Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 140
Filtrar
1.
Bone ; 182: 117057, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38412893

RESUMO

Excessive actions of FGF23 cause several kinds of hypophosphatemic rickets/osteomalacia. It is possible that there still remain unknown causes or mechanisms for FGF23-related hypophosphatemic diseases. We report two male cousins who had been suffering form FGF23-related hypophosphatemic osteomalacia. Sequencing of exons and exon-intron junctions of known causative genes for FGF23-related hypophosphatemic diseases and whole genome sequencing were conducted. Luciferase assay was used to evaluate the effect of a detected nucleotide change on mRNA stability. Two cousins showed hypophosphatemia with impaired proximal tubular phosphate reabsorption and high FGF23. Serum phosphate of their mothers was within the reference range. Exome sequencing of the proband detected no mutations. Whole genome sequencing of the patients and their mothers identified a nucleotide change in the 3'-UTR of phosphate-regulating gene with homologies to endopeptidases on the X chromosome (PHEX) gene (c.*1280_*1287dupGTGTGTGT) which is heterozygous in the mothers and hemizygous in the patients. While sixteen is the most prevalent number of GT repeats, this family had twenty repeats. Luciferase assay indicated that mRNA with 3'-UTR of PHEX with 20 GT repeats was more unstable than that with 16 repeats. Sequencing of exons and exon-intron junctions of known causative genes for FGF23-related hypophosphatemic diseases cannot identify all the genetic causes. Our results strongly suggest that changes of PHEX expression by a nucleotide change in the 3'-UTR is a novel mechanism of FGF23-related hypophosphatemic osteomalacia.


Assuntos
Doenças Genéticas Ligadas ao Cromossomo X , Osteomalacia , Endopeptidase Neutra Reguladora de Fosfato PHEX , Adulto , Humanos , Masculino , Análise Mutacional de DNA , Raquitismo Hipofosfatêmico Familiar/genética , Fatores de Crescimento de Fibroblastos/metabolismo , Doenças Genéticas Ligadas ao Cromossomo X/genética , Hipofosfatemia , Luciferases/genética , Nucleotídeos , Osteomalacia/genética , Endopeptidase Neutra Reguladora de Fosfato PHEX/genética , Fosfatos
2.
J Bone Miner Metab ; 42(2): 155-165, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38310177

RESUMO

INTRODUCTION: Fanconi renotubular syndromes (FRTS) are a rare group of inherited phosphaturic disorders with limited Indian as well as global data on this condition. Here, we describe the experience of a single Endocrinology center from Western India on FRTS. MATERIALS AND METHODS: Comprehensive clinical, biochemical, radiological, management, and genetic details of FRTS patients managed between 2010 and 2023 were collected and analyzed. RESULTS: FRTS probands had mutations (eight novel) in six genes [CLCN5 (n = 4), SLC2A2 (n = 2), GATM, EHHADH, HNF4A, and OCRL (1 each)]. Among 15 FRTS patients (11 families), rickets/osteomalacia was the most common (n = 14) presentation with wide inter- and intra-familial phenotypic variability. Delayed diagnosis (median: 8.8 years), initial misdiagnosis (8/11 probands), and syndrome-specific discriminatory features (8/11 probands) were commonly seen. Hypophosphatemia, elevated alkaline phosphatase, normal parathyroid hormone (median: 36 pg/ml), high-normal/elevated 1,25(OH)2D (median: 152 pg/ml), hypercalciuria (median spot urinary calcium to creatinine ratio: 0.32), and variable proximal tubular dysfunction(s) were observed. Elevated C-terminal fibroblast growth factor 23 in two probands was misleading, till the genetic diagnosis was reached. Novel observations in our FRTS cohort were preserved renal function (till sixth decade) and enthesopathy in FRTS1 and FRTS3 families, respectively. CONCLUSION: Our findings underscore frequent under- and misdiagnosis of FRTS; hence, a high index of suspicion for FRTS in phosphopenic rickets/osteomalacia, with early consideration of genetic testing is essential to ensure timely diagnosis of FRTS. The novel variants and phenotypic manifestations described here expand the disease spectrum of FRTS.


Assuntos
Raquitismo Hipofosfatêmico Familiar , Síndrome de Fanconi , Hipofosfatemia Familiar , Osteomalacia , Raquitismo Hipofosfatêmico , Humanos , Osteomalacia/genética , Raquitismo Hipofosfatêmico Familiar/genética , Hipofosfatemia Familiar/genética , Hipofosfatemia Familiar/metabolismo , Síndrome de Fanconi/genética , Síndrome de Fanconi/metabolismo
3.
Calcif Tissue Int ; 114(3): 310-314, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38195892

RESUMO

X-linked hypophosphatemic rickets (XLH) is a genetic cause of renal hypophosphatemia due to inactivation of the PHEX gene, with an inappropriate concentration of fibroblast growth factor 23 (FGF23). Burosumab, an anti-FGF23 monoclonal antibody, is a validated treatment for XLH, but its use in patients with chronic kidney disease (CKD) has not been validated. A 61-year-old man with XLH developed CKD during follow-up. Conventional treatment (phosphate salts and active vitamin D analogs) was poorly tolerated. Treatment with burosumab was decided at a multi-professional meeting. Before burosumab initiation, his measured glomerular filtration rate was 44 mL/min/1.73 m2 defining CKD stage 3b and intact FGF23 concentration was very high (4496.0 ng/mL, N: 22.7-93.1) due to both XLH and CKD. Severe hypophosphatemia was observed after the two first injections of burosumab at usual doses (1 mg/kg monthly) and concomitant discontinuation of the conventional treatment. After increasing the dose and reducing the interval between doses (1.3 mg/kg every three weeks) from the third injection, serum phosphate concentration normalized and remained around the lower limit of the normal range. A local cutaneous reaction was observed just after the second injection, but did not recur. We report for the first time the efficacy and good short-term tolerance of burosumab in a patient with XLH and CKD, subject to a higher dosage aimed at achieving a phosphatemia at the lower limit of the normal range.


Assuntos
Anticorpos Monoclonais Humanizados , Raquitismo Hipofosfatêmico Familiar , Hipofosfatemia , Insuficiência Renal Crônica , Masculino , Adulto , Humanos , Pessoa de Meia-Idade , Raquitismo Hipofosfatêmico Familiar/genética , Fatores de Crescimento de Fibroblastos/metabolismo , Fosfatos , Hipofosfatemia/tratamento farmacológico , Insuficiência Renal Crônica/complicações , Insuficiência Renal Crônica/tratamento farmacológico
4.
Calcif Tissue Int ; 114(3): 255-266, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38226986

RESUMO

X-linked hypophosphatemia (XLH) is the most common monogenetic cause of chronic hypophosphatemia, characterized by rickets and osteomalacia. Disease manifestations and treatment of XLH patients in the Netherlands are currently unknown. Characteristics of XLH patients participating in the Dutch observational registry for genetic hypophosphatemia and acquired renal phosphate wasting were analyzed. Eighty XLH patients, including 29 children, were included. Genetic testing, performed in 78.8% of patients, showed a PHEX mutation in 96.8%. Median (range) Z-score for height was - 2.5 (- 5.5; 1.0) in adults and - 1.4 (- 3.7; 1.0) in children. Many patients were overweight or obese: 64.3% of adults and 37.0% of children. All children received XLH-related medication e.g., active vitamin D, phosphate supplementation or burosumab, while 8 adults used no medication. Lower age at start of XLH-related treatment was associated with higher height at inclusion. Hearing loss was reported in 6.9% of children and 31.4% of adults. Knee deformities were observed in 75.0% of all patients and osteoarthritis in 51.0% of adult patients. Nephrocalcinosis was observed in 62.1% of children and 33.3% of adults. Earlier start of XLH-related treatment was associated with higher risk of nephrocalcinosis and detection at younger age. Hyperparathyroidism longer than six months was reported in 37.9% of children and 35.3% of adults. This nationwide study confirms the high prevalence of adiposity, hearing loss, bone deformities, osteoarthritis, nephrocalcinosis and hyperparathyroidism in Dutch XLH patients. Early start of XLH-related treatment appears to be beneficial for longitudinal growth but may increase development of nephrocalcinosis.


Assuntos
Raquitismo Hipofosfatêmico Familiar , Perda Auditiva , Hiperparatireoidismo , Hipofosfatemia , Nefrocalcinose , Osteoartrite , Criança , Adulto , Humanos , Raquitismo Hipofosfatêmico Familiar/complicações , Raquitismo Hipofosfatêmico Familiar/genética , Raquitismo Hipofosfatêmico Familiar/diagnóstico , Nefrocalcinose/genética , Nefrocalcinose/complicações , Fatores de Crescimento de Fibroblastos/genética , Hipofosfatemia/epidemiologia , Hipofosfatemia/genética , Fosfatos , Hiperparatireoidismo/complicações , Obesidade/complicações , Perda Auditiva/complicações , Perda Auditiva/tratamento farmacológico
5.
Best Pract Res Clin Endocrinol Metab ; 38(2): 101844, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38044258

RESUMO

Syndromes of inherited fibroblast growth factor 23 (FGF-23) excess encompass a wide spectrum that includes X-linked hypophosphataemia (XLH), autosomal dominant and recessive forms of rickets as well as various syndromic conditions namely fibrous dysplasia/McCune Albright syndrome, osteoglophonic dysplasia, Jansen's chondrodysplasia and cutaneous skeletal hypophosphataemia syndrome. A careful attention to patient symptomatology, family history and clinical features, supported by appropriate laboratory tests will help in making a diagnosis. A genetic screen may be done to confirm the diagnosis. While phosphate supplements and calcitriol continue to be the cornerstone of treatment, in recent times burosumab, the monoclonal antibody against FGF-23 has been approved for the treatment of children and adults with XLH. While health-related outcomes may be improved by ensuring adherence and compliance to prescribed treatment with a smooth transition to adult care, bony deformities may persist in some, and this would warrant surgical correction.


Assuntos
Raquitismo Hipofosfatêmico Familiar , Hipofosfatemia , Adulto , Criança , Humanos , Anticorpos Monoclonais/uso terapêutico , Raquitismo Hipofosfatêmico Familiar/diagnóstico , Raquitismo Hipofosfatêmico Familiar/genética , Raquitismo Hipofosfatêmico Familiar/tratamento farmacológico , Fator de Crescimento de Fibroblastos 23 , Fosfatos/metabolismo
6.
Calcif Tissue Int ; 114(2): 137-146, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37981601

RESUMO

Hereditary hypophosphatemic rickets with hypercalciuria (HHRH) is a rare disorder of phosphate homeostasis. We describe a single-center experience of genetically proven HHRH families and perform systematic review phenotype-genotype correlation in reported biallelic probands and their monoallelic relatives. Detailed clinical, biochemical, radiological, and genetic data were retrieved from our center and a systematic review of Pub-Med and Embase databases for patients and relatives who were genetically proven. Total of nine subjects (probands:5) carrying biallelic SLC34A3 mutations (novel:2) from our center had a spectrum from rickets/osteomalacia to normal BMD, with hypophosphatemia and hypercalciuria in all. We describe the first case of genetically proven HHRH with enthesopathy. Elevated FGF23 in another patient with hypophosphatemia, iron deficiency anemia, and noncirrhotic periportal fibrosis led to initial misdiagnosis as tumoral osteomalacia. On systematic review of 58 probands (with biallelic SLC34A3 mutations; 35 males), early-onset HHRH and renal calcification were present in ~ 70% and late-onset HHRH in 10%. c.575C > T p.(Ser192Leu) variant occurred in 53% of probands without skeletal involvement. Among 110 relatives harboring monoallelic SLC34A3 mutation at median age 38 years, renal calcification, hypophosphatemia, high 1,25(OH)2D, and hypercalciuria were observed in ~30%, 22.3%, 40%, and 38.8%, respectively. Renal calcifications correlated with age but were similar across truncating and non-truncating variants. Although most relatives were asymptomatic for bone involvement, 6/12(50%) had low bone mineral density. We describe the first monocentric HHRH case series from India with varied phenotypes. In a systematic review, frequent renal calcifications and low BMD in relatives with monoallelic variants (HHRH trait) merit identification.


Assuntos
Entesopatia , Raquitismo Hipofosfatêmico Familiar , Hipofosfatemia , Doenças Renais Císticas , Nefrocalcinose , Osteomalacia , Masculino , Humanos , Adulto , Raquitismo Hipofosfatêmico Familiar/complicações , Raquitismo Hipofosfatêmico Familiar/diagnóstico , Raquitismo Hipofosfatêmico Familiar/genética , Hipercalciúria/complicações , Hipercalciúria/genética , Osteomalacia/complicações , Osteomalacia/genética
7.
In Vivo ; 38(1): 341-350, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38148081

RESUMO

BACKGROUND/AIM: X-linked hypophosphatemia (XLH), the most common form of hereditary rickets, results from loss-of-function mutations in the phosphate-regulating PHEX gene. Elevated fibroblast growth factor 23 (FGF23) contributes to hypophosphatemia in XLH. This study aimed to characterize PHEX variants and serum FGF23 profiles in Taiwanese patients with XLH. PATIENTS AND METHODS: We retrospectively reviewed the records of 102 patients clinically suspected of having hypophosphatemic rickets from 2006 to 2022. Serum intact Fibroblast growth factor-23 (iFGF23) levels were measured on clinic visit days. PHEX mutations were identified using Sanger sequencing, and negative cases were analyzed using whole-exome sequencing. RESULTS: The majority (92.1%) of patients exhibited elevated FGF23 compared with normal individuals. Among 102 patients, 44 distinct PHEX mutations were identified. Several mutations recurred in multiple unrelated Taiwanese families. We discovered a high frequency of novel PHEX mutations and identified variants associated with extreme FGF23 elevation and tumorigenesis. CONCLUSION: Our findings revealed the PHEX genotypic variants and FGF23 levels in Taiwanese patients with XLH. These results are crucial given the recent approval of burosumab, a monoclonal FGF23 antibody, for XLH therapy. This study provides key insights into the clinical management of XLH in Taiwan.


Assuntos
Raquitismo Hipofosfatêmico Familiar , Humanos , Anticorpos Monoclonais , Raquitismo Hipofosfatêmico Familiar/genética , Raquitismo Hipofosfatêmico Familiar/metabolismo , Fatores de Crescimento de Fibroblastos/genética , Fatores de Crescimento de Fibroblastos/metabolismo , Mutação , Recidiva Local de Neoplasia , Endopeptidase Neutra Reguladora de Fosfato PHEX/genética , Estudos Retrospectivos
8.
Endocrine ; 84(1): 76-91, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38117452

RESUMO

INTRODUCTION: X-linked hypophosphatemia is an orphan disease of genetic origin and multisystem involvement. It is characterized by a mutation of the PHEX gene which results in excess FGF23 production, with abnormal renal and intestinal phosphorus metabolism, hypophosphatemia and osteomalacia secondary to chronic renal excretion of phosphate. Clinical manifestations include hypophosphatemic rickets leading to growth abnormalities and osteomalacia, myopathy, bone pain and dental abscesses. The transition of these patients to adult life continues to pose challenges to health systems, medical practitioners, patients and families. For this reason, the aim of this consensus is to provide a set of recommendations to facilitate this process and ensure adequate management and follow-up, as well as the quality of life for patients with X-linked hypophosphatemia as they transition to adult life. MATERIALS AND METHODS: Eight Latin American experts on the subject participated in the consensus and two of them were appointed as coordinators. The consensus work was done in accordance with the nominal group technique in 6 phases: (1) question standardization, (2) definition of the maximum number of choices, (3) production of individual solutions or answers, (4) individual question review, (5) analysis and synthesis of the information and (6) synchronic meetings for clarification and voting. An agreement was determined to exist with 80% votes in favor in three voting cycles. RESULTS AND DISCUSSION: Transition to adult life in patients with hypophosphatemia is a complex process that requires a comprehensive approach, taking into consideration medical interventions and associated care, but also the psychosocial components of adult life and the participation of multiple stakeholders to ensure a successful process. The consensus proposes a total of 33 recommendations based on the evidence and the knowledge and experience of the experts. The goal of the recommendations is to optimize the management of these patients during their transition to adulthood, bearing in mind the need for multidisciplinary management, as well as the most relevant medical and psychosocial factors in the region.


Assuntos
Raquitismo Hipofosfatêmico Familiar , Hipofosfatemia , Osteomalacia , Adulto , Humanos , Raquitismo Hipofosfatêmico Familiar/genética , Osteomalacia/genética , Osteomalacia/metabolismo , Consenso , Qualidade de Vida , Hipofosfatemia/genética , Hipofosfatemia/metabolismo , Fatores de Crescimento de Fibroblastos/genética
10.
JCI Insight ; 8(24)2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-37943605

RESUMO

Fibroblast growth factor 23 (FGF23) is a phosphate-regulating (Pi-regulating) hormone produced by bone. Hereditary hypophosphatemic disorders are associated with FGF23 excess, impaired skeletal growth, and osteomalacia. Blocking FGF23 became an effective therapeutic strategy in X-linked hypophosphatemia, but testing remains limited in autosomal recessive hypophosphatemic rickets (ARHR). This study investigates the effects of Pi repletion and bone-specific deletion of Fgf23 on bone and mineral metabolism in the dentin matrix protein 1-knockout (Dmp1KO) mouse model of ARHR. At 12 weeks, Dmp1KO mice showed increased serum FGF23 and parathyroid hormone levels, hypophosphatemia, impaired growth, rickets, and osteomalacia. Six weeks of dietary Pi supplementation exacerbated FGF23 production, hyperparathyroidism, renal Pi excretion, and osteomalacia. In contrast, osteocyte-specific deletion of Fgf23 resulted in a partial correction of FGF23 excess, which was sufficient to fully restore serum Pi levels but only partially corrected the bone phenotype. In vitro, we show that FGF23 directly impaired osteoprogenitors' differentiation and that DMP1 deficiency contributed to impaired mineralization independent of FGF23 or Pi levels. In conclusion, FGF23-induced hypophosphatemia is only partially responsible for the bone defects observed in Dmp1KO mice. Our data suggest that combined DMP1 repletion and FGF23 blockade could effectively correct ARHR-associated mineral and bone disorders.


Assuntos
Raquitismo Hipofosfatêmico Familiar , Hipofosfatemia , Osteomalacia , Animais , Camundongos , Calcificação Fisiológica/genética , Proteínas da Matriz Extracelular/metabolismo , Raquitismo Hipofosfatêmico Familiar/genética , Fatores de Crescimento de Fibroblastos , Hipofosfatemia/genética , Camundongos Knockout , Minerais/metabolismo , Osteomalacia/genética , Osteomalacia/metabolismo
11.
Orphanet J Rare Dis ; 18(1): 304, 2023 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-37752558

RESUMO

BACKGROUND: X-linked hypophosphatemia (XLH) is a rare, hereditary, progressive, renal phosphate-wasting disorder characterized by a pathological increase in FGF23 concentration and activity. Due to its rarity, diagnosis may be delayed, which can adversely affect outcomes. As a chronic disease resulting in progressive accumulation of musculoskeletal manifestations, it is important to understand the natural history of XLH over the patient's lifetime and the impact of drug treatments and other interventions. This multicentre, international patient registry (International XLH Registry) was established to address the paucity of these data. Here we present the findings of the first interim analysis of the registry. RESULTS: The International XLH Registry was initiated in August 2017 and includes participants of all ages diagnosed with XLH, regardless of their treatment and management. At the database lock for this first interim analysis (29 March 2021), 579 participants had entered the registry before 30 November 2020 and are included in the analysis (360 children [62.2%], 217 adults [37.5%] and 2 whose ages were not recorded [0.3%]; 64.2% were female). Family history data were available for 319/345 (92.5%) children and 145/187 (77.5%) adults; 62.1% had biological parents affected by XLH. Genetic testing data were available for 341 (94.7%) children and 203 (93.5%) adults; 370/546 (67.8%) had genetic test results; 331/370 (89.5%) had a confirmed PHEX mutation. A notably longer time to diagnosis was observed in adults ≥ 50 years of age (mean [median] duration 9.4 [2.0] years) versus all adults (3.7 [0.1] years) and children (1.0 [0.2] years). Participants presented with normal weight, shorter length or height and elevated body mass index (approximately - 2 and + 2 Z-scores, respectively) versus the general population. Clinical histories were collected for 349 participants (239 children and 110 adults). General data trends for prevalence of bone, dental, renal and joint conditions in all participants were aligned with expectations for a typical population of people with XLH. CONCLUSION: The data collected within the International XLH Registry, the largest XLH registry to date, provide substantial information to address the paucity of natural history data, starting with demographic, family history, genetic testing, diagnosis, auxology and baseline data on clinical presentation.


Assuntos
Raquitismo Hipofosfatêmico Familiar , Doenças Genéticas Ligadas ao Cromossomo X , Criança , Adulto , Humanos , Feminino , Pré-Escolar , Masculino , Raquitismo Hipofosfatêmico Familiar/genética , Raquitismo Hipofosfatêmico Familiar/diagnóstico , Raquitismo Hipofosfatêmico Familiar/tratamento farmacológico , Doenças Genéticas Ligadas ao Cromossomo X/genética , Mutação , Sistema de Registros , Demografia
12.
Bone ; 176: 116839, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37454963

RESUMO

X-linked hypophosphatemia (XLH) is caused by dominant inactivating mutations in the phosphate regulating endopeptidase homology, X-linked (PHEX), resulting in elevated fibroblast growth factor 23 (FGF23), hypophosphatemia, rickets and osteomalacia. PHEX variants are identified in approximately 85 % of individuals with XLH, which leaves a substantial proportion of patients with negative DNA-based genetic testing. Here we describe a 16-year-old male who had typical features of XLH on clinical and radiological examination. Genomic DNA sequencing of a hypophosphatemia gene panel did not reveal a pathogenic variant. We therefore obtained a urine sample, established cell cultures and obtained PHEX cDNA from urine-derived cells. Sequencing of exon-spanning PCR products demonstrated the presence of an 84 bp pseudoexon in PHEX intron 21 due to a deep intronic variant (c.2147+1197A>G), which created a new splice donor site in intron 21. The corresponding PHEX protein would lack 33 amino acids on the C-terminus and instead include an unrelated sequence of 17 amino acids. The patient and his affected mother both had this variant. This report highlights that individuals with the typical clinical characteristics of XLH and negative genomic DNA sequence analysis can have deep intronic PHEX variants that are detectable by PCR-based RNA diagnostics.


Assuntos
Raquitismo Hipofosfatêmico Familiar , Doenças Genéticas Ligadas ao Cromossomo X , Hipofosfatemia , Masculino , Humanos , Adolescente , Raquitismo Hipofosfatêmico Familiar/genética , Raquitismo Hipofosfatêmico Familiar/metabolismo , RNA , Doenças Genéticas Ligadas ao Cromossomo X/genética , Mutação/genética , Hipofosfatemia/genética , Reação em Cadeia da Polimerase , Endopeptidase Neutra Reguladora de Fosfato PHEX/genética
13.
Arch. argent. pediatr ; 121(2): e202202682, abr. 2023. ilus
Artigo em Inglês, Espanhol | LILACS, BINACIS | ID: biblio-1424963

RESUMO

El raquitismo hipofosfatémico hereditario es una condición genética asociada con una mineralización ósea alterada causada por la deficiencia de fosfato. Produce deformidad esquelética y retraso del crecimiento en la infancia. Se describen diferentes patrones de herencia según el locus involucrado. Dado el solapamiento de los fenotipos y la dificultad en analizar genealogías reducidas, los estudios moleculares son importantes para establecer la causa genética y realizar el abordaje familiar. La forma recesiva del raquitismo hipofosfatémico (ARHR, OMIM #241520) es una condición extremadamente poco frecuente reportada en familias de origen europeo y de Oriente Medio. Las mutaciones con pérdida de función del gen DMP1 (dentin matrix acidic phosphoprotein 1) se asocian al raquitismo hipofosfatémico hereditario tipo 1. En este artículo presentamos el primer reporte de una familia argentina con raquitismo hipofosfatémico hereditario por mutación en DMP1


Hereditary hypophosphatemic rickets is a genetic condition associated with impaired bone mineralization caused by phosphate deficiency. It results in skeletal deformity and growth retardation in early childhood. Different inheritance patterns have been described according to the locus involved. Given the phenotypic overlapping and the difficulty in analyzing reduced genealogies, molecular studies are important to establish the genetic cause and implement a family-centered approach. The autosomal recessive form of hypophosphatemic rickets (ARHR, OMIM 241520) is an extremely rare condition reported in families of European and Middle Eastern descent. Loss-of-function mutations in the DMP1 (dentin matrix acidic phosphoprotein 1) gene are associated with hereditary hypophosphatemic rickets type 1. In this article, we describe the first report of an Argentine family with hereditary hypophosphatemic rickets due to a mutation in the DMP1 gene.


Assuntos
Humanos , Masculino , Lactente , Raquitismo Hipofosfatêmico Familiar/genética , Argentina , Calcificação Fisiológica , Mutação
14.
Artigo em Inglês | MEDLINE | ID: mdl-36847234

RESUMO

BACKGROUND: X-linked hypophosphatemia is the most prevalent form of heritable rickets, characterized by an X-linked dominant inheritance pattern. The genetic basis of X-linked hypophosphatemia is a loss-of-function mutation in the PHEX gene (Phosphate regulating gene with Homology to Endopeptidases on the X chromosome), which leads to an enhanced production of phosphaturic hormone FGF23. X-linked hypophosphatemia causes rickets in children and osteomalacia in adults. Clinical manifestations are numerous and variable, including slowdown in growth, swing-through gait and progressive tibial bowing, related to skeletal and extraskeletal actions of FGF23. PHEX gene spans over 220 kb and consists of 22 exons. To date, hereditary and sporadic mutations are known (missense, nonsense, deletions and splice site mutations). CASE PRESENTATION: Herein, we describe a male patient carrying a novel de novo mosaic nonsense mutation c.2176G>T (p.Glu726Ter) located in exon 22 of PHEX gene. CONCLUSION: We highlight this new mutation among possible causative of X-linked hypophosphatemia and suggest that mosaicism of PHEX mutations is not so uncommon and should be excluded in diagnostic workflow of heritable rickets both in male and female patients.


Assuntos
Raquitismo Hipofosfatêmico Familiar , Raquitismo Hipofosfatêmico , Criança , Adulto , Humanos , Masculino , Feminino , Raquitismo Hipofosfatêmico Familiar/diagnóstico , Raquitismo Hipofosfatêmico Familiar/genética , Endopeptidase Neutra Reguladora de Fosfato PHEX/genética , Raquitismo Hipofosfatêmico/diagnóstico , Raquitismo Hipofosfatêmico/genética , Mutação , Éxons/genética
15.
J Clin Endocrinol Metab ; 108(4): 791-801, 2023 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-36334264

RESUMO

CONTEXT: Hereditary hypophosphatemic rickets (HR) consists of a group of inherited hypophosphatemia due to mutations of different genes, which need genetic analysis to make a differential diagnosis. Among them, autosomal recessive hypophosphatemic rickets type 1 (ARHR1), caused by a homozygous mutation of dentin matrix protein 1 (DMP1), is extremely rare, with only 30 reported patients. To date, there has been no case with compound heterozygous DMP1 mutations. OBJECTIVE: To report the first compound heterozygous mutations of DMP1 causing ARHR1 and confirm the effect of the mutation on DMP1 protein. METHODS: We report the clinical features of a Chinese patient with HR. Whole-exome sequencing (WES) was performed on the proband. Then, Cytoscan HD array, Sanger sequencing, and genomic quantitative PCR (qPCR) were used to confirm the mutations. A cell experiment was conducted to explore the effect of the mutation. RESULTS: The proband is a 4-year-old boy, who developed genu varum when he was able to walk at age 1 year and tooth loss after a mild hit at age 3.5 years. Physical examination, biochemical measurement, and imaging finding indicated HR. Family history was negative. WES performed on the proband revealed a novel start codon mutation (c.1A > T, p.Met1Leu) in DMP1 and a large deletion involving most of the small integrin-binding ligand N-linked glycoprotein (SIBLING) family gene, including DSPP, DMP1, IBSP, and MEPE. The novel paternally inherited start codon mutation, which resulted in decreased expression of DMP1 protein with smaller molecular weight and cleavage defect, was confirmed by Sanger sequencing. The maternally inherited deletion was validated by Cytoscan and qPCR, and the breakpoint was finally identified by long-range PCR and Sanger sequencing. Manifestation of dentin dysplasia (DD) or dentinogenesis imperfecta (DGI) caused by DSPP mutations was absent in the patient and his mother, confirming that haploinsufficiency could not lead to DD or DGI. CONCLUSION: We report for the first time compound heterozygous DMP1 mutations consisting of a large deletion and a novel start codon mutation (c.1A > T, p.Met1Leu) in a Chinese patient with ARHR1.


Assuntos
Raquitismo Hipofosfatêmico Familiar , Masculino , Humanos , Lactente , Pré-Escolar , Raquitismo Hipofosfatêmico Familiar/diagnóstico , Raquitismo Hipofosfatêmico Familiar/genética , Códon de Iniciação , Mutação , Família , Proteínas da Matriz Extracelular/genética , Linhagem
16.
Genes (Basel) ; 13(12)2022 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-36553684

RESUMO

X-linked hypophosphatemia (XLH) is the most common hereditary form of rickets and deficiency of renal tubular phosphate transport in humans. XLH is caused by the inactivation of mutations within the phosphate-regulating endopeptidase homolog X-linked (PHEX) gene and follows an X-dominant transmission. It has an estimated frequency of 1 case per 20,000, and over 300 distinct pathogenic variations have been reported that result in an excess of fibroblast growth factor 23 (FGF23) in the serum. Increased levels of FGF23 lead to renal phosphate loss, decreased serum 1,25-dihydroxyvitamin D, and increased metabolism of 1,25-dihydoxyvitamin D, resulting in hypophosphatemia. Major clinical manifestations include rickets, bone deformities, and growth retardation that develop during childhood, and osteomalacia-related fractures or pseudo-fractures, degenerative osteoarthritis, enthesopathy, dental anomalies, and hearing loss during adulthood, which can affect quality of life. In addition, fatigue is also a common symptom in patients with XLH, who experience decreased motion, muscle weakness, and pain, contributing to altered quality of life. The clinical and biomedical characteristics of XLH are extensively defined in bone tissue since skeletal deformations and mineralization defects are the most evident effects of high FGF23 and low serum phosphate levels. However, despite the muscular symptoms that XLH causes, very few reports are available on the effects of FGF23 and phosphate in muscle tissue. Given the close relationship between bones and skeletal muscles, studying the effects of FGF23 and phosphate on muscle could provide additional opportunities to understand the interactions between these two important compartments of the body. By describing the current literature on XLH and skeletal muscle dysfunctions, the purpose of this review is to highlight future areas of research that could contribute to a better understanding of XLH muscular disability and its management.


Assuntos
Raquitismo Hipofosfatêmico Familiar , Humanos , Adulto , Raquitismo Hipofosfatêmico Familiar/genética , Raquitismo Hipofosfatêmico Familiar/metabolismo , Qualidade de Vida , Fosfatos , Músculos/metabolismo
17.
Hum Mutat ; 43(12): 1673-1705, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36150100

RESUMO

Loss-of-function variants in the ectonucleotide pyrophosphatase/phosphodiesterase family member 1 (ENPP1) cause ENPP1 Deficiency, a rare disorder characterized by pathological calcification, neointimal proliferation, and impaired bone mineralization. The consequence of ENPP1 Deficiency is a broad range of age dependent symptoms and morbidities including cardiovascular complications and 50% mortality in infants, autosomal recessive hypophosphatemic rickets type 2 (ARHR2) in children, and joint pain, osteomalacia and enthesopathies in adults. Recent research continues to add to the growing clinical presentation profile as well as expanding the role of ENPP1 itself. Here we review the current knowledge on the spectrum of clinical and genetic findings of ENPP1 Deficiency reported in patients diagnosed with GACI or ARHR2 phenotypes using a comprehensive database of known ENPP1 variants with associated clinical data. A total of 108 genotypes were identified from 154 patients. Of the 109 ENPP1 variants reviewed, 72.5% were demonstrably disease-causing, a threefold increase in pathogenic/likely pathogenic variants over other databases. There is substantial heterogeneity in disease severity, even among patients with the same variant. The approach to creating a continuously curated database of ENPP1 variants accessible to clinicians is necessary to increase the diagnostic yield of clinical genetic testing and accelerate diagnosis of ENPP1 Deficiency.


Assuntos
Raquitismo Hipofosfatêmico Familiar , Diester Fosfórico Hidrolases , Pirofosfatases , Humanos , Raquitismo Hipofosfatêmico Familiar/genética , Mutação , Diester Fosfórico Hidrolases/genética , Pirofosfatases/genética
18.
Front Endocrinol (Lausanne) ; 13: 956646, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36060934

RESUMO

Objective: The aim of this study was to fully describe the clinical and genetic characteristics, including clinical manifestations, intact fibroblast growth factor 23 (iFGF23) levels, and presence of PHEX gene mutations, of 22 and 7 patients with familial and sporadic X-linked dominant hypophosphatemia (XLH), respectively. Methods: Demographic data, clinical features, biochemical indicators, and imaging data of 29 patients were collected. All 22 exons and exon-intron boundaries of the PHEX gene were amplified by polymerase chain reaction (PCR) and directly sequenced. The serum level of iFGF23 was measured in 15 of the patients. Results: Twenty-nine patients (male/female: 13:16, juvenile/adult: 15:14) with XLH were included. The main symptoms were bowed lower extremities (89.7%), abnormal gait (89.7%), and short stature/growth retardation (78.6%). Hypophosphatemia with a high alkaline phosphatase level was the main biochemical feature and the median value of serum iFGF23 was 55.7 pg/ml (reference range: 16.1-42.2 pg/ml). Eight novel mutations in the PHEX gene were identified by Sanger sequencing, including two missense mutations (p. Gln682Leu and p. Phe312Ser), two deletions (c.350_356del and c.755_761del), one insertion (c.1985_1986insTGAC), and three splice mutations (c.1700+5G>C, c.1966-1G>T, and c.350-14_350-1del). Additionally, the recurrence rate after the first orthopedic surgery was 77.8% (7/9), and five of them had their first surgery before puberty. Conclusion: Our study expanded the clinical phenotypes and gene mutation spectrum of XLH and provided a reference for the optimal timing of orthopedic surgeries.


Assuntos
Raquitismo Hipofosfatêmico Familiar , Hipofosfatemia , China/epidemiologia , Raquitismo Hipofosfatêmico Familiar/genética , Feminino , Humanos , Masculino , Endopeptidase Neutra Reguladora de Fosfato PHEX/genética , Maturidade Sexual
19.
Sci Rep ; 12(1): 15968, 2022 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-36153352

RESUMO

We have used Basic Fibroblast Growth Factor (FGF2) transgenic mice as experimental models for human X-linked hypophosphatemia (XLH)-related degenerative osteoarthritis (OA) to investigate the pathogenesis of the disease and to test potential pharmacotherapies for treatment. This study tested the efficacy of BJG398, a small molecule fibroblast growth factor receptor tyrosine kinase (FGFRTK) inhibitor, to rescue the knee joint osteoarthritis phenotype in High Molecular Weight fibroblast growth factor 2 transgenic (HMWTgFGF2) mice. BJG398 was administered in vivo to 8-month-old female HMWTgFGF2 mice for six weeks. Histomorphometry, immunohistochemistry and micro-CT were used to examine the knee joints in BGJ398-treated and control mice. We assessed: Fibroblast Growth Factor 23 (FGF23) expression and FGFR1 activity; Matrix metalloproteinase 13 (MMP13) and Aggrecanase2 (ADAMTS5) expression; then signaling by SMAD1/5/8-pSMAD6, pERK1/2 and Runt-related transcription factor 2 (RUNX2). Using PrimePCR arrays, we identified a contributing role for major target genes in the TGFB/BMP2 signaling pathway that were regulated by BGJ398. BGJ398 inhibited HMWFGF2/FGF23-induced increase in bone morphogenic protein receptor-1, bone morphogenic protein-2 and 4 and Serine peptidase inhibitor, clade E, member 1. The results from Micro-CT and histology show BGJ398 treatment rescued the OA changes in subchondral bone and knee articular cartilage of HMWTgFGF2 mice. The gene expression and signal transduction results provide convincing evidence that HMWFGF2 generates OA through FGFRTK with characteristic downstream signaling that defines OA, namely: increased FGF23-FGFR1 activity with BMP-BMPR, activation of pSMAD1/5/8-RUNX2 and pERK signaling pathways, then upregulation of MMP13 and ADAMTS5 to degrade matrix. BGJ398 treatment effectively reversed these OA molecular phenotypes, providing further evidence that the OA generated by HMWFGF2 in the transgenic mice is FGFR-mediated and phenocopies the OA found in the Hyp mouse homolog of XLH with a spontaneous mutation in the Phex (phosphate regulating endopeptidase on the X chromosome) gene and human XLH-OA. Overall, the results obtained here explain how the pleotropic effects of FGF2 emanate from the different functions of HMW protein isoforms for cartilage and bone homeostasis, and the pathogenesis of XLH-degenerative osteoarthropathy. BGJ398 inhibits HMWFGF2-induced osteoarthritis via multiple mechanisms. These results provided important scientific evidence for the potential application of BGJ398 as a therapeutic agent for osteoarthritis in XLH.


Assuntos
Raquitismo Hipofosfatêmico Familiar , Osteoartrite , Animais , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Raquitismo Hipofosfatêmico Familiar/genética , Feminino , Fator 2 de Crescimento de Fibroblastos/genética , Metaloproteinase 13 da Matriz/genética , Camundongos , Camundongos Transgênicos , Peso Molecular , Osteoartrite/tratamento farmacológico , Osteoartrite/genética , Osteoartrite/metabolismo , Fenótipo , Compostos de Fenilureia , Inibidores de Proteases , Isoformas de Proteínas/metabolismo , Pirimidinas , Serina/genética
20.
J Clin Endocrinol Metab ; 108(1): 209-220, 2022 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-35981346

RESUMO

Hypophosphatemic rickets typically presents in infancy or early childhood with skeletal deformities and growth plate abnormalities. The most common causes are genetic (such as X-linked hypophosphatemia), and these typically will result in lifelong hypophosphatemia and osteomalacia. Knowledge of phosphate metabolism, including the effects of fibroblast growth factor 23 (FGF23) (an osteocyte produced hormone that downregulates renal phosphate reabsorption and 1,25-dihydroxyvitamin-D (1,25(OH)2D) production), is critical to determining the underlying genetic or acquired causes of hypophosphatemia and to facilitate appropriate treatment. Serum phosphorus should be measured in any child or adult with musculoskeletal complaints suggesting rickets or osteomalacia. Clinical evaluation incudes thorough history, physical examination, laboratory investigations, genetic analysis (especially in the absence of a guiding family history), and imaging to establish etiology and to monitor severity and treatment course. The treatment depends on the underlying cause, but often includes active forms of vitamin D combined with phosphate salts, or anti-FGF23 antibody treatment (burosumab) for X-linked hypophosphatemia. The purpose of this article is to explore the approach to evaluating hypophosphatemic rickets and its treatment options.


Assuntos
Raquitismo Hipofosfatêmico Familiar , Hipofosfatemia , Osteomalacia , Raquitismo Hipofosfatêmico , Adulto , Criança , Pré-Escolar , Humanos , Raquitismo Hipofosfatêmico Familiar/diagnóstico , Raquitismo Hipofosfatêmico Familiar/tratamento farmacológico , Raquitismo Hipofosfatêmico Familiar/genética , Osteomalacia/metabolismo , Fatores de Crescimento de Fibroblastos/metabolismo , Raquitismo Hipofosfatêmico/etiologia , Raquitismo Hipofosfatêmico/genética , Fosfatos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA