Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Can J Physiol Pharmacol ; 99(2): 247-253, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33242286

RESUMO

Activation of the parasympathetic nervous system has been reported to have an antiarrhythmic role during ischemia-reperfusion injury by decreasing the arrhythmia triggers. Furthermore, it was reported that the parasympathetic neurotransmitter acetylcholine is able to modulate the ATP-dependent potassium current (I K-ATP), a crucial current activated during hypoxia. However, the possible significance of this current modulation in the antiarrhythmic mechanism is not fully clarified. Action potentials were measured using the conventional microelectrode technique from canine left ventricular papillary muscle and free-running Purkinje fibers, under normal and hypoxic conditions. Ionic currents were measured using the whole-cell configuration of the patch-clamp method. Acetylcholine at 5 µmol/L did not influence the action potential duration (APD) either in Purkinje fibers or in papillary muscle preparations. In contrast, it significantly lengthened the APD and suppressed the Purkinje-ventricle APD dispersion when it was administered after 5 µmol/L pinacidil application. Carbachol at 3 µmol/L reduced the pinacidil-activated I K-ATP under voltage-clamp conditions. Acetylcholine lengthened the ventricular action potential under simulated ischemia condition. In this study, we found that acetylcholine inhibits the I K-ATP and thus suppresses the ventricle-Purkinje APD dispersion. We conclude that parasympathetic tone may reduce the arrhythmogenic substrate exerting a complex antiarrhythmic mechanism during hypoxic conditions.


Assuntos
Potenciais de Ação/efeitos dos fármacos , Trifosfato de Adenosina/metabolismo , Ventrículos do Coração/efeitos dos fármacos , Agonistas Muscarínicos/farmacologia , Potássio/metabolismo , Ramos Subendocárdicos/efeitos dos fármacos , Animais , Cães , Ventrículos do Coração/citologia , Ramos Subendocárdicos/citologia
2.
Cardiovasc Eng Technol ; 11(5): 587-604, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32710379

RESUMO

PURPOSE: The objective of this study was to reprogram human adipogenic mesenchymal stem cells (hADMSCs) to form Purkinje cells and to use the reprogrammed Purkinje cells to bioprint Purkinje networks. METHODS: hADMSCs were reprogrammed to form Purkinje cells using a multi-step process using transcription factors ETS2 and MESP1 to first form cardiac progenitor stem cells followed by SHOX2 and TBX3 to form Purkinje cells. A novel bioprinting method was developed based on Pluronic acid as the sacrificial material and type I collagen as the structural material. The reprogrammed Purkinje cells were used in conjunction with the novel bioprinting method to bioprint Purkinje networks. Printed constructs were evaluated for retention of functional protein connexin 40 (Cx40) and ability to undergo membrane potential changes in response to physiologic stimulus. RESULTS: hADMSCs were successfully reprogrammed to form Purkinje cells based on the expression pattern of IRX3, IRX5, SEMA and SCN10. Reprogrammed purkinje cells were incorporated into a collagen type-1 bioink and the left ventricular Purkinje network was printed using anatomical images of the bovine Purkinje system as reference. Optimization studies demonstrated that 1.8 mg/mL type-I collagen at a seeding density of 300,000 cells per 200 µL resulted in the most functional bioprinted Purkinje networks. Furthermore, bioprinted Purkinje networks formed continuous syncytium, retained expression of vital functional gap junction protein Cx40 post-print, and exhibited membrane potential changes in response to electric stimulation and acetylcholine evaluated by DiBAC4(5), an electrically responsive dye. CONCLUSION: Based on the results of this study, hADMSCs were successfully reprogrammed to form Purkinje cells and bioprinted to form Purkinje networks.


Assuntos
Adipogenia , Bioimpressão , Técnicas de Reprogramação Celular , Reprogramação Celular , Células-Tronco Mesenquimais/fisiologia , Impressão Tridimensional , Ramos Subendocárdicos/fisiologia , Comunicação Celular , Células Cultivadas , Humanos , Fenótipo , Ramos Subendocárdicos/citologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcrição Gênica
3.
J Morphol ; 278(7): 975-986, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28444887

RESUMO

We studied the morphology of the atrioventricular conduction system (AVCS) and Purkinje fibers of the yak. Light and transmission electron microscopy were used to study the histological features of AVCS. The distributional characteristics of the His-bundle, the left bundle branch (LBB), right bundle branch (RBB), and Purkinje fiber network of yak hearts were examined using gross dissection, ink injection, and ABS casting. The results showed that the atrioventricular node (AVN) of yak located in the right side of interatrial septum and had a flattened ovoid shape. The AVN of yak is composed of the slender, interweaving cells formed almost entirely of the transitional cells (T-cells). The His-bundle extended from the AVN, and split into left LBB and RBB at the crest of the interventricular septum. The LBB descended along the left side of interventricular septum. At approximately the upper 1/3 of the interventricular septum, the LBB typically divided into three branches. The RBB ran under the endocardium of the right side of interventricular septum, and extended to the base of septal papillary muscle, passed into the moderator band, crossed the right ventricular cavity to reach the base of anterior papillary muscle, and divided into four fascicles under the subendocardial layer. The Purkinje fibers in the ventricle formed a complex spatial network. The distributional and cellular component characteristics of the AVCS and Purkinje fibers ensured normal cardiac function.


Assuntos
Nó Atrioventricular/anatomia & histologia , Bovinos/anatomia & histologia , Sistema de Condução Cardíaco/anatomia & histologia , Ramos Subendocárdicos/anatomia & histologia , Animais , Anticorpos/metabolismo , Nó Atrioventricular/citologia , Nó Atrioventricular/ultraestrutura , Conexina 43/metabolismo , Cistos Glanglionares/ultraestrutura , Ventrículos do Coração/citologia , Ramos Subendocárdicos/citologia , Ramos Subendocárdicos/ultraestrutura
4.
Circulation ; 126(9): 1058-66, 2012 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-22837163

RESUMO

BACKGROUND: Notch signaling has previously been shown to play an essential role in regulating cell fate decisions and differentiation during cardiogenesis in many systems including Drosophila, Xenopus, and mammals. We hypothesized that Notch may also be involved in directing the progressive lineage restriction of cardiomyocytes into specialized conduction cells. METHODS AND RESULTS: In hearts where Notch signaling is activated within the myocardium from early development onward, Notch promotes a conduction-like phenotype based on ectopic expression of conduction system-specific genes and cell autonomous changes in electrophysiology. With the use of an in vitro assay to activate Notch in newborn cardiomyocytes, we observed global changes in the transcriptome, and in action potential characteristics, consistent with reprogramming to a conduction-like phenotype. CONCLUSIONS: Notch can instruct the differentiation of chamber cardiac progenitors into specialized conduction-like cells. Plasticity remains in late-stage cardiomyocytes, which has potential implications for engineering of specialized cardiovascular tissues.


Assuntos
Nó Atrioventricular/citologia , Regulação da Expressão Gênica no Desenvolvimento , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Receptor Notch1/fisiologia , Potenciais de Ação , Adenoviridae/genética , Animais , Animais Recém-Nascidos , Fatores de Transcrição Hélice-Alça-Hélice Básicos/biossíntese , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Linhagem da Célula , Contactina 2/biossíntese , Contactina 2/genética , Proteína Homeobox Nkx-2.5 , Proteínas de Homeodomínio/biossíntese , Proteínas de Homeodomínio/genética , Camundongos , Miócitos Cardíacos/ultraestrutura , Canal de Sódio Disparado por Voltagem NAV1.5 , Plasticidade Neuronal , Técnicas de Patch-Clamp , Fenótipo , Ramos Subendocárdicos/citologia , Receptor Notch1/genética , Proteínas Recombinantes de Fusão/fisiologia , Transdução de Sinais/fisiologia , Canais de Sódio/biossíntese , Canais de Sódio/genética , Proteínas com Domínio T/biossíntese , Proteínas com Domínio T/genética , Fatores de Transcrição HES-1 , Fatores de Transcrição/biossíntese , Fatores de Transcrição/genética
5.
Dev Dyn ; 235(1): 38-49, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16245335

RESUMO

Nkx2-5 gene mutations cause cardiac abnormalities, including deficits of function in the atrioventricular conduction system (AVCS). In the chick, Nkx2-5 is elevated in Purkinje fiber AVCS cells relative to working cardiomyocytes. Here, we show that Nkx2-5 expression rises to a peak as Purkinje fibers progressively differentiate. To disrupt this pattern, we overexpressed Nkx2-5 from embryonic day 10, as Purkinje fibers are recruited within developing chick hearts. Overexpression of Nkx2-5 caused inhibition of slow tonic myosin heavy chain protein (sMHC), a late Purkinje fiber marker but did not affect Cx40 levels. Working cardiomyocytes overexpressing Nkx2-5 in these hearts ectopically up-regulated Cx40 but not sMHC. Isolated embryonic cardiomyocytes overexpressing Nkx2-5 also displayed increased Cx40 and suppressed sMHC. By contrast, overexpression of a human NKX2-5 mutant did not effect these markers in vivo or in vitro, suggesting one possible mechanism for clinical phenotypes. We conclude that a prerequisite for normal Purkinje fiber maturation is precise regulation of Nkx2-5 levels.


Assuntos
Proteínas Aviárias/biossíntese , Diferenciação Celular/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Proteínas de Homeodomínio/biossíntese , Ramos Subendocárdicos/citologia , Fatores de Transcrição/biossíntese , Adenoviridae , Animais , Proteínas Aviárias/genética , Biomarcadores , Núcleo Celular/metabolismo , Embrião de Galinha , Conexinas/metabolismo , Vetores Genéticos , Proteínas de Homeodomínio/genética , Miócitos Cardíacos/metabolismo , Cadeias Pesadas de Miosina/biossíntese , Cadeias Pesadas de Miosina/genética , Ramos Subendocárdicos/metabolismo , Fatores de Transcrição/genética , Proteína alfa-5 de Junções Comunicantes
6.
Circulation ; 109(11): 1401-7, 2004 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-15023887

RESUMO

BACKGROUND: We have investigated the usefulness of a model of cardiac development in a large mammal, sheep, for studies of engraftment of human stem cells in the heart. METHODS AND RESULTS: Adult and fetal human mesenchymal stem cells were injected intraperitoneally into sheep fetuses in utero. Hearts at late fetal development were analyzed for engraftment of human cells. The majority of the engrafted cells of human origin formed segments of Purkinje fibers containing exclusively human cells. There were no differences in engraftment of human mesenchymal stem cells from adult bone marrow, fetal brain, and fetal liver. On average, 43.2% of the total Purkinje fibers in random areas (n=11) of both ventricles were of human origin. In contrast, approximately 0.01% of cardiomyocytes were of human origin. CONCLUSIONS: Human mesenchymal stem cells preferentially engraft at high levels in the ventricular conduction system during fetal development in sheep. These findings raise the possibility that stem cells contribute to normal development of the fetal heart.


Assuntos
Coração Fetal/anatomia & histologia , Transplante de Células-Tronco Mesenquimais , Modelos Animais , Ramos Subendocárdicos/citologia , Animais , Especificidade de Anticorpos , Diferenciação Celular , Linhagem da Célula , Idade Gestacional , Sobrevivência de Enxerto , Proteínas de Choque Térmico HSP27 , Proteínas de Choque Térmico/análise , Proteínas de Choque Térmico/imunologia , Humanos , Células-Tronco Mesenquimais/citologia , Microscopia de Fluorescência , Chaperonas Moleculares , Miócitos Cardíacos/citologia , Proteínas de Neoplasias/análise , Proteínas de Neoplasias/imunologia , Ovinos/embriologia , Quimeras de Transplante , Transplante Heterólogo
7.
Circulation ; 109(4): 506-12, 2004 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-14734518

RESUMO

BACKGROUND: We hypothesized that administration of the HCN2 gene to the left bundle-branch (LBB) system of intact dogs would provide pacemaker function in the physiological range of heart rates. METHODS AND RESULTS: An adenoviral construct incorporating HCN2 and green fluorescent protein (GFP) as a marker was injected via catheter under fluoroscopic control into the posterior division of the LBB. Controls were injected with an adenoviral construct of GFP alone or saline. Animals were monitored electrocardiographically for up to 7 days after surgery, at which time they were anesthetized and subjected to vagal stimulation to permit emergence of escape pacemakers. Hearts were then removed and injection sites visually identified and removed for microelectrode study of action potentials, patch clamp studies of pacemaker current, and/or immunohistochemical studies of HCN2. For 48 hours postoperatively, 7 of 7 animals subjected to 24-hour ECG monitoring showed multiple ventricular premature depolarizations and/or ventricular tachycardia attributable to injection-induced injury. Thereafter, sinus rhythm prevailed. During vagal stimulation, HCN2-injected dogs showed rhythms originating from the left ventricle, the rate of which was significantly more rapid than in the controls. Excised posterior divisions of the LBB from HCN2-injected animals manifested automatic rates significantly greater than the controls. Isolated tissues showed immunohistochemical and biophysical evidence of overexpressed HCN2. CONCLUSIONS: A gene-therapy approach for induction of biological pacemaker activity within the LBB system provides ventricular escape rhythms that have physiologically acceptable rates. Long-term stability and feasibility of the approach remain to be tested.


Assuntos
Arritmias Cardíacas/fisiopatologia , Sistema de Condução Cardíaco , Ventrículos do Coração/fisiopatologia , Canais Iônicos/genética , Proteínas Musculares/genética , Potenciais de Ação , Adenoviridae/genética , Animais , Arritmias Cardíacas/etiologia , Arritmias Cardíacas/terapia , Cães , Estimulação Elétrica , Eletrocardiografia , Feminino , Terapia Genética , Vetores Genéticos , Proteínas de Fluorescência Verde , Hematoma/etiologia , Hematoma/patologia , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização , Canais Iônicos/análise , Proteínas Luminescentes/genética , Masculino , Proteínas Musculares/análise , Miócitos Cardíacos/fisiologia , Marca-Passo Artificial , Técnicas de Patch-Clamp , Periodicidade , Ramos Subendocárdicos/citologia
8.
Novartis Found Symp ; 250: 110-22; discussion 122-4, 276-9, 2003.
Artigo em Inglês | MEDLINE | ID: mdl-12956326

RESUMO

The heartbeat is initiated and coordinated by a multi-component set of specialized muscle tissues collectively referred to as the pacemaking and conduction system. Over the last few years, impetus has gathered into unravelling the cellular and molecular processes that regulate differentiation and integration of this essential cardiac network. One focus of our collective work has been the developmental history of cells comprising His-Purkinje tissues of the conduction system. This interest in part arose from studies of the expression of connexins in periarterial Purkinje fibres of the chick heart. Using lineage-tracing strategies, including those based on replication-defective retroviruses and adenoviruses, it has been shown that conduction cells are derived from multipotent, cardiomyogenic progenitors in the tubular heart. Moreover, heterogeneity within myocardial clones has indicated that the elaboration of the conduction system in the chick embryo occurs by progressive, localized recruitment from within this pool of cardiomyogenic cells. Cell birth dating has revealed that inductive conscription of cells to central elements of the conduction system (e.g. the His bundle) precedes recruitment to the peripheral components of the network (i.e. subendocardial and periarterial Purkinje fibres). Birth dating studies in rodents suggest an analogous recruitment process is occurring in this species. In addition to summarizing earlier work, this chapter provides information on ongoing studies of cell-cell signalling and transcriptional mechanisms that may regulate the development of His-Purkinje tissues.


Assuntos
Fascículo Atrioventricular/crescimento & desenvolvimento , Linhagem da Célula , Coração/anatomia & histologia , Miocárdio , Ramos Subendocárdicos/crescimento & desenvolvimento , Animais , Fascículo Atrioventricular/citologia , Diferenciação Celular/fisiologia , Embrião de Galinha , Conexinas/metabolismo , Circulação Coronária , Coração/crescimento & desenvolvimento , Cardiopatias , Morfogênese , Miocárdio/citologia , Miocárdio/metabolismo , Ramos Subendocárdicos/citologia , Transdução de Sinais/fisiologia , Proteína alfa-5 de Junções Comunicantes
9.
Development ; 126(22): 5041-9, 1999 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-10529421

RESUMO

The cardiac pacemaking and conduction system sets and maintains the rhythmic pumping action of the heart. Previously, we have shown that peripheral cells of the conduction network in chick (periarterial Purkinje fibers) are selected within a cardiomyogenic lineage and that this recruitment occurs as a result of paracrine cues from coronary arteries. At present, the cellular derivation of other elements of this specialized system (e.g. the nodes and bundles of the central conduction system) are controversial, with some proposing that the evidence supports a neurogenic and others a myogenic origin for these tissues. While such ontological questions remain, it is unlikely that progress can be made on the molecular mechanisms governing patterning and induction of the central conduction system. Here, we have undertaken lineage-tracing strategies based on the distinct properties of replication-incompetent adenoviral and retroviral lacZ-expressing constructs. Using these complementary approaches, it is shown that cells constituting both peripheral and central conduction tissues originate from cardiomyogenic progenitors present in the looped, tubular heart with no detectable contribution by migratory neuroectoderm-derived populations. Moreover, clonal analyses of retrovirally infected cells incorporated within any part of the conduction system suggest that such cells share closer lineage relationships with nearby contractive myocytes than with other, more distal elements of the conduction system. Differentiation birthdating by label dilution using [(3)H]thymidine also demonstrates the occurrence of ongoing myocyte conscription to conductive specialization and provides a time course for this active and localized selection process in different parts of the system. Together, these data suggest that the cardiac conduction system does not develop by outgrowth from a prespecified pool of 'primary' myogenic progenitors. Rather, its assembly and elaboration occur via processes that include progressive and localized recruitment of multipotent cardiomyogenic cells to the developing network of specialized cardiac tissues.


Assuntos
Sistema de Condução Cardíaco/embriologia , Ramos Subendocárdicos/embriologia , Adenoviridae/genética , Adenoviridae/fisiologia , Animais , Linhagem da Célula , Galinhas , Desenvolvimento Embrionário e Fetal , Sistema de Condução Cardíaco/citologia , Sistema de Condução Cardíaco/virologia , Humanos , Músculos/citologia , Neurônios/citologia , Ramos Subendocárdicos/citologia , Ramos Subendocárdicos/virologia , Retroviridae/genética , Retroviridae/fisiologia , Replicação Viral
11.
J Gen Physiol ; 106(4): 601-16, 1995 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-8576699

RESUMO

The site 3 toxin, Anthopleurin-A (Ap-A), was used to modify inactivation of sodium channels in voltage-clamped single canine cardiac Purkinje cells at approximately 12 degrees C. Although Ap-A toxin markedly prolonged decay of sodium current (INa) in response to step depolarizations, there was only a minor hyperpolarizing shift by 2.5 +/- 1.7 mV (n = 13) of the half-point of the peak conductance-voltage relationship with a slight steepening of the relationship from -8.2 +/- 0.8 mV to -7.2 +/- 0.8 mV (n = 13). Increases in Gmax were dependent on the choice of cation used as a Na substitute intracellularly and ranged between 26 +/- 15% (Cs, n = 5) to 77 +/- 19% (TMA, n = 8). Associated with Ap-A toxin modification time to peak INa occurred later, but analysis of the time course INa at multiple potentials showed that the largest effects were on inactivation with only a small effect on activation. Consistent with little change in Na channel activation by Ap-A toxin, INa tail current relaxations at very negative potentials, where the dominant process of current relaxation is deactivation, were similar in control and after toxin modification. The time course of the development of inactivation after Ap-A toxin modification was dramatically prolonged at positive potentials where Na channels open. However, it was not prolonged after Ap-A toxin at negative potentials, where channels predominately inactivate directly from closed states. Steady state voltage-dependent availability (h infinity or steady state inactivation), which predominately reflects the voltage dependence of closed-closed transitions equilibrating with closed-inactivated transitions was shifted in the depolarizing direction by only 1.9 +/- 0.8 mV (n = 8) after toxin modification. The slope factor changed from 7.2 +/- 0.8 to 9.9 +/- 0.9 mV (n = 8), consistent with a prolongation of inactivation from the open state of Ap-A toxin modified channels at more depolarized potentials. We conclude that Ap-A selectively modifies Na channel inactivation from the open state with little effect on channel activation or on inactivation from closed state(s).


Assuntos
Cardiotônicos/farmacologia , Ativação do Canal Iônico/efeitos dos fármacos , Peptídeos/farmacologia , Ramos Subendocárdicos/efeitos dos fármacos , Canais de Sódio/efeitos dos fármacos , Animais , Cães , Peptídeos e Proteínas de Sinalização Intercelular , Técnicas de Patch-Clamp , Ramos Subendocárdicos/citologia , Ramos Subendocárdicos/metabolismo , Canais de Sódio/metabolismo
12.
J Physiol ; 484 ( Pt 3): 605-16, 1995 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-7623279

RESUMO

1. The Na(+)-K+ pump current, Ip, of cardioballs from isolated sheep cardiac Purkinje cells was measured at 30-34 degrees C by means of whole-cell recording. 2. Under physiological conditions Ip is an outward current. Experimental conditions which cause a less negative free energy of intracellular ATP hydrolysis (delta GATP) and steeper sarcolemmal gradients for the pumped Na+ and Cs+ ions evoked an Ip in the inward direction over a wide range of membrane potentials. The reversal of the Ip direction was reversible. 3. The inwardly directed Ip increased with increasingly negative membrane potentials and amounted to -0.13 +/- 0.03 microA cm-2 (mean +/- S.E.M.; n = 6) at -95 mV. 4. The reversal potential (Erev) of Ip was studied as a function of delta GATP at constant sarcolemmal gradients of the pumped cations. 5. In order to vary delta GATP the cell interior was dialysed with patch pipette solutions containing 10 mM ATP and different concentrations of ADP and inorganic phosphate. The media were composed to produce delta GATP levels of about -58, -49 and -39 kJ mol-1. 6. A less negative delta GATP shifted Erev to more positive membrane potentials. From measurements of Ip as a function of membrane potential Erev was estimated to be -195, -115 and -60 mV at delta GATP levels of approximately -58, -49 and -39 kJ mol-1, respectively. The calculated Erev amounted to -224 mV at delta GATP approximately -58 kJ mol-1, -126 mV at delta GATP approximately 49 kJ mol-1 and -24 mV at delta GATP approximately -39 kJ mol-1. 7. Possible reasons for the discrepancy between estimated and calculated Erev values are discussed. 8. Shifting delta GATP to less negative values not only altered Erev but also diminished Ip at each membrane potential tested. The maximal Ip (Ip,max), which can be activated by external Cs+ (Cs+o), decreased under these conditions, whereas [Cs+]o causing half-maximal Ip activation remained unchanged. Similarly, the voltage dependence of Ip activation by Cs+o was unaffected. 9. It is concluded that Erev of Ip varies with delta GATP at constant sarcolemmal gradients of the pumped cations. This agrees with thermodynamic considerations.


Assuntos
Trifosfato de Adenosina/metabolismo , Metabolismo Energético , Ramos Subendocárdicos/fisiologia , ATPase Trocadora de Sódio-Potássio/fisiologia , Animais , Césio/farmacologia , Condutividade Elétrica , Eletrofisiologia , Hidrólise , Ramos Subendocárdicos/citologia , Ramos Subendocárdicos/efeitos dos fármacos , Ovinos
13.
Circ Res ; 73(3): 482-91, 1993 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-8394224

RESUMO

Using an antibody that reacts specifically with the myocytes of the conduction system of the bovine heart, we have studied the atrioventricular node and the spatial distribution of the Purkinje fibers in the bovine heart. This study was complemented by studying the distribution of the gap junction protein connexin43 in these areas in the bovine heart and in the human heart. The large Purkinje fibers in the bovine heart are arranged in a two-dimensional network underneath the endocardium. At discrete sites, these fibers branch to the Purkinje fibers situated between the muscle bundles of the ventricular mass. These intramural Purkinje fibers are arranged in sheets that form a complex three-dimensional network of lamellas. Contacts with the ventricular myocytes are found throughout the myocardial wall, with the exception of a subepicardial layer of 2-mm thickness, ie, 10% to 15% of the wall thickness. The spatial arrangement of the Purkinje fibers correlates well with data on electrophysiology. Connexin43 was not detected in the myocytes of the atrioventricular node, whereas in the Purkinje fibers of the atrioventricular bundle and of the bundle branches, abundant expression of connexin43 was found in both humans and cows. In the bovine Purkinje fibers, a remarkable subcellular distribution of connexin43 is found: it occupies the entire plasma membrane facing other Purkinje cells but not that facing the surrounding connective tissue. The structural differences in architecture of the ventricular conduction system in humans and cows seems not to result in substantial differences in conduction velocities. However, the Purkinje fiber network in the bovine heart may explain the efficient ventricular excitation, as reflected by the relatively short QRS complex compared with that in the human heart, where intramural Purkinje fibers are not found.


Assuntos
Nó Atrioventricular/citologia , Proteínas de Membrana/análise , Ramos Subendocárdicos/citologia , Adulto , Animais , Nó Atrioventricular/química , Nó Atrioventricular/ultraestrutura , Bovinos , Conexinas , Humanos , Imuno-Histoquímica , Junções Intercelulares/química , Miosinas/análise , Ramos Subendocárdicos/química , Ramos Subendocárdicos/fisiologia , Ramos Subendocárdicos/ultraestrutura , Coelhos
14.
J Physiol ; 442: 169-89, 1991 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-1665855

RESUMO

1. The effect of membrane potential and various extracellular monovalent cations on the Na+ pump current (Ip) was studied on isolated, single Purkinje cells of the rabbit heart by means of whole-cell recording. 2. Ip was identified as current activated by external K+ or its congeners NH4+ and Tl+. The current was blocked by dihydroouabain (1-5 x 10(-4) M) over the whole range of membrane potentials tested. 3. In Na(+)-containing solution half-maximum Ip activation (K0.5) occurred at 0.4 mM-Tl+, 1.9 mM-K+ and 5.7 mM-NH4+ (holding potential, -20 mV). 4. The pump current (Ip)-voltage (V) relationship of the cells in Na(+)-containing media with K+ or its congeners at the tested concentrations greater than K0.5 displayed a steep positive slope at negative membrane potentials between -120 and -20 mV. Little voltage dependence of Ip was observed at more positive potentials up to +40 mV. At even more positive potentials Ip measured at 2 and 5.4 mM-K+ decreased. 5. Lowering the concentration of K+ or its congeners below the K0.5 value in Na(+)-containing solution induced a region of negative slope of the Ip-V curve at membrane potentials positive to -20 mV. 6. The shape of the Ip-V relationship remained unchanged when the K+ concentration (5.4 mM) of the Na(+)-containing medium was replaced by NH4+ or Tl+ concentrations of similar potency to activate Ip (20 mM-NH4+ or 2 mM-Tl+). 7. In Na(+)-free, choline-containing solution half-maximum Ip activation occurred at 0.13 mM-K+ (holding potential, -20 mV). 8. At negative membrane potentials the positive slope of the Ip-V curve was flatter in Na(+)-free than in Na(+)-containing media. A reduced voltage dependence of Ip persisted, regardless of whether choline ions or Li+ were used as a Na+ substitute. 9. Lowering the K+ concentration of the Na(+)-free, choline-containing solution to 0.05 mM evoked an extended region of negative slope in the Ip-V relationship at membrane potentials between -40 and +60 mV. 10. It is concluded that the apparent affinity of the Na(+)-K+ pump towards K+ in cardiac Purkinje cells depends on both the membrane potential and the extracellular Na+ concentration. 11. The region of negative slope of the Ip-V curve observed in cells which were superfused with media containing low concentrations of K+ or its congeners strongly suggests the existence of at least two voltage-sensitive steps in the cardiac Na(+)-K+ pump cycle.(ABSTRACT TRUNCATED AT 400 WORDS)


Assuntos
Potenciais da Membrana/fisiologia , Ramos Subendocárdicos/fisiologia , ATPase Trocadora de Sódio-Potássio/fisiologia , Animais , Cátions Monovalentes , Potenciais Evocados/fisiologia , Lítio/fisiologia , Potássio/fisiologia , Ramos Subendocárdicos/citologia , Coelhos , Sódio/fisiologia
15.
J Gen Physiol ; 96(2): 299-318, 1990 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-1698915

RESUMO

We have characterized the inward rectifying background potassium current, iK1, of canine cardiac Purkinje myocytes in terms of its reversal potential, voltage activation curve, and "steady-state" current-voltage relation. The latter parameter was defined from the difference current between holding currents in the presence and absence of 20 mM cesium. Our data suggest that iK1 rectification does not arise exclusively from voltage-dependent gating or exclusively from voltage-dependent blockade by internal magnesium ions. The voltage activation curve constructed from tail currents fit to a Boltzmann two-state model predicts less outward current than is actually observed. The magnesium-dependent rectification due to channel blockade is too fast to account for the time-dependent gating of iK1 that gives rise to the tail currents. We propose a new model of rectification that assumes that magnesium blockade of the channel occurs simultaneously with voltage-dependent gating. The new model incorporates the kinetic schema elaborated by Matsuda, H. (1988. J. Physiol. 397:237-258) to explain the appearance of subconducting states of the iK1 channel in the presence of blocking ions. That schema suggested that iK1 channels were composed of three parallel pores, each of which could be blocked independently. In our model we considered the consequences of partial blockade of the channel. If the channels are partially blocked at potentials where normally they are mostly gated closed, and if the partially blocked channels cannot close, then blockade will have the paradoxical result of enhancing the current carried by iK1.


Assuntos
Condutividade Elétrica/fisiologia , Potenciais da Membrana/fisiologia , Ramos Subendocárdicos/citologia , Trifosfato de Adenosina/farmacologia , Animais , Césio/farmacologia , Cães , Relação Dose-Resposta a Droga , Condutividade Elétrica/efeitos dos fármacos , Canais Iônicos/efeitos dos fármacos , Canais Iônicos/fisiologia , Canais Iônicos/ultraestrutura , Magnésio/farmacologia , Potenciais da Membrana/efeitos dos fármacos , Modelos Biológicos , Ramos Subendocárdicos/fisiologia , Ramos Subendocárdicos/ultraestrutura
16.
J Mol Cell Cardiol ; 15(3): 197-206, 1983 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-6683323

RESUMO

Purkinje cells from false tendons of young rabbits, pigs and fetal lambs were dispersed by the action of collagenase and elastase and grown in culture for up to 14 days. Immunofluorescent staining with fluorescein-labelled antibodies to cardiac myosin and tropomyosin demonstrated cross-banding and/or a diffuse positive stain in Purkinje cells between 3 and 7 days in culture. Electron microscopy of cultured Purkinje cells at 3 days and 7 days revealed some disorganization of the myofilament system, in particular loss of Z-band material, as well as many thickened Z-bands, 120 nm to 240 nm in width. Gap junctions remained but desmosomes and fasciae adherentes were fewer in number. Organelles such as ribosomes, glycogen and mitochondria did not alter. Some Purkinje cells were spontaneously contractile in culture for up to seven days. Dominguez and Fozzard [7] propose that buckling of the Purkinje fibre and the production of sarcolemmal folds on the cell surface affect conduction of electrical impulses. We suggest that Purkinje cell contraction may play a major part in producing these geometric changes affecting conduction.


Assuntos
Sistema de Condução Cardíaco/citologia , Ramos Subendocárdicos/citologia , Animais , Núcleo Celular/ultraestrutura , Células Cultivadas , Citoplasma/ultraestrutura , Citoesqueleto/ultraestrutura , Junções Intercelulares/ultraestrutura , Microscopia Eletrônica , Miofibrilas/ultraestrutura , Miosinas/análise , Organoides/ultraestrutura , Ramos Subendocárdicos/análise , Ramos Subendocárdicos/fisiologia , Coelhos , Sarcolema/ultraestrutura , Ovinos , Suínos , Tropomiosina/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA