIRD method and MCNP-4C simulation code. The 188Re-Mu-9 labeled was injected the mouse body and the amount of 188Re-labeled accumulation was evaluated after 1, 4 and 2 4 h. Having a map of the distribution of radiopharmaceutical activity in the animal body, it is possible to convert it into a human model to obtain the internal dose received by 188Re-Mu-9 injection using the MIRD calculation method and the MCNP simulation code. According to the results of the study, the animal/human model can be acceptable method for dose estimation of antibody-based radiopharmaceuticals.


Assuntos
Compostos Radiofarmacêuticos , Rênio , Humanos , Camundongos , Animais , Compostos Radiofarmacêuticos/uso terapêutico , Radioisótopos , Rênio/uso terapêutico , Radiometria/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA