Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 132
Filtrar
1.
J Physiol Investig ; 67(3): 103-106, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38857206

RESUMO

A recent study investigated the correlation between telmisartan (TEL) exposure and Alzheimer's disease (AD) risk among African Americans (AAs) and European Americans. Their findings indicated that moderate-to-high TEL exposure was linked to a decreased incidence of AD among AAs. These results suggest a potential association between TEL and a reduced risk of AD specifically within the AA population. Here, we investigated the effects of TEL, either alone or in combination with ranolazine (Ran) or dapagliflozin (Dapa), on voltage-gated Na + currents ( INa ) in Neuro-2a cells. TEL, primarily used for treating hypertension and cardiovascular disorders, showed a stimulatory effect on INa , while Ran and Dapa reversed this stimulation. In Neuro-2a cells, we demonstrated that with exposure to TEL, the transient ( INa(T) ) and late ( INa(L) ) components of INa were differentially stimulated with effective EC 50 's of 16.9 and 3.1 µM, respectively. The research implies that TEL's impact on INa might be associated with enhanced neuronal excitability. This study highlights the complex interplay between TEL, Ran, and Dapa on INa and their potential implications for AD, emphasizing the need for further investigation to understand the mechanisms involved.


Assuntos
Acetanilidas , Compostos Benzidrílicos , Benzimidazóis , Benzoatos , Glucosídeos , Neuroblastoma , Piperazinas , Ranolazina , Telmisartan , Telmisartan/farmacologia , Telmisartan/uso terapêutico , Glucosídeos/farmacologia , Glucosídeos/uso terapêutico , Benzimidazóis/farmacologia , Benzimidazóis/uso terapêutico , Ranolazina/farmacologia , Ranolazina/uso terapêutico , Benzoatos/farmacologia , Benzoatos/uso terapêutico , Neuroblastoma/tratamento farmacológico , Neuroblastoma/patologia , Linhagem Celular Tumoral , Animais , Acetanilidas/farmacologia , Piperazinas/farmacologia , Piperazinas/uso terapêutico , Camundongos , Compostos Benzidrílicos/farmacologia , Compostos Benzidrílicos/uso terapêutico , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Ativação do Canal Iônico/efeitos dos fármacos
2.
J Toxicol Sci ; 49(5): 231-240, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38692910

RESUMO

Drug-induced convulsions are a major challenge to drug development because of the lack of reliable biomarkers. Using machine learning, our previous research indicated the potential use of an index derived from heart rate variability (HRV) analysis in non-human primates as a biomarker for convulsions induced by GABAA receptor antagonists. The present study aimed to explore the application of this methodology to other convulsants and evaluate its specificity by testing non-convulsants that affect the autonomic nervous system. Telemetry-implanted males were administered various convulsants (4-aminopyridine, bupropion, kainic acid, and ranolazine) at different doses. Electrocardiogram data gathered during the pre-dose period were employed as training data, and the convulsive potential was evaluated using HRV and multivariate statistical process control. Our findings show that the Q-statistic-derived convulsive index for 4-aminopyridine increased at doses lower than that of the convulsive dose. Increases were also observed for kainic acid and ranolazine at convulsive doses, whereas bupropion did not change the index up to the highest dose (1/3 of the convulsive dose). When the same analysis was applied to non-convulsants (atropine, atenolol, and clonidine), an increase in the index was noted. Thus, the index elevation appeared to correlate with or even predict alterations in autonomic nerve activity indices, implying that this method might be regarded as a sensitive index to fluctuations within the autonomic nervous system. Despite potential false positives, this methodology offers valuable insights into predicting drug-induced convulsions when the pharmacological profile is used to carefully choose a compound.


Assuntos
4-Aminopiridina , Frequência Cardíaca , Aprendizado de Máquina , Convulsões , Animais , Masculino , Convulsões/induzido quimicamente , Frequência Cardíaca/efeitos dos fármacos , 4-Aminopiridina/efeitos adversos , Ácido Caínico/toxicidade , Convulsivantes/toxicidade , Ranolazina , Bupropiona/toxicidade , Bupropiona/efeitos adversos , Eletrocardiografia/efeitos dos fármacos , Relação Dose-Resposta a Droga , Sistema Nervoso Autônomo/efeitos dos fármacos , Sistema Nervoso Autônomo/fisiopatologia , Telemetria , Biomarcadores
3.
Coron Artery Dis ; 35(3): 186-192, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38411168

RESUMO

INTRODUCTION: Contrast-induced nephropathy (CIN) is a common complication after percutaneous coronary intervention (PCI). There is conflicting evidence regarding efficacy of nicorandil in CIN prevention. With respect to ranolazine, there is physiological possibility as well as data in animal study regarding its protective effect against CIN; there is, however, no human data till date. AIM AND OBJECTIVES: To assess the efficacy of nicorandil and ranolazine in preventing CIN. The secondary endpoint was to measure difference in postprocedure acute kidney injury (AKI) incidence across groups. Also, patients were followed up till 6 months for major adverse events. MATERIAL AND METHODS: This single-center randomized controlled study included 315 patients of coronary artery disease with mild-to-moderate renal dysfunction undergoing elective PCI. Eligible patients were assigned to either nicorandil (n = 105), ranolazine (n = 105) or control group (n = 105) in 1 : 1 : 1 ratio by block randomization. All enrolled patients were given intravenous sodium chloride at rate of 1.0 mL/kg/h (0.5 mL/kg/h for patients with left ventricular ejection fraction <45%) from 6 h before procedure till 12 h after procedure. Iso-osmolar contrast agent (iodixanol) was used for all patients. In addition to hydration, patients in nicorandil group received oral nicorandil (10 mg, 3 times/d) and those in ranolazine group received oral ranolazine (1000 mg, 2 times/d) 1 day before procedure and for 2 days after PCI. Patients in control group received only hydration. RESULTS: Total number of CIN was 34 (10.7%), which included 19 (18.1%) in control, 8 (7.6%) in nicorandil and 7 (6.6%) in ranolazine group. There was significant association of CIN reduction across groups ( P  = 0.012). On pairwise comparison also, there was significant benefit across control and ranolazine as well as control and nicorandil ( P  < 0.025). There was numerically higher incidence of AKI in controls; the difference, however, did not reach statistical significance after applying Bonferroni correction ( P  = 0.044). Over 6-month follow-up, adverse events were similar across groups. CONCLUSION: While this study adds to existing literature that supports role for nicorandil in CIN prevention, the efficacy of ranolazine in protecting against CIN has been demonstrated in humans for the first time.


Assuntos
Injúria Renal Aguda , Intervenção Coronária Percutânea , Humanos , Nicorandil/uso terapêutico , Ranolazina/uso terapêutico , Angiografia Coronária/efeitos adversos , Angiografia Coronária/métodos , Intervenção Coronária Percutânea/efeitos adversos , Intervenção Coronária Percutânea/métodos , Volume Sistólico , Função Ventricular Esquerda , Meios de Contraste/efeitos adversos , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/prevenção & controle
4.
Br J Cancer ; 130(9): 1415-1419, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38424164

RESUMO

BACKGROUND: Multi-faceted evidence from a range of cancers suggests strongly that de novo expression of voltage-gated sodium channels (VGSCs) plays a significant role in driving cancer cell invasiveness. Under hypoxic conditions, common to growing tumours, VGSCs develop a persistent current (INaP) which can be blocked selectively by ranolazine. METHODS: Several different carcinomas were examined. We used data from a range of experimental approaches relating to cellular invasiveness and metastasis. These were supplemented by survival data mined from cancer patients. RESULTS: In vitro, ranolazine inhibited invasiveness of cancer cells especially under hypoxia. In vivo, ranolazine suppressed the metastatic abilities of breast and prostate cancers and melanoma. These data were supported by a major retrospective epidemiological study on breast, colon and prostate cancer patients. This showed that risk of dying from cancer was reduced by ca.60% among those taking ranolazine, even if this started 4 years after the diagnosis. Ranolazine was also shown to reduce the adverse effects of chemotherapy on heart and brain. Furthermore, its anti-cancer effectiveness could be boosted by co-administration with other drugs. CONCLUSIONS: Ranolazine, alone or in combination with appropriate therapies, could be reformulated as a safe anti-metastatic drug offering many potential advantages over current systemic treatment modalities.


Assuntos
Ranolazina , Ranolazina/farmacologia , Ranolazina/uso terapêutico , Humanos , Canais de Sódio Disparados por Voltagem/metabolismo , Canais de Sódio Disparados por Voltagem/efeitos dos fármacos , Masculino , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Animais , Feminino , Metástase Neoplásica , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Neoplasias/metabolismo , Invasividade Neoplásica , Bloqueadores do Canal de Sódio Disparado por Voltagem/farmacologia , Bloqueadores do Canal de Sódio Disparado por Voltagem/uso terapêutico
5.
Pak J Biol Sci ; 26(8): 419-426, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37937335

RESUMO

<b>Background and Objective:</b> Functional Voltage-Gated Sodium Channels (VGSCs) are expressed in metastatic prostate cancer (PCa) cells. A number of <i>in vitro</i> studies have evaluated the effect of functional VGSC expression on the metastatic cell behavior of PCa cells. This study aimed to evaluate the effect of VGSC inhibition on metastatic cell behavior in PCa cells by meta-analysis. <b>Materials and Methods:</b> Meta-analysis was performed on data taken from 13 publications that examined the effect of VGSC inhibitors on the metastatic cell behavior of metastatic PCa cells expressing functional VGSCs. The measure of effect was calculated according to the random effects model using mean differences and presented with a forest plot graph. Heterogeneity was checked using the Cochran's Q Test (Chi-square statistic) and the I<sup>2</sup> test statistic. In order to evaluate the objectivity, the funnels-plot graph was used. <b>Results:</b> The g value showing the effect size was calculated as 4.49 (95% CI = 5.35-3.62) in the experiments where Tetrodotoxin (TTX) was used, which has a very high specificity for VGSCs but is not licensed for clinical use. In experiments using licensed inhibitors Lamotrigine, Oxcarbazepine, Phenytoin, Ranolazine, Riluzole and Lidocaine, the g value was 1.37 (95 % CI = 2.02-0.71). Suppression of metastatic cell behavior in both subgroups is statistically significant (p<0.00001). <b>Conclusion:</b> Meta-analysis confirmed that VGSCs are an enhancing factor in the metastasis of PCa cells. The VGSCs appear to be an important target in the diagnosis and development of new treatment options in PCa.


Assuntos
Neoplasias da Próstata , Bloqueadores do Canal de Sódio Disparado por Voltagem , Humanos , Masculino , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/metabolismo , Ranolazina/farmacologia , Canais de Sódio/metabolismo , Tetrodotoxina/farmacologia , Bloqueadores do Canal de Sódio Disparado por Voltagem/farmacologia
6.
Am J Cardiol ; 209: 92-103, 2023 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-37844876

RESUMO

Heart failure is a complex clinical syndrome with a detrimental impact on mortality and morbidity. Energy substrate utilization and myocardial ion channel regulation have gained research interest especially after the introduction of sodium-glucose co-transporter 2 inhibitors in the treatment of heart failure. Ranolazine or N-(2,6-dimethylphenyl)-2-(4-[2-hydroxy-3-(2-methoxyphenoxy) propyl] piperazin-1-yl) acetamide hydrochloride is an active piperazine derivative which inhibits late sodium current thus minimizing calcium overload in the ischemic cardiomyocytes. Ranolazine also prevents fatty acid oxidation and favors glycose utilization ameliorating the "energy starvation" of the failing heart. Heart failure with preserved ejection fraction is characterized by diastolic impairment; according to the literature ranolazine could be beneficial in the management of increased left ventricular end-diastolic pressure, right ventricular systolic dysfunction and wall shear stress which is reflected by the high natriuretic peptides. Fewer data is evident regarding the effects of ranolazine in heart failure with reduced ejection fraction and mainly support the control of the sodium-calcium exchanger and function of sarcoendoplasmic reticulum calcium adenosine triphosphatase. Ranolazine's therapeutic mechanisms in myocardial ion channels and energy utilization are documented in patients with chronic coronary syndromes. Nevertheless, ranolazine might have a broader effect in the therapy of heart failure and further mechanistic research is required.


Assuntos
Insuficiência Cardíaca , Piperazinas , Humanos , Ranolazina/uso terapêutico , Piperazinas/uso terapêutico , Piperazinas/farmacologia , Acetanilidas/farmacologia , Acetanilidas/uso terapêutico , Insuficiência Cardíaca/tratamento farmacológico , Sódio
7.
Nat Metab ; 5(9): 1544-1562, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37563469

RESUMO

Resistance of melanoma to targeted therapy and immunotherapy is linked to metabolic rewiring. Here, we show that increased fatty acid oxidation (FAO) during prolonged BRAF inhibitor (BRAFi) treatment contributes to acquired therapy resistance in mice. Targeting FAO using the US Food and Drug Administration-approved and European Medicines Agency-approved anti-anginal drug ranolazine (RANO) delays tumour recurrence with acquired BRAFi resistance. Single-cell RNA-sequencing analysis reveals that RANO diminishes the abundance of the therapy-resistant NGFRhi neural crest stem cell subpopulation. Moreover, by rewiring the methionine salvage pathway, RANO enhances melanoma immunogenicity through increased antigen presentation and interferon signalling. Combination of RANO with anti-PD-L1 antibodies strongly improves survival by increasing antitumour immune responses. Altogether, we show that RANO increases the efficacy of targeted melanoma therapy through its effects on FAO and the methionine salvage pathway. Importantly, our study suggests that RANO could sensitize BRAFi-resistant tumours to immunotherapy. Since RANO has very mild side-effects, it might constitute a therapeutic option to improve the two main strategies currently used to treat metastatic melanoma.


Assuntos
Melanoma , Estados Unidos , Animais , Camundongos , Ranolazina/farmacologia , Ranolazina/uso terapêutico , Melanoma/tratamento farmacológico , Melanoma/metabolismo , Imunoterapia , Inibidores de Proteínas Quinases/farmacologia , Metionina
8.
Am J Physiol Heart Circ Physiol ; 325(2): H264-H277, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37389950

RESUMO

Clinical studies suggest low testosterone levels are associated with cardiac arrhythmias, especially in later life. We investigated whether chronic exposure to low circulating testosterone promoted maladaptive electrical remodeling in ventricular myocytes from aging male mice and determined the role of late inward sodium current (INa,L) in this remodeling. C57BL/6 mice had a gonadectomy (GDX) or sham surgery (1 mo) and were aged to 22-28 mo. Ventricular myocytes were isolated; transmembrane voltage and currents were recorded (37°C). Action potential duration at 70 and 90% repolarization (APD70 and APD90) was prolonged in GDX compared with sham myocytes (APD90, 96.9 ± 3.2 vs. 55.4 ± 2.0 ms; P < 0.001). INa,L was also larger in GDX than sham (-2.4 ± 0.4 vs. -1.2 ± 0.2 pA/pF; P = 0.002). When cells were exposed to the INa,L antagonist ranolazine (10 µM), INa,L declined in GDX cells (-1.9 ± 0.5 vs. -0.4 ± 0.2 pA/pF; P < 0.001) and APD90 was reduced (96.3 ± 14.8 vs. 49.2 ± 9.4 ms; P = 0.001). GDX cells had more triggered activity (early/delayed afterdepolarizations, EADs/DADs) and spontaneous activity than sham. EADs were inhibited by ranolazine in GDX cells. The selective NaV1.8 blocker A-803467 (30 nM) also reduced INa,L, decreased APD and abolished triggered activity in GDX cells. Scn5a (NaV1.5) and Scn10a (NaV1.8) mRNA was increased in GDX ventricles, but only NaV1.8 protein abundance was increased in GDX compared with sham. In vivo studies showed QT prolongation and more arrhythmias in GDX mice. Thus, triggered activity in ventricular myocytes from aging male mice with long-term testosterone deficiency arises from APD prolongation mediated by larger NaV1.8- and NaV1.5-associated currents, which may explain the increase in arrhythmias.NEW & NOTEWORTHY Older men with low testosterone levels are at increased risk of developing cardiac arrhythmias. We found aged mice chronically exposed to low testosterone had more arrhythmias and ventricular myocytes had prolonged repolarization, abnormal electrical activity, larger late sodium currents, and increased expression of NaV1.8 sodium channels. Drugs that inhibit late sodium current or NaV1.8 channels abolished abnormal electrical activity and shortened repolarization. This suggests the late sodium current may be a novel target to treat arrhythmias in older testosterone-deficient men.


Assuntos
Sódio , Testosterona , Camundongos , Masculino , Animais , Ranolazina/farmacologia , Ranolazina/metabolismo , Testosterona/farmacologia , Testosterona/metabolismo , Sódio/metabolismo , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/metabolismo , Arritmias Cardíacas , Canais de Sódio/metabolismo , Potenciais de Ação , Envelhecimento
9.
J Invest Dermatol ; 143(2): 305-316.e5, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36058299

RESUMO

Circulating tumor cells are the key link between a primary tumor and distant metastases, but once in the bloodstream, loss of adhesion induces cell death. To identify the mechanisms relevant for melanoma circulating tumor cell survival, we performed RNA sequencing and discovered that detached melanoma cells and isolated melanoma circulating tumor cells rewire lipid metabolism by upregulating fatty acid (FA) transport and FA beta-oxidation‒related genes. In patients with melanoma, high expression of FA transporters and FA beta-oxidation enzymes significantly correlates with reduced progression-free and overall survival. Among the highest expressed regulators in melanoma circulating tumor cells were the carnitine transferases carnitine O-octanoyltransferase and carnitine acetyltransferase, which control the shuttle of peroxisome-derived medium-chain FAs toward mitochondria to fuel mitochondrial FA beta-oxidation. Knockdown of carnitine O-octanoyltransferase or carnitine acetyltransferase and short-term treatment with peroxisomal or mitochondrial FA beta-oxidation inhibitors thioridazine or ranolazine suppressed melanoma metastasis in mice. Carnitine O-octanoyltransferase and carnitine acetyltransferase depletion could be rescued by medium-chain FA supplementation, indicating that the peroxisomal supply of FAs is crucial for the survival of nonadherent melanoma cells. Our study identifies targeting the FA-based cross-talk between peroxisomes and mitochondria as a potential therapeutic opportunity to challenge melanoma progression. Moreover, the discovery of the antimetastatic activity of the Food and Drug Administration‒approved drug ranolazine carries translational potential.


Assuntos
Melanoma , Células Neoplásicas Circulantes , Camundongos , Animais , Carnitina O-Acetiltransferase/genética , Carnitina O-Acetiltransferase/metabolismo , Carnitina Aciltransferases/genética , Carnitina Aciltransferases/metabolismo , Ranolazina , Oxirredução , Ácidos Graxos/metabolismo , Melanoma/tratamento farmacológico , Carnitina/metabolismo
10.
Zhonghua Xin Xue Guan Bing Za Zhi ; 50(11): 1087-1093, 2022 Nov 24.
Artigo em Chinês | MEDLINE | ID: mdl-36418277

RESUMO

Objective: To determine the electrophysiological effects and related mechanisms of late sodium current inhibitors on hearts with short QT intervals. Methods: The electrophysiological study was performed on isolated Langendorff perfused rabbit hearts. A total of 80 New Zealand White rabbits were used and 34 hearts without drug treatment were defined as control group A, these hearts were then treated with IKATP opener pinacidil, defined as pinacidil group A. Then, 27 hearts from pinacidil group A were selected to receive combined perfusion with sodium channel inhibitors or quinidine, a traditional drug used to treat short QT syndrome, including ranolazine combined group (n=9), mexiletine combined group (n=9), and quinidine combined group (n=9). Nineteen out of the remaining 46 New Zealand rabbits were selected as control group B (no drug treatments, n=19), and then treated with pinacidil, defined as pinacidil group B (n=19). The remaining 27 rabbits were treated with sodium inhibitors or quinidine alone, including ranolazine alone group (n=9), mexiletine alone group (n=9), and quinidine alone group (n=9). Electrocardiogram (ECG) physiological parameters of control group A and pinacidil group A were collected. In control group B and pinacidil group B, programmed electrical stimulation was used to induce ventricular arrhythmias and ECG was collected. ECG physiological parameters and ventricular arrhythmia status of various groups were analyzed. The concentrations of pinacidil, ranolazine, mexiletine and quinidine used in this study were 30, 10, 30 and 1 µmol/L, respectively. Results: Compared with control group A, the QT interval, 90% of the repolarization in epicardial and endocardial monophasic action potential duration (MAPD90-Epi, MAPD90-Endo) was shortened, the transmural dispersion of repolarization (TDR) was increased, and the effective refractor period (ERP) and post-repolarization refractoriness (PRR) were reduced in pinacidil group A (all P<0.05). Compared with the pinacidil group A, MAPD90-Epi, MAPD90-Endo, QT interval changes were reversed in quinidine combined group and mexiletine combined group (all P<0.05), but not in ranolazine combined group. All these three drugs reversed the pinacidil-induced increases of TDR and the decreases of ERP and PRR. The induced ventricular arrhythmia rate was 0 in control group B, and increased to 10/19 (χ2=13.6, P<0.05) in pinacidil group B during programmed electrical stimulation. Compared with the pinacidil group B, incidences of ventricular arrhythmia decreased to 11% (1/9), 11% (1/9) and 0 (0/9) (χ2=4.5, 4.5, 7.4, P<0.05) respectively in ranolazine group, mexiletine group and quinidine group. Conclusions: Inhibition of late sodium current does not increase but even decreases the risk of malignant arrhythmia in hearts with a shortened QT interval. The antiarrhythmic mechanism might be associated with the reversal of the increase of TDR and the decrease of refractoriness (including both ERP and PRR) of hearts with shortened QT interval.


Assuntos
Mexiletina , Quinidina , Coelhos , Animais , Quinidina/farmacologia , Quinidina/uso terapêutico , Mexiletina/farmacologia , Mexiletina/uso terapêutico , Pinacidil/farmacologia , Pinacidil/uso terapêutico , Sódio , Ranolazina/farmacologia , Ranolazina/uso terapêutico , Técnicas Eletrofisiológicas Cardíacas , Arritmias Cardíacas/tratamento farmacológico
11.
Int J Mol Sci ; 23(19)2022 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-36233271

RESUMO

Ranolazine (Rn) is a drug used to treat persistent chronic coronary ischemia. It has also been shown to have therapeutic benefits on the central nervous system and an anti-diabetic effect by lowering blood glucose levels; however, no effects of Rn on cellular sensitivity to insulin (Ins) have been demonstrated yet. The present study aimed to investigate the permissive effects of Rn on the actions of Ins in astrocytes in primary culture. Ins (10-8 M), Rn (10-6 M), and Ins + Rn (10-8 M and 10-6 M, respectively) were added to astrocytes for 24 h. In comparison to control cells, Rn and/or Ins caused modifications in cell viability and proliferation. Rn increased protein expression of Cu/Zn-SOD and the pro-inflammatory protein COX-2 was upregulated by Ins. On the contrary, no significant changes were found in the protein expression of NF-κB and IκB. The presence of Rn produced an increase in p-ERK protein and a significant decrease in COX-2 protein expression. Furthermore, Rn significantly increased the effects of Ins on the expression of p-AKT, p-eNOS, p-ERK, Mn-SOD, and PPAR-γ. In addition, Rn + Ins produced a significant decrease in COX-2 expression. In conclusion, Rn facilitated the effects of insulin on the p-AKT, p-eNOS, p-ERK, Mn-SOD, and PPAR-γ signaling pathways, as well as on the anti-inflammatory and antioxidant effects of the hormone.


Assuntos
Astrócitos , Insulina , Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Astrócitos/metabolismo , Glicemia/metabolismo , Ciclo-Oxigenase 2/metabolismo , Insulina/metabolismo , Insulina/farmacologia , Insulina Regular Humana , NF-kappa B/metabolismo , PPAR gama/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ranolazina/farmacologia , Superóxido Dismutase/metabolismo
12.
Exp Mol Pathol ; 127: 104818, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35882281

RESUMO

Doxorubicin (Dox), a powerful chemotherapeutic agent, has been shown to cause cardiotoxicity and neurotoxicity. Ranolazine, a drug that is commonly used to treat patients with chronic angina, has been shown to reduce toxicity from Dox therapy. Therefore, the present study aims to investigate the mechanisms behind the protective effects of ranolazine on the heart and brain in Dox-treatment. Twenty-four male Wistar rats received 6 doses of either 0.9% normal saline (0.9% NSS, i.p., n = 8) or Dox (3 mg/kg, i.p., n = 16). All Dox-treated rats were assigned into 2 groups to receive vehicle (0.9% NSS, orally; n = 8) or ranolazine (305 mg/kg/day, orally; n = 8) for 30 consecutive days. Following the treatments, left ventricular (LV) function and cognition were determined. Animals were euthanized, then the heart and brain were collected for further analysis. Dox induced systemic oxidative stress/inflammation, and cardiac injury evidenced by mitochondrial dysfunction, mitochondrial dynamic imbalance, and apoptosis, resulting in LV dysfunction. Ranolazine significantly improved LV function via attenuating cardiac injury. Dox also caused brain pathologies as indicated by increased brain inflammation, impaired blood-brain barrier integrity, brain mitochondrial dysfunction, microglial dysmorphology, hippocampal dysplasticity, and increased apoptosis, resulting in cognitive decline. Ranolazine exerted neuroprotective effects by suppressing brain pathologies and restoring cognitive function. These findings suggest that ranolazine has a potential role in cardio- and neuro-protection against chemotherapy.


Assuntos
Antibióticos Antineoplásicos , Doxorrubicina , Animais , Antibióticos Antineoplásicos/farmacologia , Apoptose , Encéfalo , Doxorrubicina/efeitos adversos , Masculino , Estresse Oxidativo , Ranolazina/farmacologia , Ratos , Ratos Wistar
13.
Clin Exp Metastasis ; 39(4): 679-689, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35643818

RESUMO

A plethora of ion channels have been shown to be involved systemically in the pathophysiology of cancer and ion channel blockers can produce anti-metastatic effects. However, although ion channels are known to frequently function in concerted action, little is known about possible combined effects of ion channel modulators on metastatic cell behaviour. Here, we investigated functional consequences of pharmacologically modulating ATP-gated potassium (KATP) channel and voltage-gated sodium channel (VGSC) activities individually and in combination. Two triple-negative human breast cancer cell lines were used: MDA-MB-231 and MDA-MB-468, the latter mainly for comparison. Most experiments were carried out on hypoxic cells. Electrophysiological effects were studied by whole-cell patch clamp recording. Minoxidil (a KATP channel opener) and ranolazine (a blocker of the VGSC persistent current) had no effect on cell viability and proliferation, alone or in combination. In contrast, invasion was significantly reduced in a dose-dependent manner by clinical concentrations of minoxidil and ranolazine. Combining the two drugs produced significant additive effects at concentrations as low as 0.625 µM ranolazine and 2.5 µM minoxidil. Electrophysiologically, acute application of minoxidil shifted VGSC steady-state inactivation to more hyperpolarised potentials and slowed recovery from inactivation, consistent with inhibition of VGSC activation. We concluded (i) that clinically relevant doses of minoxidil and ranolazine individually could inhibit cellular invasiveness dose dependently and (ii) that their combination was additionally effective. Accordingly, ranolazine, minoxidil and their combination may be repurposed as novel anti-metastatic agents.


Assuntos
Minoxidil , Ranolazina , Neoplasias de Mama Triplo Negativas , Trifosfato de Adenosina , Linhagem Celular Tumoral , Humanos , Canais Iônicos/antagonistas & inibidores , Minoxidil/farmacologia , Ranolazina/farmacologia
14.
Int J Mol Sci ; 22(22)2021 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-34830135

RESUMO

Dyslipidemia is commonly linked to skeletal muscle dysfunction, accumulation of intramyocellular lipids, and insulin resistance. However, our previous research indicated that dyslipidemia in apolipoprotein E and low-density lipoprotein receptor double knock-out mice (ApoE/LDLR -/-) leads to improvement of exercise capacity. This study aimed to investigate in detail skeletal muscle function and metabolism in these dyslipidemic mice. We found that ApoE/LDLR -/- mice showed an increased grip strength as well as increased troponins, and Mhc2 levels in skeletal muscle. It was accompanied by the increased skeletal muscle mitochondria numbers (judged by increased citrate synthase activity) and elevated total adenine nucleotides pool. We noted increased triglycerides contents in skeletal muscles and increased serum free fatty acids (FFA) levels in ApoE/LDLR -/- mice. Importantly, Ranolazine mediated inhibition of FFA oxidation in ApoE/LDLR -/- mice led to the reduction of exercise capacity and total adenine nucleotides pool. Thus, this study demonstrated that increased capacity for fatty acid oxidation, an adaptive response to dyslipidemia leads to improved cellular energetics that translates to increased skeletal muscle strength and contributes to increased exercise capacity in ApoE/LDLR -/- mice.


Assuntos
Dislipidemias/fisiopatologia , Ácidos Graxos/metabolismo , Resistência à Insulina/fisiologia , Força Muscular/fisiologia , Nucleotídeos de Adenina/metabolismo , Animais , Apolipoproteínas E/deficiência , Apolipoproteínas E/genética , Glicemia/metabolismo , Dislipidemias/genética , Dislipidemias/metabolismo , Ácidos Graxos/sangue , Resistência à Insulina/genética , Lipídeos/sangue , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias Musculares/metabolismo , Força Muscular/genética , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiopatologia , Cadeias Pesadas de Miosina/metabolismo , Oxirredução/efeitos dos fármacos , Ranolazina/farmacologia , Receptores de LDL/deficiência , Receptores de LDL/genética , Troponina/metabolismo
15.
Neuromuscul Disord ; 31(6): 546-550, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33903020

RESUMO

Ranolazine is an anti-ischemic drug often used along with statins in patients with ischemic heart disease. Ranolazine-induced proximal myopathy or rhabdomyolysis have been rarely reported, but toxic effects of statins could not be completely ruled out in those cases. We report a 68-year-old man with ranolazine-induced myopathy who presented with respiratory insufficiency and head drop. Creatine kinase level was normal. The Patient continued to worsen despite statin cessation but markedly improved after stopping ranolazine. Muscle biopsy showed excessive lipid accumulation predominantly in type 1 myofibers. The precise mechanism of toxicity is not clear. Treating physicians should be aware of this rare but potentially debilitating adverse effect of ranolazine. Prognosis is good upon discontinuation of the offending drug.


Assuntos
Fármacos Cardiovasculares/efeitos adversos , Erros Inatos do Metabolismo Lipídico/induzido quimicamente , Distrofias Musculares/induzido quimicamente , Ranolazina/efeitos adversos , Insuficiência Respiratória/etiologia , Bloqueadores dos Canais de Sódio/efeitos adversos , Idoso , Humanos , Masculino
16.
Life Sci ; 267: 118920, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33352171

RESUMO

This study investigates the role of ranolazine in contrast-associated acute kidney injury (CA-AKI) and potential mechanisms. For in vivo studies, mouse models of CA-AKI and control mice were treated with ranolazine or vehicle. Blood urea nitrogen (BUN) and serum creatinine were detected by spectrophotometry. Anti-T-cell immunoglobulin and mucin domain 1 (TIM 1) and anti-lipocalin 2 antibody (LCN2) were detected by immunofluorescence. Hemodynamic parameters were detected via invasive blood pressure measurement and renal artery color doppler ultrasound, capillary density was measured by CD31 immunofluorescence, vascular permeability assay was performed by Evans blue dye. The expressions of oxidative stress and apoptotic markers were measured and analyzed by immunofluorescence and western blotting. For in vitro studies, intracellular calcium concentration of HUVECs was measured with Fluo 3-AM under confocal microscopy. Results show that compared with control mice, serum BUN, creatinine, TIM 1 and LCN2 levels were elevated in CA-AKI mice, but this effect was alleviated by ranolazine-pretreatment. Safe doses of ranolazine (less than 64 mg/kg) had no significant effect on overall blood pressure, but substantially improved renal perfusion, reduced contrast-induced microcirculation disturbance, improved renal capillary density and attenuated renal vascular permeability in ranolazine-pretreated CA-AKI mice. Mechanistically, ranolazine markedly down-regulated oxidative stress and apoptosis markers compared to CA-AKI mice. Intracellularly, ranolazine attenuated calcium overload in HUVECs. These results indicate that ranolazine alleviates CA-AKI through modulation of calcium independent oxidative stress and apoptosis.


Assuntos
Injúria Renal Aguda/tratamento farmacológico , Meios de Contraste/efeitos adversos , Ranolazina/farmacologia , Injúria Renal Aguda/metabolismo , Animais , Apoptose/efeitos dos fármacos , Nitrogênio da Ureia Sanguínea , Cálcio/metabolismo , Creatinina/análise , Creatinina/sangue , Modelos Animais de Doenças , Receptor Celular 1 do Vírus da Hepatite A/análise , Rim/citologia , Rim/metabolismo , Lipocalina-2/análise , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/fisiologia , Ranolazina/metabolismo , Artéria Renal/metabolismo
17.
Int J Mol Sci ; 21(24)2020 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-33352903

RESUMO

Lipid catabolism represents an Achilles heel in prostate cancer (PCa) that can be exploited for therapy. CPT1A regulates the entry of fatty acids into the mitochondria for beta-oxidation and its inhibition has been shown to decrease PCa growth. In this study, we examined the pharmacological blockade of lipid oxidation with ranolazine in TRAMPC1 PCa models. Oral administration of ranolazine (100 mg/Kg for 21 days) resulted in decreased tumor CD8+ T-cells Tim3 content, increased macrophages, and decreased blood myeloid immunosuppressive monocytes. Using multispectral staining, drug treatments increased infiltration of CD8+ T-cells and dendritic cells compared to vehicle. Functional studies with spleen cells of drug-treated tumors co-cultured with TRAMPC1 cells showed increased ex vivo T-cell cytotoxic activity, suggesting an anti-tumoral response. Lastly, a decrease in CD4+ and CD8+ T-cells expressing PD1 was observed when exhausted spleen cells were incubated with TRAMPC1 Cpt1a-KD compared to the control cells. These data indicated that genetically blocking the ability of the tumor cells to oxidize lipid can change the activation status of the neighboring T-cells. This study provides new knowledge of the role of lipid catabolism in the intercommunication of tumor and immune cells, which can be extrapolated to other cancers with high CPT1A expression.


Assuntos
Tecido Adiposo/metabolismo , Imunidade , Oxirredução , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Tecido Adiposo/efeitos dos fármacos , Animais , Biomarcadores Tumorais , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Citotoxicidade Imunológica/efeitos dos fármacos , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Masculino , Camundongos , Terapia de Alvo Molecular , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/etiologia , Ranolazina/farmacologia , Carga Tumoral
18.
Rev. colomb. cardiol ; 27(5): 400-404, sep.-oct. 2020. tab
Artigo em Espanhol | LILACS, COLNAL | ID: biblio-1289249

RESUMO

Resumen Introducción: en pacientes con cardiopatía isquémica crónica, ranolazina se ha mostrado eficaz ante casos de angina. Estudios recientes la valoran como fármaco para prevenir la fibrilación auricular poscardioversión eléctrica, posquirúrgica o posinfarto. Objetivos: valorar la presencia a largo plazo de episodios de fibrilación auricular de novo en pacientes con cardiopatía isquémica crónica y nuevo episodio de angina inestable que inician ranolazina 350 o 500 mg/12 h, en comparación con el tratamiento habitual. Métodos: estudio observacional retrospectivo que compara la incidencia de fibrilación auricular de novo en 77 pacientes consecutivos, con diagnóstico de cardiopatía isquémica no revascularizable y nuevo ingreso por síndrome coronario agudo durante el año 2013, en comparación con los que iniciaron ranolazina frente a tratamiento convencional, en los 12 meses siguientes al evento. La detección de fibrilación auricular se basó en su presencia en un primer registro electrocardiográfico. Resultados: de 77 pacientes, 38 iniciaron ranolazina, sin diferencias en cuanto a las características basales de las dos poblaciones, con similares tasas de factores de riesgo cardiovascular clásicos, datos ecocardiográficos como tamaño auricular, o tratamiento previo empleado. Se observó una tasa de fibrilación auricular de novo del 5,3% en los pacientes tratados con ranolazina, frente al 23,1% en el grupo sin ranolazina (p<0,001). Al analizar el subgrupo de pacientes que presentó fibrilación auricular en su seguimiento, únicamente es significativa la no toma de ranolazina (p<0,001). Conclusión: el uso de ranolazina en pacientes con cardiopatía isquémica crónica no revascularizable podría suponer un efecto protector para el desarrollo de fibrilación auricular durante un seguimiento de al menos doce meses.


Abstract Introduction: Ranolazine has shown to be effective in cases of angina in patients with chronic ischaemic heart disease. Recent studies have evaluated it as a drug to prevent electrical post-cardioversion, post-surgical or post-infarction atrial fibrillation. Objectives: To perform a long-term evaluation of de novo atrial fibrillation episodes in patients with chronic ischaemic heart disease and a new episode of unstable angina that are taking 350 or 500 mg/12 h of ranolazine, in comparison with usual treatment. Methods: An observational, retrospective study was performed to compare the incidence of de novo atrial fibrillation in 77 consecutive patients with a diagnosis of non-revascularisable ischaemic heart disease and a new hospital admission due to acute coronary syndrome during the year 2013. These were compared with those that started with ranolazine and those on conventional treatment in the 12 months following the event. The detection of atrial fibrillation was based on its presence in a first electrocardiographic register. Results: Of the 77 patients, 38 were started on ranolazine, with no differences as regards the baseline characteristics of the two populations. They had similar rates of classic cardiovascular risk factors, echocardiographic data, such as atrial size, or previous treatment employed. A de novo atrial fibrillation rate of 5.3% was observed in the patients treated with ranolazine, compared to 23.1% in the non-ranolazine group (P<.001). On analysing the sub-group of patients that had an atrial fibrillation in their follow-up, only not taking of ranolazine was significant (P<.001). Conclusion: The use of ranolazine in patients with non-revascularisable ischaemic heart disease could have a protective effect against the development of atrial fibrillation during a 12 months follow-up.


Assuntos
Humanos , Masculino , Idoso , Fibrilação Atrial , Isquemia Miocárdica , Ranolazina , Terapêutica , Preparações Farmacêuticas , Síndrome Coronariana Aguda , Fatores de Risco de Doenças Cardíacas
19.
Life Sci ; 261: 118306, 2020 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-32828943

RESUMO

AIMS: Diabetic cardiomyopathy (DCM) is a common diabetes complication that can cause arrhythmia, heart failure, and even sudden death. Ranolazine is an antianginal agent used to treat chronic stable angina and has been demonstrated as an effective treatment for many cardiovascular diseases. However, the mechanism by which ranolazine alleviates DCM is unclear, motivating this study investigating the effects of ranolazine in DCM. MATERIALS AND METHODS: DCM rats were treated with one of three doses of ranolazine (10, 30, and 90 mg/kg/day) for 12 weeks. B-cell lymphoma 2 (Bcl-2), Bcl-2 associated X protein (Bax), cysteinyl aspartate specific proteinase-3 (Caspase-3), Notch homolog 1 (NOTCH1), and Neuregulin 1 (NRG1) expression was assayed using western blot and qRT-PCR. Cardiac changes were assayed using echocardiography, CT, HE staining, and Masson's trichrome staining. TUNEL staining and flow cytometry were used to detect cell apoptosis. NOTCH1 inhibitor (DAPT) was used to explore the mechanism of ranolazine. KEY FINDINGS: Compared with the DCM group, the ranolazine groups had no obvious weight loss and significantly decreased blood glucose levels. Ranolazine prevented diabetes-caused cardiac injury. Ranolazine also decreased the number of apoptotic cells and altered the expression of apoptosis-related mRNAs and proteins. Ranolazine-induced NOTCH1 activated NRG1 and inhibited the downstream apoptosis-related pathway, while DAPT partially inhibited ranolazine-induced NOTCH1 and NRG1 expression. SIGNIFICANCE: To our knowledge, this study is the first to demonstrate that ranolazine protects against DCM-induced apoptosis by activating the NOTCH1/NRG1 signaling pathway. Moreover, our study identified new mechanisms involved in DCM.


Assuntos
Fármacos Cardiovasculares/farmacologia , Diabetes Mellitus Experimental/tratamento farmacológico , Cardiomiopatias Diabéticas/prevenção & controle , Ranolazina/farmacologia , Animais , Apoptose/efeitos dos fármacos , Glicemia/efeitos dos fármacos , Fármacos Cardiovasculares/administração & dosagem , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/fisiopatologia , Cardiomiopatias Diabéticas/fisiopatologia , Relação Dose-Resposta a Droga , Masculino , Neuregulina-1/metabolismo , Ranolazina/administração & dosagem , Ratos , Ratos Sprague-Dawley , Receptor Notch1/metabolismo , Transdução de Sinais/efeitos dos fármacos
20.
Am J Cardiol ; 129: 1-4, 2020 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-32540170

RESUMO

Ranolazine is approved for patients with chronic stable angina but has not been formally studied in patients with refractory angina pectoris (RAP). Patients with RAP have limited therapeutic options and significant limitations in their quality of life. The Ranolazine Refractory Angina Registry was designed to evaluate the safety, tolerability, and effectiveness of ranolazine in RAP patients in order to expand treatment options for this challenging patient population. Using an extensive prospective database, we enrolled 158 consecutive patients evaluated in a dedicated RAP clinic. Angina class, medications, major adverse cardiac events including death, myocardial infarction, and revascularization were obtained at 12, 24, and 36 months. At 3 years, 95 (60%) patients remained on ranolazine. A ≥2 class improvement in angina was seen in 48% (38 of 80 patients with known Canadian Cardiovascular Society class) of those who remained on ranolazine. Discontinuation due to side effects, ineffectiveness, cost, and progression of disease were the principle reasons for discontinuation, but primarily occurred within the first year. In conclusion, ranolazine is an effective antianginal therapy at 3-year follow-up in patients with RAP and may reduce cardiac readmission.


Assuntos
Angina Pectoris/tratamento farmacológico , Fármacos Cardiovasculares/uso terapêutico , Ranolazina/uso terapêutico , Idoso , Angina Pectoris/epidemiologia , Angina Pectoris/fisiopatologia , Fármacos Cardiovasculares/economia , Constipação Intestinal/induzido quimicamente , Desprescrições , Diabetes Mellitus/epidemiologia , Progressão da Doença , Tontura/induzido quimicamente , Custos de Medicamentos , Dislipidemias/epidemiologia , Edema/induzido quimicamente , Feminino , Humanos , Hipertensão/epidemiologia , Masculino , Adesão à Medicação , Pessoa de Meia-Idade , Mortalidade , Infarto do Miocárdio/epidemiologia , Revascularização Miocárdica/estatística & dados numéricos , Náusea/induzido quimicamente , Ranolazina/economia , Sistema de Registros , Fumar/epidemiologia , Falha de Tratamento , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA