Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
FEBS Open Bio ; 14(2): 290-299, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38050660

RESUMO

Congenital fibroblast growth factor 23 (FGF23)-related hypophosphatemic rickets/osteomalacia is a rare bone metabolism disorder characterized by hypophosphatemia and caused by genetic abnormalities that result in excessive secretion of FGF23. Hyp mice are a model of X-linked hypophosphatemia (XLH) caused by deletion of the PHEX gene and excessive production of FGF23. The purpose of this study was to investigate the potential of TM5614 as a therapeutic agent for the treatment of congenital FGF23-related hypophosphatemic rickets and osteomalacia in humans by administering TM5614 to Hyp mice and examining its curative effect on hypophosphatemia. After a single oral administration of TM5614 10 mg·kg-1 to female Hyp mice starting at 17 weeks of age, the serum phosphate concentration increased with a peak at 6 h after administration. ELISA confirmed that TM5614 administration decreased the intact FGF23 concentration in the blood. Expression of 25-hydroxyvitamin D-1α-hydroxylase protein encoded by Cyp27b1 mRNA in the kidney was suppressed in Hyp mice, and treatment with 10 mg·kg-1 of TM5614 normalized the expression of 25-hydroxyvitamin D-1α-hydroxylase protein and Cyp27b1 mRNA in the kidneys of these mice. Our data indicate that oral administration of TM5614 ameliorates hypophosphatemia in Hyp mice, suggesting that TM5614 may be an effective treatment for congenital FGF23-related hypophosphatemic rickets and osteomalacia.


Assuntos
Raquitismo Hipofosfatêmico Familiar , Hipofosfatemia , Osteomalacia , Camundongos , Feminino , Humanos , Animais , Raquitismo Hipofosfatêmico Familiar/tratamento farmacológico , Raquitismo Hipofosfatêmico Familiar/metabolismo , Inibidor 1 de Ativador de Plasminogênio , Osteomalacia/tratamento farmacológico , Osteomalacia/metabolismo , 25-Hidroxivitamina D3 1-alfa-Hidroxilase/uso terapêutico , Hipofosfatemia/tratamento farmacológico , Hipofosfatemia/metabolismo , RNA Mensageiro/metabolismo
2.
In Vivo ; 38(1): 341-350, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38148081

RESUMO

BACKGROUND/AIM: X-linked hypophosphatemia (XLH), the most common form of hereditary rickets, results from loss-of-function mutations in the phosphate-regulating PHEX gene. Elevated fibroblast growth factor 23 (FGF23) contributes to hypophosphatemia in XLH. This study aimed to characterize PHEX variants and serum FGF23 profiles in Taiwanese patients with XLH. PATIENTS AND METHODS: We retrospectively reviewed the records of 102 patients clinically suspected of having hypophosphatemic rickets from 2006 to 2022. Serum intact Fibroblast growth factor-23 (iFGF23) levels were measured on clinic visit days. PHEX mutations were identified using Sanger sequencing, and negative cases were analyzed using whole-exome sequencing. RESULTS: The majority (92.1%) of patients exhibited elevated FGF23 compared with normal individuals. Among 102 patients, 44 distinct PHEX mutations were identified. Several mutations recurred in multiple unrelated Taiwanese families. We discovered a high frequency of novel PHEX mutations and identified variants associated with extreme FGF23 elevation and tumorigenesis. CONCLUSION: Our findings revealed the PHEX genotypic variants and FGF23 levels in Taiwanese patients with XLH. These results are crucial given the recent approval of burosumab, a monoclonal FGF23 antibody, for XLH therapy. This study provides key insights into the clinical management of XLH in Taiwan.


Assuntos
Raquitismo Hipofosfatêmico Familiar , Humanos , Anticorpos Monoclonais , Raquitismo Hipofosfatêmico Familiar/genética , Raquitismo Hipofosfatêmico Familiar/metabolismo , Fatores de Crescimento de Fibroblastos/genética , Fatores de Crescimento de Fibroblastos/metabolismo , Mutação , Recidiva Local de Neoplasia , Endopeptidase Neutra Reguladora de Fosfato PHEX/genética , Estudos Retrospectivos
3.
Bone ; 176: 116839, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37454963

RESUMO

X-linked hypophosphatemia (XLH) is caused by dominant inactivating mutations in the phosphate regulating endopeptidase homology, X-linked (PHEX), resulting in elevated fibroblast growth factor 23 (FGF23), hypophosphatemia, rickets and osteomalacia. PHEX variants are identified in approximately 85 % of individuals with XLH, which leaves a substantial proportion of patients with negative DNA-based genetic testing. Here we describe a 16-year-old male who had typical features of XLH on clinical and radiological examination. Genomic DNA sequencing of a hypophosphatemia gene panel did not reveal a pathogenic variant. We therefore obtained a urine sample, established cell cultures and obtained PHEX cDNA from urine-derived cells. Sequencing of exon-spanning PCR products demonstrated the presence of an 84 bp pseudoexon in PHEX intron 21 due to a deep intronic variant (c.2147+1197A>G), which created a new splice donor site in intron 21. The corresponding PHEX protein would lack 33 amino acids on the C-terminus and instead include an unrelated sequence of 17 amino acids. The patient and his affected mother both had this variant. This report highlights that individuals with the typical clinical characteristics of XLH and negative genomic DNA sequence analysis can have deep intronic PHEX variants that are detectable by PCR-based RNA diagnostics.


Assuntos
Raquitismo Hipofosfatêmico Familiar , Doenças Genéticas Ligadas ao Cromossomo X , Hipofosfatemia , Masculino , Humanos , Adolescente , Raquitismo Hipofosfatêmico Familiar/genética , Raquitismo Hipofosfatêmico Familiar/metabolismo , RNA , Doenças Genéticas Ligadas ao Cromossomo X/genética , Mutação/genética , Hipofosfatemia/genética , Reação em Cadeia da Polimerase , Endopeptidase Neutra Reguladora de Fosfato PHEX/genética
4.
Endocr J ; 70(4): 419-426, 2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-36575021

RESUMO

Acquired fibroblast growth factor (FGF) 23-related hypophosphatemic osteomalacia is characterized clinically by muscle weakness, bone pain, and fractures. Its biochemical features include hypophosphatemia, caused by renal phosphate wasting, and inappropriately normal or low 1,25-dihydroxy-vitamin D levels. Recently, burosumab, a fully human monoclonal antibody targeting FGF23, was approved for the treatment of FGF23-related hypophosphatemic rickets and osteomalacia. We report the case of a 75-year-old Japanese woman with decompensated liver cirrhosis and hepatic encephalopathy, caused by primary biliary cholangitis, who complained of back pain and limited mobility resulting from multiple vertebral fractures. She was not receiving iron infusion therapy and denied alcohol consumption. The patient exhibited hypophosphatemia with a low tubular maximum reabsorption of phosphate per unit glomerular filtration rate (TmP/GFR) and a high circulating concentration of FGF23. Conventional therapy with alfacalcidol and oral phosphate slightly improved her serum phosphate concentration and back pain, but she experienced a hip fracture, causing her to become wheelchair-dependent. Burosumab was initiated 8 weeks after the hip fracture, which increased her serum phosphate concentration and TmP/GFR. Her mobility gradually improved, such that she could walk without a cane after 16 weeks of treatment. Her lumbar bone mineral density increased after 48 weeks. Hepatic encephalopathy developed once before the initiation of treatment and twice after the initiation of the therapy, but her liver function was preserved. This is the first study to report the efficacy and safety of burosumab treatment for FGF23-related hypophosphatemic osteomalacia with decompensated liver cirrhosis.


Assuntos
Raquitismo Hipofosfatêmico Familiar , Encefalopatia Hepática , Fraturas do Quadril , Hipofosfatemia , Osteomalacia , Humanos , Feminino , Idoso , Fator de Crescimento de Fibroblastos 23 , Osteomalacia/induzido quimicamente , Osteomalacia/tratamento farmacológico , Hipofosfatemia/induzido quimicamente , Hipofosfatemia/tratamento farmacológico , Raquitismo Hipofosfatêmico Familiar/metabolismo , Fatores de Crescimento de Fibroblastos , Fosfatos , Cirrose Hepática/complicações , Cirrose Hepática/tratamento farmacológico
5.
Bone ; 166: 116598, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36341949

RESUMO

Cutaneous skeletal hypophosphatemia syndrome (CSHS) is an ultra-rare mosaic disorder manifesting as skeletal dysplasia and FGF23-mediated hypophosphatemia, with some experiencing extra-osseous/extra-cutaneous manifestations, including both benign and malignant neoplasms. Like other disorders of FGF23-mediated hypophosphatemia including X-linked hypophosphatemia (XLH) and tumor-induced osteomalacia (TIO), patients with CSHS have low serum phosphorus and active 1,25-dihydroxyvitamin D levels. Current treatment options for patients with CSHS include multiple daily doses of oral phosphorus and one or more daily doses of active vitamin D analog to correct the deficits. Recently, the fully human monoclonal antibody against FGF23 burosumab received US approval for the treatment of XLH and TIO, two rare diseases characterized by FGF23-mediated hypophosphatemia leading to rickets and osteomalacia. Given the similarities between the pathobiologies of these disorders and CSHS, we investigated the impact of burosumab on two patients, one pediatric and one adult, with CSHS who participated in separate, but similarly designed trials. In both the pediatric and adult patients, burosumab therapy was well-tolerated and contributed to clinically meaningful improvements in disease outcomes including normalization of phosphorus metabolism and markers of bone health, and improvements in skeletal abnormalities, fractures, and physical function. Reported adverse events were minimal, with only mild injection site reactions attributed to burosumab therapy. Together, these findings suggest that burosumab therapy is a promising therapeutic option for patients with CSHS.


Assuntos
Anticorpos Monoclonais Humanizados , Hipofosfatemia , Adulto , Criança , Humanos , Raquitismo Hipofosfatêmico Familiar/complicações , Raquitismo Hipofosfatêmico Familiar/tratamento farmacológico , Raquitismo Hipofosfatêmico Familiar/metabolismo , Fatores de Crescimento de Fibroblastos/metabolismo , Hipofosfatemia/tratamento farmacológico , Osteomalacia/tratamento farmacológico , Fósforo , Anticorpos Monoclonais Humanizados/uso terapêutico
6.
Genes (Basel) ; 13(12)2022 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-36553684

RESUMO

X-linked hypophosphatemia (XLH) is the most common hereditary form of rickets and deficiency of renal tubular phosphate transport in humans. XLH is caused by the inactivation of mutations within the phosphate-regulating endopeptidase homolog X-linked (PHEX) gene and follows an X-dominant transmission. It has an estimated frequency of 1 case per 20,000, and over 300 distinct pathogenic variations have been reported that result in an excess of fibroblast growth factor 23 (FGF23) in the serum. Increased levels of FGF23 lead to renal phosphate loss, decreased serum 1,25-dihydroxyvitamin D, and increased metabolism of 1,25-dihydoxyvitamin D, resulting in hypophosphatemia. Major clinical manifestations include rickets, bone deformities, and growth retardation that develop during childhood, and osteomalacia-related fractures or pseudo-fractures, degenerative osteoarthritis, enthesopathy, dental anomalies, and hearing loss during adulthood, which can affect quality of life. In addition, fatigue is also a common symptom in patients with XLH, who experience decreased motion, muscle weakness, and pain, contributing to altered quality of life. The clinical and biomedical characteristics of XLH are extensively defined in bone tissue since skeletal deformations and mineralization defects are the most evident effects of high FGF23 and low serum phosphate levels. However, despite the muscular symptoms that XLH causes, very few reports are available on the effects of FGF23 and phosphate in muscle tissue. Given the close relationship between bones and skeletal muscles, studying the effects of FGF23 and phosphate on muscle could provide additional opportunities to understand the interactions between these two important compartments of the body. By describing the current literature on XLH and skeletal muscle dysfunctions, the purpose of this review is to highlight future areas of research that could contribute to a better understanding of XLH muscular disability and its management.


Assuntos
Raquitismo Hipofosfatêmico Familiar , Humanos , Adulto , Raquitismo Hipofosfatêmico Familiar/genética , Raquitismo Hipofosfatêmico Familiar/metabolismo , Qualidade de Vida , Fosfatos , Músculos/metabolismo
7.
Front Immunol ; 13: 1038960, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36405761

RESUMO

Tuberculosis (TB) presents a serious health problem with approximately a quarter of the world's population infected with Mycobacterium tuberculosis (M. tuberculosis) in an asymptomatic latent state of which 5-10% develops active TB at some point in their lives. The antimicrobial protein cathelicidin has broad antimicrobial activity towards viruses and bacteria including M. tuberculosis. Vitamin D increases the expression of cathelicidin in many cell types including macrophages, and it has been suggested that the vitamin D-mediated antimicrobial activity against M. tuberculosis is dependent on the induction of cathelicidin. However, unraveling the immunoregulatory effects of vitamin D in humans is hampered by the lack of suitable experimental models. We have previously described a family in which members suffer from hereditary vitamin D-resistant rickets (HVDRR). The family carry a mutation in the DNA-binding domain of the vitamin D receptor (VDR). This mutation leads to a non-functional VDR, meaning that vitamin D cannot exert its effect in family members homozygous for the mutation. Studies of HVDRR patients open unique possibilities to gain insight in the immunoregulatory roles of vitamin D in humans. Here we describe the impaired ability of macrophages to produce cathelicidin in a HVDRR patient, who in her adolescence suffered from extrapulmonary TB. The present case is a rare experiment of nature, which illustrates the importance of vitamin D in the pathophysiology of combating M. tuberculosis.


Assuntos
Raquitismo Hipofosfatêmico Familiar , Mycobacterium tuberculosis , Tuberculose dos Linfonodos , Humanos , Adolescente , Feminino , Receptores de Calcitriol/genética , Receptores de Calcitriol/metabolismo , Mycobacterium tuberculosis/metabolismo , Macrófagos/metabolismo , Vitamina D/farmacologia , Vitamina D/metabolismo , Vitaminas/metabolismo , Raquitismo Hipofosfatêmico Familiar/metabolismo , Catelicidinas
8.
Arch Endocrinol Metab ; 66(5): 658-665, 2022 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-36382755

RESUMO

Phosphorus is one of the most abundant minerals in the human body; it is required to maintain bone integrity and mineralization, in addition to other biological processes. Phosphorus is regulated by parathyroid hormone, 1,25-dihydroxyvitamin D3 [1,25(OH)2D3], and fibroblast growth factor 23 (FGF-23) in a complex set of processes that occur in the gut, skeleton, and kidneys. Different molecular mechanisms - overproduction of FGF-23 by tumors responsible for oncogenic osteomalacia, generation of an FGF-23 mutant that is resistant to cleavage by enzymes, and impaired FGF-23 degradation due to a reduction in or loss of the PHEX gene - can lead to FGF-23-stimulating activity and the consequent waste of urinary phosphate and low levels of 1,25(OH)2D3. Conventional treatment consists of multiple daily doses of oral phosphate salts and vitamin D analogs, which may improve radiographic rickets but do not normalize growth. Complications of the conventional long-term treatment consist of hypercalcemia, hypercalciuria, nephrolithiasis, nephrocalcinosis, impaired renal function, and potentially chronic kidney disease. Recently, burosumab, an antibody against FGF-23, was approved as a novel therapy for children and adults with X-linked hypophosphatemia and patients with tumor-induced osteomalacia. Burosumab showed good performance in different trials in children and adults. It increased and sustained the serum phosphorus levels, decreased the rickets severity and pain scores, and improved mineralization. It offers a new perspective on the treatment of chronic and disabling diseases.


Assuntos
Raquitismo Hipofosfatêmico Familiar , Osteomalacia , Criança , Adulto , Humanos , Raquitismo Hipofosfatêmico Familiar/tratamento farmacológico , Raquitismo Hipofosfatêmico Familiar/metabolismo , Osteomalacia/tratamento farmacológico , Fatores de Crescimento de Fibroblastos , Fósforo/metabolismo , Fósforo/uso terapêutico , Fosfatos
9.
Endocr J ; 69(8): 881-896, 2022 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-35831119

RESUMO

Inorganic phosphate (Pi) in the mammalian body is balanced by its influx and efflux through the intestines, kidneys, bones, and soft tissues, at which several sodium/Pi co-transporters mediate its active transport. Pi homeostasis is achieved through the complex counter-regulatory feedback balance between fibroblast growth factor 23 (FGF23), 1,25-dihydroxyvitamin D (1,25(OH)2D), and parathyroid hormone. FGF23, which is mainly produced by osteocytes in bone, plays a central role in Pi homeostasis and exerts its effects by binding to the FGF receptor (FGFR) and αKlotho in distant target organs. In the kidneys, the main target, FGF23 promotes the excretion of Pi and suppresses the production of 1,25(OH)2D. Deficient and excess FGF23 result in hyperphosphatemia and hypophosphatemia, respectively. FGF23-related hypophosphatemic rickets/osteomalacia include tumor-induced osteomalacia and various genetic diseases, such as X-linked hypophosphatemic rickets. Coverage by the national health insurance system in Japan for the measurement of FGF23 and the approval of burosumab, an FGF23-neutralizing antibody, have had a significant impact on the diagnosis and treatment of FGF23-related hypophosphatemic rickets/osteomalacia. Some of the molecules responsible for genetic hypophosphatemic rickets/osteomalacia are highly expressed in osteocytes and function as local regulators of FGF23 production. A number of systemic factors also regulate FGF23 levels. Although the mechanisms responsible for Pi sensing in mammals have not yet been elucidated in detail, recent studies have suggested the involvement of FGFR1. The further clarification of the mechanisms by which osteocytes detect Pi levels and regulate FGF23 production will lead to the development of better strategies to treat hyperphosphatemic and hypophosphatemic conditions.


Assuntos
Raquitismo Hipofosfatêmico Familiar , Hipofosfatemia , Osteomalacia , Fosfatos , Raquitismo Hipofosfatêmico , Animais , Raquitismo Hipofosfatêmico Familiar/etiologia , Raquitismo Hipofosfatêmico Familiar/metabolismo , Fatores de Crescimento de Fibroblastos , Homeostase , Humanos , Hipofosfatemia/etiologia , Hipofosfatemia/metabolismo , Mamíferos , Osteomalacia/etiologia , Osteomalacia/metabolismo , Fosfatos/metabolismo , Raquitismo Hipofosfatêmico/etiologia , Raquitismo Hipofosfatêmico/metabolismo
10.
Nat Rev Endocrinol ; 18(6): 366-384, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35484227

RESUMO

X-linked hypophosphataemia (XLH) is the most frequent cause of hypophosphataemia-associated rickets of genetic origin and is associated with high levels of the phosphaturic hormone fibroblast growth factor 23 (FGF23). In addition to rickets and osteomalacia, patients with XLH have a heavy disease burden with enthesopathies, osteoarthritis, pseudofractures and dental complications, all of which contribute to reduced quality of life. This Consensus Statement presents the outcomes of a working group of the European Society for Clinical and Economic Aspects of Osteoporosis, Osteoarthritis and Musculoskeletal Diseases, and provides robust clinical evidence on management in XLH, with an emphasis on patients' experiences and needs. During growth, conventional treatment with phosphate supplements and active vitamin D metabolites (such as calcitriol) improves growth, ameliorates leg deformities and dental manifestations, and reduces pain. The continuation of conventional treatment in symptom-free adults is still debated. A novel therapeutic approach is the monoclonal anti-FGF23 antibody burosumab. Although promising, further studies are required to clarify its long-term efficacy, particularly in adults. Given the diversity of symptoms and complications, an interdisciplinary approach to management is of paramount importance. The focus of treatment should be not only on the physical manifestations and challenges associated with XLH and other FGF23-mediated hypophosphataemia syndromes, but also on the major psychological and social impact of the disease.


Assuntos
Raquitismo Hipofosfatêmico Familiar , Fator de Crescimento de Fibroblastos 23 , Osteoartrite , Síndrome de Emaciação , Adulto , Animais , Raquitismo Hipofosfatêmico Familiar/diagnóstico , Raquitismo Hipofosfatêmico Familiar/tratamento farmacológico , Raquitismo Hipofosfatêmico Familiar/genética , Raquitismo Hipofosfatêmico Familiar/metabolismo , Fator de Crescimento de Fibroblastos 23/metabolismo , Humanos , Osteoartrite/diagnóstico , Osteoartrite/tratamento farmacológico , Osteoartrite/genética , Osteoartrite/metabolismo , Qualidade de Vida , Síndrome de Emaciação/diagnóstico , Síndrome de Emaciação/tratamento farmacológico , Síndrome de Emaciação/genética , Síndrome de Emaciação/metabolismo
11.
J Struct Biol ; 214(1): 107823, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34915130

RESUMO

We review here the Stenciling Principle for extracellular matrix mineralization that describes a double-negative process (inhibition of inhibitors) that promotes mineralization in bone and other mineralized tissues, whereas the default condition of inhibition alone prevents mineralization elsewhere in soft connective tissues. The stenciling principle acts across multiple levels from the macroscale (skeleton/dentition vs soft connective tissues), to the microscale (for example, entheses, and the tooth attachment complex where the soft periodontal ligament is situated between mineralized tooth cementum and mineralized alveolar bone), and to the mesoscale (mineral tessellation). It relates to both small-molecule (e.g. pyrophosphate) and protein (e.g. osteopontin) inhibitors of mineralization, and promoters (enzymes, e.g. TNAP, PHEX) that degrade the inhibitors to permit and regulate mineralization. In this process, an organizational motif for bone mineral arises that we call crossfibrillar mineral tessellation where mineral formations - called tesselles - geometrically approximate prolate ellipsoids and traverse multiple collagen fibrils (laterally). Tesselle growth is directed by the structural anisotropy of collagen, being spatially restrained in the shorter transverse tesselle dimensions (averaging 1.6 × 0.8 × 0.8 µm, aspect ratio 2, length range 1.5-2.5 µm). Temporo-spatially, the tesselles abut in 3D (close ellipsoid packing) to fill the volume of lamellar bone extracellular matrix. Poorly mineralized interfacial gaps between adjacent tesselles remain discernable even in mature lamellar bone. Tessellation of a same, small basic unit to form larger structural assemblies results in numerous 3D interfaces, allows dissipation of critical stresses, and enables fail-safe cyclic deformations. Incomplete tessellation in osteomalacia/odontomalacia may explain why soft osteomalacic bones buckle and deform under loading.


Assuntos
Calcinose , Raquitismo Hipofosfatêmico Familiar , Calcificação Fisiológica/fisiologia , Calcinose/metabolismo , Colágeno/metabolismo , Matriz Extracelular/metabolismo , Raquitismo Hipofosfatêmico Familiar/metabolismo , Feminino , Humanos , Masculino , Minerais/metabolismo
12.
J Clin Endocrinol Metab ; 107(1): e361-e371, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34363479

RESUMO

CONTEXT: Sclerostin inhibits Wnt-ß-catenin signaling, regulating bone formation. Circulating sclerostin was reported to be elevated in X-linked hypophosphatemia (XLH) patients, and sclerostin antibody (Scl-Ab) increased bone mass and normalized circulating phosphate in Hyp mice. However, circulating sclerostin levels in patients with acquired hypophosphatemia due to tumor-induced osteomalacia (TIO) are rarely reported. OBJECTIVE: This study was designed to evaluate serum sclerostin levels in TIO patients compared with age- and sex-matched healthy controls and XLH patients to analyze correlations with bone mineral density (BMD) and laboratory parameters. METHODS: This cross-sectional study determined serum sclerostin levels in 190 individuals, comprising 83 adult TIO patients, 83 adult healthy controls and 24 adult XLH patients. RESULTS: TIO patients (43 male, 40 female) aged 44.3 ±â€…8.7 (mean ± SD) years had lower levels of circulating sclerostin than controls (94.2 ±â€…45.8 vs 108.4 ±â€…42.3 pg/mL, P = 0.01), adjusted for age, gender, BMI, and diabetes rate. Sclerostin levels were positively associated with age (r = 0.238, P = 0.030). Male patients had higher sclerostin than female patients (104.7 ±â€…47.3 vs 83.0 ±â€…41.8 pg/mL, P = 0.014). Sclerostin levels were positively associated with L1-4 BMD (r = 0.255, P = 0.028), femoral neck BMD (r = 0.242, P = 0.039), and serum calcium (r = 0.231, P = 0.043). Comparison of sclerostin levels in TIO patients (n = 24, age 35.9 ±â€…7.3 years) vs XLH patients vs healthy controls revealed significant differences (respectively, 68.4 ±â€…31.3, 132.0 ±â€…68.8, and 98.6 ±â€…41.1 pg/mL, P < 0.001). CONCLUSION: Circulating sclerostin was decreased in TIO patients but increased in XLH patients, possibly due to histological abnormality and bone mass.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/sangue , Raquitismo Hipofosfatêmico Familiar/sangue , Osteomalacia/sangue , Síndromes Paraneoplásicas/sangue , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Adulto , Densidade Óssea , Cálcio/sangue , Cálcio/metabolismo , Estudos de Casos e Controles , Estudos Transversais , Raquitismo Hipofosfatêmico Familiar/metabolismo , Feminino , Voluntários Saudáveis , Humanos , Masculino , Pessoa de Meia-Idade , Osteomalacia/metabolismo , Síndromes Paraneoplásicas/metabolismo , Via de Sinalização Wnt , Adulto Jovem
13.
Int J Biol Sci ; 17(10): 2430-2448, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34326685

RESUMO

Bone-forming osteoblasts have been a cornerstone of bone biology for more than a century. Most research toward bone biology and bone diseases center on osteoblasts. Overlooked are the 90% of bone cells, called osteocytes. This study aims to test the hypothesis that osteocytes but not osteoblasts directly build mineralized bone structures, and that defects in osteocytes lead to the onset of hypophosphatemia rickets. The hypothesis was tested by developing and modifying multiple imaging techniques, including both in vivo and in vitro models plus two types of hypophosphatemia rickets models (Dmp1-null and Hyp, Phex mutation mice), and Dmp1-Cre induced high level of ß-catenin models. Our key findings were that osteocytes (not osteoblasts) build bone similar to the construction of a high-rise building, with a wire mesh frame (i.e., osteocyte dendrites) and cement (mineral matrices secreted from osteocytes), which is a lengthy and slow process whose mineralization direction is from the inside toward the outside. When osteoblasts fail to differentiate into osteocytes but remain highly active in Dmp-1-null or Hyp mice, aberrant and poor bone mineralization occurs, caused by a sharp increase in Wnt-ß-catenin signaling. Further, the constitutive expression of ß-catenin in osteocytes recaptures a similar osteomalacia phenotype as shown in Dmp1 null or Hyp mice. Thus, we conclude that osteocytes directly build bone, and osteoblasts with a short life span serve as a precursor to osteocytes, which challenges the existing dogma.


Assuntos
Calcificação Fisiológica/fisiologia , Raquitismo Hipofosfatêmico Familiar/metabolismo , Osteoblastos/metabolismo , Osteócitos/metabolismo , beta Catenina/metabolismo , Fatores Etários , Animais , Densidade Óssea , Osso e Ossos/metabolismo , Modelos Animais de Doenças , Proteínas da Matriz Extracelular/genética , Raquitismo Hipofosfatêmico Familiar/sangue , Raquitismo Hipofosfatêmico Familiar/patologia , Fêmur/transplante , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Osteócitos/ultraestrutura , Endopeptidase Neutra Reguladora de Fosfato PHEX/genética , Tíbia/transplante , Via de Sinalização Wnt
14.
Front Endocrinol (Lausanne) ; 12: 588096, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33716961

RESUMO

Fibroblast growth factor 23 (FGF23) has been described as an important regulator of mineral homeostasis, but has lately also been linked to iron deficiency, inflammation, and erythropoiesis. FGF23 is essential for the maintenance of phosphate homeostasis in the body and activating mutations in the gene itself or inactivating mutations in its upstream regulators can result in severe chronic hypophosphatemia, where an unbalanced mineral homeostasis often leads to rickets in children and osteomalacia in adults. FGF23 can be regulated by changes in transcriptional activity or by changes at the post-translational level. The balance between O-glycosylation and phosphorylation is an important determinant of how much active intact or inactive cleaved FGF23 will be released in the circulation. In the past years, it has become evident that iron deficiency and inflammation regulate FGF23 in a way that is not associated with its classical role in mineral metabolism. These conditions will not only result in an upregulation of FGF23 transcription, but also in increased cleavage, leaving the levels of active intact FGF23 unchanged. The exact mechanisms behind and function of this process are still unclear. However, a deeper understanding of FGF23 regulation in both the classical and non-classical way is important to develop better treatment options for diseases associated with disturbed FGF23 biology. In this review, we describe how the currently known upstream regulators of FGF23 change FGF23 transcription and affect its post-translational modifications at the molecular level.


Assuntos
Fator de Crescimento de Fibroblastos 23/genética , Fator de Crescimento de Fibroblastos 23/metabolismo , Adulto , Criança , Raquitismo Hipofosfatêmico Familiar/epidemiologia , Raquitismo Hipofosfatêmico Familiar/genética , Raquitismo Hipofosfatêmico Familiar/metabolismo , Regulação da Expressão Gênica/genética , Humanos , Hipofosfatemia/epidemiologia , Hipofosfatemia/genética , Hipofosfatemia/metabolismo , Osteomalacia/epidemiologia , Osteomalacia/genética , Osteomalacia/metabolismo , Processamento de Proteína Pós-Traducional/genética
15.
Mol Pharmacol ; 101(6): 408-421, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-35339985

RESUMO

Excess fibroblast growth factor (FGF) 23 causes hereditary hypophosphatemic rickets, such as X-linked hypophosphatemia (XLH) and tumor-induced osteomalacia (TIO). A small molecule that specifically binds to FGF23 to prevent activation of the fibroblast growth factor receptor/α-Klotho complex has potential advantages over the currently approved systemically administered FGF23 blocking antibody. Using structure-based drug design, we previously identified ZINC13407541 (N-[[2-(2-phenylethenyl)cyclopenten-1-yl]methylidene]hydroxylamine) as a small molecule antagonist for FGF23. Additional structure-activity studies developed a series of ZINC13407541 analogs with enhanced drug-like properties. In this study, we tested in a preclinical Hyp mouse homolog of XLH a direct connect analog [(E)-2-(4-(tert-butyl)phenyl)cyclopent-1-ene-1-carbaldehyde oxime] (8n), which exhibited the greatest stability in microsomal assays, and [(E)-2-((E)-4-methylstyryl)benzaldehyde oxime] (13a), which exhibited increased in vitro potency. Using cryo-electron microscopy structure and computational docking, we identified a key binding residue (Q156) of the FGF23 antagonists, ZINC13407541, and its analogs (8n and 13a) in the N-terminal domain of FGF23 protein. Site-directed mutagenesis and bimolecular fluorescence complementation-fluorescence resonance energy transfer assay confirmed the binding site of these three antagonists. We found that pharmacological inhibition of FGF23 with either of these compounds blocked FGF23 signaling and increased serum phosphate and 1,25-dihydroxyvitamin D [1,25(OH)2D] concentrations in Hyp mice. Long-term parenteral treatment with 8n or 13a also enhanced linear bone growth, increased mineralization of bone, and narrowed the growth plate in Hyp mice. The more potent 13a compound had greater therapeutic effects in Hyp mice. Further optimization of these FGF23 inhibitors may lead to versatile drugs to treat excess FGF23-mediated disorders. SIGNIFICANCE STATEMENT: This study used structure-based drug design and medicinal chemistry approaches to identify and optimize small molecules with different stability and potency, which antagonize excessive actions of fibroblast growth factor 23 (FGF23) in hereditary hypophosphatemic rickets. The findings confirmed that these antagonists bind to the N-terminus of FGF23 to inhibit its binding to and activation of the fibroblast growth factor receptors/α-Klotho signaling complex. Administration of these lead compounds improved phosphate homeostasis and abnormal skeletal phenotypes in a preclinical Hyp mouse model.


Assuntos
Raquitismo Hipofosfatêmico Familiar , Fator de Crescimento de Fibroblastos 23 , Fosfatos , Animais , Microscopia Crioeletrônica , Raquitismo Hipofosfatêmico Familiar/tratamento farmacológico , Raquitismo Hipofosfatêmico Familiar/metabolismo , Fator de Crescimento de Fibroblastos 23/antagonistas & inibidores , Camundongos , Oximas , Fosfatos/sangue , Receptores de Fatores de Crescimento de Fibroblastos
16.
J Struct Biol ; 212(2): 107603, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32805412

RESUMO

In bone, structural components such as mineral extend across length scales to provide essential biomechanical functions. Using X-ray micro-computed tomography (µCT), and focused ion beam scanning electron microscopy (FIB-SEM) in serial-surface-view mode, together with 3D reconstruction, entire mouse skeletons and small bone tissue volumes were examined in normal wildtype (WT) and mutant Hyp mice (an animal model for X-linked hypophosphatemia/XLH, a disease with severe hypomineralization of bone). 3D thickness maps of the skeletons showed pronounced irregular thickening and abnormalities of many skeletal elements in Hyp mice compared to WT mice. At the micro- and nanoscale, near the mineralization front in WT tibial bone volumes, mineralization foci grow as expanding prolate ellipsoids (tesselles) to abut and pack against one another to form a congruent and contiguous mineral tessellation pattern within collagen bundles that contributes to lamellar periodicity. In the osteomalacic Hyp mouse bone, mineralization foci form and begin initial ellipsoid growth within normally organized collagen assembly, but their growth trajectory aborts. Mineralization-inhibiting events in XLH/Hyp (low circulating serum phosphate, and increased matrix osteopontin) combine to result in decreased mineral ellipsoid tessellation - a defective mineral-packing organization that leaves discrete mineral volumes isolated in the extracellular matrix such that ellipsoid packing/tessellation is not achieved. Such a severely altered mineralization pattern invariably leads to abnormal compliance, other aberrant biomechanical properties, and altered remodeling of bone, all of which indubitably lead to macroscopic bone deformities and anomalous mechanical performance in XLH/Hyp. Also, we show the relationship of osteocytes and their cell processes to this mineralization pattern.


Assuntos
Calcificação Fisiológica/fisiologia , Raquitismo Hipofosfatêmico Familiar/metabolismo , Minerais/metabolismo , Tíbia/metabolismo , Tíbia/fisiologia , Animais , Modelos Animais de Doenças , Raquitismo Hipofosfatêmico Familiar/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microscopia/métodos , Osteócitos/metabolismo , Osteócitos/fisiologia , Osteopontina/metabolismo , Microtomografia por Raio-X/métodos
17.
Curr Osteoporos Rep ; 18(3): 232-241, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32172442

RESUMO

PURPOSE OF REVIEW: This review summarizes current understanding of generalized arterial calcification of infancy (GACI), emphasizing pathophysiology, clinical presentation, and approaches and controversies in management. RECENT FINDINGS: Identification of causative ENPP1 mutations revealed that GACI arises from deficiencies in inorganic pyrophosphate (leading to calcifications) and adenosine monophosphate (leading to intimal proliferation). Identification of genotypic and phenotypic overlap with pseudoxanthoma elasticum and autosomal recessive hypophosphatemic rickets further advanced understanding of GACI as a complex, multisystemic disease. Clinical data is limited to small, retrospective samples; it is therefore unknown whether commonly used medications, such as bisphosphonates and hypophosphatemia treatment, are therapeutic or potentially harmful. ENPP1-Fc replacement represents a promising approach warranting further study. Knowledge gaps in natural history place clinicians at high risk of assigning causality to interventions that are correlated with changes in clinical status. There is thus a critical need for improved natural history studies to develop and test targeted therapies.


Assuntos
Calcificação Vascular/metabolismo , Calcificação Vascular/fisiopatologia , Monofosfato de Adenosina/metabolismo , Conservadores da Densidade Óssea/uso terapêutico , Calcinose/genética , Calcinose/metabolismo , Calcinose/fisiopatologia , Calcinose/terapia , Fármacos Cardiovasculares/uso terapêutico , Quelantes/uso terapêutico , Difosfatos/metabolismo , Difosfonatos/uso terapêutico , Raquitismo Hipofosfatêmico Familiar/genética , Raquitismo Hipofosfatêmico Familiar/metabolismo , Raquitismo Hipofosfatêmico Familiar/fisiopatologia , Genótipo , Perda Auditiva/fisiopatologia , Humanos , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Fenótipo , Diester Fosfórico Hidrolases/genética , Pseudoxantoma Elástico/genética , Pseudoxantoma Elástico/metabolismo , Pseudoxantoma Elástico/fisiopatologia , Pirofosfatases/genética , Tiossulfatos/uso terapêutico , Doenças Dentárias/fisiopatologia , Calcificação Vascular/genética , Calcificação Vascular/terapia , Vitamina D/uso terapêutico
18.
J Clin Endocrinol Metab ; 105(6)2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-31821448

RESUMO

CONTEXT: Hypophosphatemic rickets (HR) is a group of rare hereditary renal phosphate wasting disorders caused by mutations in PHEX, FGF23, DMP1, ENPP1, CLCN5, SLC9A3R1, SLC34A1, or SLC34A3. OBJECTIVE: A large kindred with 5 HR patients was recruited with dominant inheritance. The study was undertaken to investigate underlying genetic defects in HR patients. DESIGN: Patients and their family members were initially analyzed for PHEX and FGF23 mutations using polymerase chain reaction sequencing and copy number analysis. Exome sequencing was subsequently performed to identify novel candidate genes. RESULTS: PHEX and FGF23 mutations were not detected in the patients. No copy number variation was observed in the genome using CytoScan HD array analysis. Mutations in DMP1, ENPP1, CLCN5, SLC9A3R1, SLC34A1, or SLC34A3 were also not found by exome sequencing. A novel c.979-96 T>A mutation in the SGK3 gene was found to be strictly segregated in a heterozygous pattern in patients and was not present in normal family members. The mutation is located 1 bp downstream of a highly conserved adenosine branch point, resulted in exon 13 skipping and in-frame deletion of 29 amino acids, which is part of the protein kinase domain and contains a Thr-320 phosphorylation site that is required for its activation. Protein tertiary structure modelling showed significant structural change in the protein kinase domain following the deletion. CONCLUSIONS: The c.979-96 T>A splice mutation in the SGK3 gene causes exon 13 skipping and deletion of 29 amino acids in the protein kinase domain. The SGK3 mutation may cause autosomal dominant HR.


Assuntos
Raquitismo Hipofosfatêmico Familiar/etiologia , Mutação , Fosfatos/metabolismo , Proteínas Serina-Treonina Quinases/genética , Raquitismo/etiologia , Adulto , Biomarcadores/análise , Criança , Pré-Escolar , Análise Mutacional de DNA , Raquitismo Hipofosfatêmico Familiar/metabolismo , Raquitismo Hipofosfatêmico Familiar/patologia , Feminino , Fator de Crescimento de Fibroblastos 23 , Humanos , Rim/metabolismo , Rim/patologia , Masculino , Pessoa de Meia-Idade , Linhagem , Prognóstico , Raquitismo/metabolismo , Raquitismo/patologia
19.
Nat Rev Nephrol ; 16(1): 7-19, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31519999

RESUMO

Fibroblast growth factor 23 (FGF23) was initially characterized as an important regulator of phosphate and calcium homeostasis. New research advances demonstrate that FGF23 is also linked to iron economy, inflammation and erythropoiesis. These advances have been fuelled, in part, by the serendipitous development of two distinct FGF23 assays that can substitute for invasive bone biopsies to infer the activity of the three main steps of FGF23 regulation in bone: transcription, post-translational modification and peptide cleavage. This 'liquid bone biopsy for FGF23 dynamics' enables large-scale longitudinal studies of FGF23 regulation that would otherwise be impossible in humans. The balance between FGF23 production, post-translational modification and cleavage is maintained or perturbed in different hereditary monogenic conditions and in acquired conditions that mimic these genetic disorders, including iron deficiency, inflammation, treatment with ferric carboxymaltose and chronic kidney disease. Looking ahead, a deeper understanding of the relationships between FGF23 regulation, iron homeostasis and erythropoiesis can be leveraged to devise novel therapeutic targets for treatment of anaemia and states of FGF23 excess, including chronic kidney disease.


Assuntos
Anemia Ferropriva/genética , Eritropoese/genética , Raquitismo Hipofosfatêmico Familiar/genética , Fatores de Crescimento de Fibroblastos/genética , Inflamação/genética , Ferro/metabolismo , Fosfatos/metabolismo , Insuficiência Renal Crônica/genética , Anemia Ferropriva/tratamento farmacológico , Anemia Ferropriva/metabolismo , Osso e Ossos/metabolismo , Cálcio , Eritropoese/fisiologia , Raquitismo Hipofosfatêmico Familiar/metabolismo , Compostos Férricos/efeitos adversos , Fator de Crescimento de Fibroblastos 23 , Fatores de Crescimento de Fibroblastos/metabolismo , Fatores de Crescimento de Fibroblastos/fisiologia , Humanos , Hipofosfatemia/induzido quimicamente , Inflamação/metabolismo , Maltose/efeitos adversos , Maltose/análogos & derivados , Processamento de Proteína Pós-Traducional , RNA Mensageiro/metabolismo , Insuficiência Renal Crônica/metabolismo , Transcrição Gênica
20.
J Bone Miner Res ; 33(12): 2214-2229, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30001467

RESUMO

Phosphorylation of bone matrix proteins is of fundamental importance to all vertebrates including humans. However, it is currently unknown whether increase or decline of total protein phosphorylation levels, particularly in hypophosphatemia-related osteoporosis, osteomalacia, and rickets, contribute to bone fracture. To address this gap, we combined biochemical measurements with mechanical evaluation of bone to discern fracture characteristics associated with age-related development of skeletal fragility in relation to total phosphorylation levels of bone matrix proteins and one of the key representatives of bone matrix phosphoproteins, osteopontin (OPN). Here for the first time, we report that as people age the total phosphorylation level declines by approximately 20% for bone matrix proteins and approximately 30% for OPN in the ninth decade of human life. Moreover, our results suggest that the decline of total protein phosphorylation of extracellular matrix (ECM) contributes to bone fragility, but less pronouncedly than glycation. We theorize that the separation of two sources of OPN negative charges, acidic backbone amino acids and phosphorylation, would be nature's means of assuring that OPN functions in both energy dissipation and biomineralization. We propose that total phosphorylation decline could be an important contributor to the development of osteoporosis, increased fracture risk and skeletal fragility. Targeting the enzymes kinase FamC20 and bone alkaline phosphatase involved in the regulation of matrix proteins' phosphorylation could be a means for the development of suitable therapeutic treatments. © 2018 American Society for Bone and Mineral Research.


Assuntos
Matriz Óssea/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Adulto , Idoso de 80 Anos ou mais , Envelhecimento/metabolismo , Fenômenos Biomecânicos , Raquitismo Hipofosfatêmico Familiar/metabolismo , Raquitismo Hipofosfatêmico Familiar/patologia , Raquitismo Hipofosfatêmico Familiar/fisiopatologia , Feminino , Fraturas Ósseas/metabolismo , Fraturas Ósseas/patologia , Produtos Finais de Glicação Avançada/metabolismo , Humanos , Modelos Lineares , Masculino , Pessoa de Meia-Idade , Análise Multivariada , Fosforilação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA