Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 383
Filtrar
1.
Am J Hypertens ; 37(9): 726-733, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-38761040

RESUMO

BACKGROUND: Hypertension is a risk factor for atrial fibrillation (AF), and brain and muscle arnt-like protein 1 (Bmal1) regulate circadian blood pressure and is implicated in several fibrotic disorders. Our hypothesis that Bmal1 inhibits atrial fibrosis and susceptibility to AF in salt-sensitive hypertension (SSHT) and our study provides a new target for the pathogenesis of AF induced by hypertension. METHODS: The study involved 7-week-old male Dahl salt-sensitive that were fed either a high-salt diet (8% NaCl; DSH group) or a normal diet (0.3% NaCl; DSN group). An experimental model was used to measure systolic blood pressure (SBP), left atrial ejection fraction (LAEF), left atrial end-volume index (LAEVI), left atrial index (LAFI), AF inducibility, AF duration, and atrial fibrosis pathological examination and the expression of Baml1 and fibrosis-related proteins (TNF-α and α-SMA) in left atrial tissue. RESULTS: DSH increased TNF-α and α-SMA expression in atrial tissue, level of SBP and LAESVI, atrial fibrosis, AF induction rate, and AF duration, and decreased Bmal1 expression in atrial tissue, the circadian rhythm of hypertension, and level of LAEF and LAFI. Our results also showed that the degree of atrial fibrosis was negatively correlated with Bmal1 expression, but positively correlated with the expression of TNF-α and α-SMA. CONCLUSIONS: We demonstrated that a high-salt diet leads to circadian changes in hypertension due to a reduction of Bmal1 expression, which plays a crucial role in atrial fibrosis and increased susceptibility to AF in SSHT rats.


Assuntos
Fatores de Transcrição ARNTL , Fibrilação Atrial , Pressão Sanguínea , Modelos Animais de Doenças , Fibrose , Átrios do Coração , Hipertensão , Ratos Endogâmicos Dahl , Cloreto de Sódio na Dieta , Animais , Fatores de Transcrição ARNTL/metabolismo , Fatores de Transcrição ARNTL/genética , Fibrilação Atrial/metabolismo , Fibrilação Atrial/etiologia , Fibrilação Atrial/prevenção & controle , Fibrilação Atrial/fisiopatologia , Masculino , Cloreto de Sódio na Dieta/efeitos adversos , Hipertensão/metabolismo , Hipertensão/fisiopatologia , Átrios do Coração/metabolismo , Átrios do Coração/patologia , Átrios do Coração/fisiopatologia , Átrios do Coração/efeitos dos fármacos , Pressão Sanguínea/efeitos dos fármacos , Ratos , Fator de Necrose Tumoral alfa/metabolismo , Remodelamento Atrial/efeitos dos fármacos
2.
Kidney Int ; 104(4): 740-753, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37423509

RESUMO

This study tested if matrix metalloproteinase (MMP)-9 promoted microvascular pathology that initiates hypertensive (HT) kidney disease in salt-sensitive (SS) Dahl rats. SS rats lacking Mmp9 (Mmp9-/-) and littermate control SS rats were studied after one week on a normotensive 0.3% sodium chloride (Pre-HT SS and Pre-HT Mmp9-/-) or a hypertension-inducing diet containing 4.0% sodium chloride (HT SS and HT Mmp9-/-). Telemetry-monitored blood pressure of both the HT SS and HT Mmp9-/- rats increased and did not differ. Kidney microvessel transforming growth factor-beta 1 (Tgfb1) mRNA did not differ between Pre-HT SS and Pre-HT Mmp9-/- rats, but with hypertension and expression of Mmp9 and Tgfb1 increased in HT SS rats, along with phospho-Smad2 labeling of nuclei of vascular smooth muscle cells, and with peri-arteriolar fibronectin deposition. Loss of MMP-9 prevented hypertension-induced phenotypic transformation of microvascular smooth muscle cells and the expected increased microvascular expression of pro-inflammatory molecules. Loss of MMP-9 in vascular smooth muscle cells in vitro prevented cyclic strain-induced production of active TGF-ß1 and phospho-Smad2/3 stimulation. Afferent arteriolar autoregulation was impaired in HT SS rats but not in HT Mmp9-/- rats or the HT SS rats treated with doxycycline, an MMP inhibitor. HT SS but not HT Mmp9-/- rats showed decreased glomerular Wilms Tumor 1 protein-positive cells (a marker of podocytes) along with increased urinary podocin and nephrin mRNA excretion, all indicative of glomerular damage. Thus, our findings support an active role for MMP-9 in a hypertension-induced kidney microvascular remodeling process that promotes glomerular epithelial cell injury in SS rats.


Assuntos
Hipertensão Renal , Hipertensão , Ratos , Animais , Metaloproteinase 9 da Matriz/genética , Cloreto de Sódio , Ratos Endogâmicos Dahl , Rim , Hipertensão/complicações , Hipertensão/genética , Pressão Sanguínea , RNA Mensageiro , Cloreto de Sódio na Dieta
3.
Hypertension ; 80(11): 2265-2279, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37503660

RESUMO

Screening of compounds comprising 8-substituted guanine revealed that 8-aminoguanosine and 8-aminoguanine cause diuresis/natriuresis/glucosuria, yet decrease potassium excretion. Subsequent investigations demonstrated that 8-aminoguanosine's effects are mediated by its metabolite 8-aminoguanine. The mechanism by which 8-aminoguanine causes diuresis/natriuresis/glucosuria involves inhibition of PNPase (purine nucleoside phosphorylase), which increases renal interstitial inosine levels. Additional evidence suggests that inosine, via indirect or direct adenosine A2B receptor activation, increases renal medullary blood flow which enhances renal excretory function. Likely, 8-aminoguanine has pleiotropic actions that also alter renal excretory function. Indeed, the antikaliuretic effects of 8-aminoguanine are independent of PNPase inhibition. 8-Aminoguanine is an endogenous molecule; nitrosative stress leads to production of biomolecules containing 8-nitroguanine moieties. Degradation of these biomolecules releases 8-nitroguanosine and 8-nitro-2'-deoxyguanosine which are converted to 8-aminoguanine. Also, guanosine and guanine per se may contribute to 8-aminoguanine formation. 8-Aminoinosine, 8-aminohypoxanthine, and 8-aminoxanthine likewise induce diuresis/natriuresis/glucosuria, yet do not reduce potassium excretion. Thus, there are several pharmacologically active 8-aminopurines with nuanced effects on renal excretory function. Chronic treatment with 8-aminoguanine attenuates hypertension in deoxycorticosterone/salt rats, prevents strokes, and increases lifespan in Dahl salt-sensitive rats on a high salt diet and attenuates the metabolic syndrome in rats; 8-aminoguanosine retards progression of pulmonary hypertension in rats and anemia and organ damage in sickle cell mice. 8-Aminoguanine reverses age-associated lower urinary tract dysfunction and retinal degeneration. 8-Aminopurines represent a new class of agents (and potentially endogenous factors) that have beneficial effects on the cardiovascular system and kidneys and may turn back the clock in age-associated diseases.


Assuntos
Sistema Cardiovascular , Guanina , Ratos , Camundongos , Animais , Ratos Endogâmicos Dahl , Guanina/metabolismo , Guanina/farmacologia , Natriurese , Sistema Cardiovascular/metabolismo , Potássio , Inosina/farmacologia
4.
Anesthesiology ; 139(4): 476-491, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37351557

RESUMO

BACKGROUND: Chronic postsurgical pain is a poorly recognized outcome of surgery where patients experience pain long after healing from the surgical insult. Descending control of nociception, a phenomenon whereby application of a strong nociceptive stimulus to one part of the body of animals inhibits pain in remote body regions, offers one strategy to identify a propensity to develop chronic postsurgical pain-like behavior. Here, consomic rat panel was used to test the hypothesis that pain persistence is mechanistically linked to ineffective descending control of nociception. METHODS: Male and female Brown Norway, Dahl S, and eight consomic strains (SS-xBN) were used to determine the presence of chronic postsurgical pain-like behaviors by using paw-withdrawal threshold evaluation (von Frey method) in the area adjacent to a hind paw plantar incision. Descending control of nociception was assessed by measuring hind paw-withdrawal thresholds (Randall-Selitto method) after capsaicin (125 µg) injection into a forepaw. Consomic rats were developed by introgressing individual Brown Norway chromosomes on the Dahl S rat genetic background, as Dahl S rats lack preoperative descending control of nociception. RESULTS: Substitution of several chromosomes from the "pain-resistant" Brown Norway to the "pain-prone" Dahl S/Medical College of Wisconsin reduced mechanical nociceptive sensitivity and increased endogenous pain modulation capacity by differing degrees. Statistical modeling of these data revealed that descending control of nociception is a poor general predictor of the propensity to develop chronic postsurgical pain-like behavior (poor fit for model 1). However, a significant strain-by-descending control of nociception interaction was revealed (model 3, -2*log likelihood; 550.668, -2ll change; 18.093, P = 0.034) with SS-13BN and SS-15BN strains showing a negative descending control of nociception relationship with chronic postsurgical pain-like behavior. CONCLUSIONS: Descending control of nociception poorly predicted which rat strains developed chronic postsurgical pain-like behavior despite controlling for genetic, environmental, and sex differences. Two consomic strains that mimic clinical chronic postsurgical pain criteria and display a strong negative correlation with descending control of nociception were identified, offering novel candidates for future experiments exploring mechanisms that lead to chronic postsurgical pain.


Assuntos
Cromossomos , Nociceptividade , Ratos , Animais , Feminino , Masculino , Ratos Endogâmicos BN , Ratos Endogâmicos Dahl , Dor Pós-Operatória/genética
5.
Int J Mol Sci ; 24(12)2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37373209

RESUMO

Diet-induced models of chronic kidney disease (CKD) offer several advantages, including clinical relevance and animal welfare, compared with surgical models. Oxalate is a plant-based, terminal toxic metabolite that is eliminated by the kidneys through glomerular filtration and tubular secretion. An increased load of dietary oxalate leads to supersaturation, calcium oxalate crystal formation, renal tubular obstruction, and eventually CKD. Dahl-Salt-Sensitive (SS) rats are a common strain used to study hypertensive renal disease; however, the characterization of other diet-induced models on this background would allow for comparative studies of CKD within the same strain. In the present study, we hypothesized that SS rats on a low-salt, oxalate rich diet would have increased renal injury and serve as novel, clinically relevant and reproducible CKD rat models. Ten-week-old male SS rats were fed either 0.2% salt normal chow (SS-NC) or a 0.2% salt diet containing 0.67% sodium oxalate (SS-OX) for five weeks.Real-time PCR demonstrated an increased expression of inflammatory marker interleukin-6 (IL-6) (p < 0.0001) and fibrotic marker Timp-1 metalloproteinase (p < 0.0001) in the renal cortex of SS-OX rat kidneys compared with SS-NC. The immunohistochemistry of kidney tissue demonstrated an increase in CD-68 levels, a marker of macrophage infiltration in SS-OX rats (p < 0.001). In addition, SS-OX rats displayed increased 24 h urinary protein excretion (UPE) (p < 0.01) as well as significant elevations in plasma Cystatin C (p < 0.01). Furthermore, the oxalate diet induced hypertension (p < 0.05). A renin-angiotensin-aldosterone system (RAAS) profiling (via liquid chromatography-mass spectrometry; LC-MS) in the SS-OX plasma showed significant (p < 0.05) increases in multiple RAAS metabolites including angiotensin (1-5), angiotensin (1-7), and aldosterone. The oxalate diet induces significant renal inflammation, fibrosis, and renal dysfunction as well as RAAS activation and hypertension in SS rats compared with a normal chow diet. This study introduces a novel diet-induced model to study hypertension and CKD that is more clinically translatable and reproducible than the currently available models.


Assuntos
Hipertensão , Insuficiência Renal Crônica , Ratos , Animais , Ratos Endogâmicos Dahl , Oxalatos/metabolismo , Rim/metabolismo , Hipertensão/metabolismo , Cloreto de Sódio na Dieta/metabolismo , Cloreto de Sódio/metabolismo , Insuficiência Renal Crônica/metabolismo , Dieta/efeitos adversos , Pressão Sanguínea
6.
Am J Physiol Renal Physiol ; 325(2): F214-F223, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37318993

RESUMO

Infiltrating T cells in the kidney amplify salt-sensitive (SS) hypertension and renal damage, but the mechanisms are not known. Genetic deletion of T cells (SSCD247-/-) or of the p67phox subunit of NADPH oxidase 2 (NOX2; SSp67phox-/-) attenuates SS hypertension in the Dahl SS rat. We hypothesized that reactive oxygen species produced by NOX2 in T cells drive the SS phenotype and renal damage. T cells were reconstituted by adoptively transferring splenocytes (∼10 million) from the Dahl SS (SS→CD247) rat, the SSp67phox-/- rat (p67phox→CD247), or only PBS (PBS→CD247) into the SSCD247-/- rat on postnatal day 5. Animals were instrumented with radiotelemeters and studied at 8 wk of age. There were no detectable differences in mean arterial pressure (MAP) or albuminuria between groups when rats were maintained on a low-salt (0.4% NaCl) diet. After 21 days of high-salt diet (4.0% NaCl), MAP and albuminuria were significantly greater in SS→CD247 rats compared with p67phox→CD247 and PBS→CD247 rats. Interestingly, there was no difference between p67phox→CD247 and PBS→CD247 rats in albuminuria or MAP after 21 days. The lack of CD3+ cells in PBS→CD247 rats and the presence of CD3+ cells in rats that received the T cell transfer demonstrated the effectiveness of the adoptive transfer. No differences in the number of CD3+, CD4+, or CD8+ cells were observed in the kidneys of SS→CD247 and p67phox→CD247 rats. These results indicate that reactive oxygen species produced by NOX2 in T cells participates in the amplification of SS hypertension and renal damage.NEW & NOTEWORTHY Our current work used the adoptive transfer of T cells that lack functional NADPH oxidase 2 into a genetically T cell-deficient Dahl salt-sensitive (SS) rat model. The results demonstrated that reactive oxygen species produced by NADPH oxidase 2 in T cells participate in the amplification of SS hypertension and associated renal damage and identifies a potential mechanism that exacerbates the salt-sensitive phenotype.


Assuntos
Hipertensão , Cloreto de Sódio , Ratos , Animais , Albuminúria , NADPH Oxidase 2/genética , Espécies Reativas de Oxigênio , Linfócitos T , Ratos Endogâmicos Dahl , Rim , Hipertensão/genética , Cloreto de Sódio na Dieta , NADPH Oxidases/genética
7.
Hypertens Res ; 46(7): 1771-1781, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37173429

RESUMO

The efficacy of renal denervation in the treatment of resistant hypertension has been controversial, and new strategies for its therapy are urgently needed. We performed the celiac ganglia neurolysis (CGN) or sham surgery on both spontaneously hypertensive rat (SHR) and Dahl salt-sensitive rat models of hypertension. Following CGN surgery in both strains, systolic blood pressure, diastolic blood pressure and mean arterial pressure were all lower than the levels in the respective sham surgery rats, which were maintained until the end of the study, 18 weeks postoperatively in SHRs and 12 weeks postoperatively in Dahl rats. CGN therapy destroyed ganglion cell structure and significantly inhibited celiac ganglia nerve viability. Four and twelve weeks after CGN, the plasma renin, angiotensin II and aldosterone levels were markedly attenuated, and the nitric oxide content was significantly increased in the CGN group compared with the respective sham surgery rats. However, CGN did not result in statistical difference in malondialdehyde levels compared with sham surgery in both strains. The CGN has efficacy in reducing high blood pressure and may be an alternative for resistant hypertension. Minimally invasive endoscopic ultrasound-guided celiac ganglia neurolysis (EUS-CGN) and percutaneous CGN are safe and convenient treatment approaches. Moreover, for hypertensive patients who need surgery due to abdominal disease or pain relief from pancreatic cancer, intraoperative CGN or EUS-CGN will be a good choice for hypertension therapy. The graphical abstract of antihypertensive effect of CGN.


Assuntos
Hipertensão , Neoplasias Pancreáticas , Ratos , Animais , Ratos Endogâmicos Dahl , Gânglios Simpáticos , Neoplasias Pancreáticas/terapia , Rim , Ratos Endogâmicos SHR , Pressão Sanguínea
8.
Am J Physiol Renal Physiol ; 325(1): F87-F98, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37167270

RESUMO

Recently, we have reported that the early progression of proteinuria in the obese Dahl salt-sensitive (SS) leptin receptor mutant (SSLepRmutant) strain was associated with increased renal macrophage infiltration before puberty. Macrophages can be divided into two distinct phenotypes: M1 (proinflammatory) and M2 (anti-inflammatory). Moreover, previous studies have demonstrated that interleukin (IL)-25 converts resting macrophages and M1 into M2. Therefore, the present study examined whether treatment with IL-25 would reduce the early progression of renal injury in SSLepRmutant rats by increasing renal M2. We also investigated the impact of IL-25 on M2 subtypes: M2a (wound healing/anti-inflammatory), M2b (immune mediated/proinflammatory), M2c (regulatory/anti-inflammatory), and M2d (tumor associated/proangiogenic). Four-wk-old SS and SSLepRmutant rats were treated with either control (IgG) or IL-25 (1 µg/day ip every other day) for 4 wk. The kidneys from SSLepRmutant rats displayed progressive proteinuria and renal histopathology versus SS rats. IL-25 treatment had no effect on these parameters in SS rats. However, in the SSLepRmutant strain, proteinuria was markedly reduced after IL-25 treatment. Chronic treatment with IL-25 significantly decreased glomerular and tubular injury and renal fibrosis in the SSLepRmutant strain. Although the administration of IL-25 did not change total renal macrophage infiltration in both SS and SSLepRmutant rats, IL-25 increased M2a by >50% and reduced M1 by 60% in the kidneys of SSLepRmutant rats. Overall, these data indicate that IL-25 reduces the early progression of renal injury in SSLepRmutant rats by inducing M2a and suppressing M1 and suggest that IL-25 may be a therapeutic target for renal disease associated with obesity. NEW & NOTEWORTHY For the past few decades, immune cells and inflammatory cytokines have been demonstrated to play an important role in the development of renal disease. The present study provides strong evidence that interleukin-25 slows the early progression of renal injury in obese Dahl salt-sensitive rats before puberty by increasing systemic anti-inflammatory cytokines and renal M2a macrophages.


Assuntos
Interleucina-17 , Nefropatias , Ratos , Animais , Ratos Endogâmicos Dahl , Interleucina-17/farmacologia , Rim/patologia , Nefropatias/patologia , Proteinúria/patologia , Obesidade/complicações , Obesidade/patologia , Cloreto de Sódio na Dieta/farmacologia , Macrófagos/patologia
9.
Int J Radiat Biol ; 99(7): 1096-1108, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36971580

RESUMO

PURPOSE: Radiation therapy remains part of the standard of care for breast, lung, and esophageal cancers. While radiotherapy improves local control and survival, radiation-induced heart dysfunction is a common side effect of thoracic radiotherapy. Cardiovascular dysfunction can also result from non-therapeutic total body radiation exposures. Numerous studies have evaluated the relationship between radiation dose to the heart and cardiotoxicity, but relatively little is known about whether there are differences based on biological sex in radiation-induced heart dysfunction (RIHD). MATERIALS AND METHODS: We evaluated whether male and female inbred Dahl SS rats display differences in RIHD following delivery of 24 Gy in a single fraction to the whole heart using a 1.5 cm beam size (collimater). We also compared the 2.0 cm vs. 1.5 cm collimator in males. Pleural and pericardial effusions and normalized heart weights were measured, and echocardiograms were performed. RESULTS: Female SS rats displayed more severe RIHD relative to age-matched SS male rats. Normalized heart weight was significantly increased in females, but not in males. A total of 94% (15/16) of males and 55% (6/11) of females survived 5 months after completion of radiotherapy (p < .01). Among surviving rats, 100% of females and 14% of males developed moderate-to-severe pericardial effusions at 5 months. Females demonstrated increased pleural effusions, with the mean normalized pleural fluid volume for females and males being 56.6 mL/kg ± 12.1 and 10.96 mL/kg ± 6.4 in males (p = .001), respectively. Echocardiogram findings showed evidence of heart failure, which was more pronounced in females. Because age-matched female rats have smaller lungs, a higher percentage of the total lung was treated with radiation in females than males using the same beam size. After using a larger 2 cm beam in males which results in higher lung exposure, there was not a significant difference between males and females in terms of the development of moderate-to-severe pericardial effusions or pleural effusions. Treatment of males with a 2 cm beam resulted in comparable increases in LV mass and reductions in stroke volume to female rats treated with a 1.5 cm beam. CONCLUSION: Together, these results illustrate that there are differences in radiation-induced cardiotoxicity between male and female SS rats and add to the data that lung radiation doses, in addition to other factors, may play an important role in cardiac dysfunction following heart radiation exposure. These factors may be important to factor into future mitigation studies of radiation-induced cardiotoxicity.


Assuntos
Coração , Radiografia Torácica , Animais , Ratos , Masculino , Feminino , Radiografia Torácica/efeitos adversos , Coração/efeitos da radiação , Cardiotoxicidade , Derrame Pericárdico , Derrame Pleural , Ratos Endogâmicos Dahl
10.
J Neuroinflammation ; 20(1): 31, 2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36765376

RESUMO

OBJECTIVE: Patients with hypertension have a risk of depression. Morinda officinalis oligosaccharides (MOOs) have anti-depressant properties. In this study, we aimed to determine whether MOOs can improve the symptoms of depression in individuals with hypertension. METHODS: Dahl salt-sensitive rats fed with a high-salt diet were stimulated by chronic unpredictable mild stress to mimic hypertension with depression. Primary astrocytes and neurons were isolated from these rats. Astrocytes underwent LPS stimulation to simulate the inflammatory astrocytes during depression. MOOs were administrated at 0.1 mg/g/day in vivo and 1.25, 2.5, and 5 mg/mL in vitro. Mitophagy was inhibited using 5 mM 3-methyladenine (3-MA). Astrocyte-mediated neurotoxicity was detected by co-culturing astrocytes and neurons. RESULTS: MOOs decreased systolic pressure, diastolic pressure, and mean arterial pressure, thereby improving depression-like behavior, including behavioral despair, lack of enthusiasm, and loss of pleasure during hypertension with depression. Furthermore, MOOs inhibited inflammation, astrocytic dysfunction, and mitochondrial damage in the brain. Then, MOOs promoted autophagosome and lysosome enriched in mitochondria in LPS-stimulated astrocytes. MOOs suppressed mitochondrial damage and the release of tumor necrosis factor-α (TNF-α), interleukin (IL)-6, and IL-1ß in astrocytes undergoing LPS stimulation. Importantly, MOOs rescued the impaired neurons co-cultured with astrocytes. The effects of MOOs on LPS-stimulated astrocytes were reversed by 3-MA. Finally, MOOs upregulated LPS-downregulated Mfn2 expression in astrocytes. Mfn2 inhibition partly reversed the effects of MOOs on hypertension with depression. Intriguingly, Mfn2 suppression activated PI3K/Akt/mTOR pathway during MOOs treatment. CONCLUSIONS: Astrocytes develop neuroinflammation in response to mitochondrial damage during hypertension with depression. MOOs upregulated Mfn2 expression to activate the PI3K/Akt/mTOR pathway-mediated mitophagy, thereby removing impaired mitochondria in astrocytes. HIGHLIGHTS: 1. MOOs have anti-hypertensive and anti-depressive properties. 2. MOOs inhibit inflammation and injury in astrocytes during hypertension with depression. 3. MOOs induce mitophagy activation in inflammatory astrocytes with mitochondrial damage. 4. MOOs upregulate Mfn2 expression in astrocytes. 5. Mfn2 activates mitophagy to resist mitochondrial damage in astrocytes.


Assuntos
Hipertensão , Morinda , Ratos , Animais , Mitofagia , Depressão/tratamento farmacológico , Depressão/etiologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Lipopolissacarídeos/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Ratos Endogâmicos Dahl , Inflamação/metabolismo , Interleucina-6/metabolismo , Hipertensão/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Oligossacarídeos/metabolismo , Oligossacarídeos/farmacologia , Astrócitos/metabolismo
11.
Life Sci ; 314: 121355, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36596407

RESUMO

AIMS: This study mainly evaluated the protective mechanism of histidine against the hepatic oxidative stress after high-salt exposure (HSE) through combined analysis of non-targeted metabolomics and biological metabolic networks. MATERIALS AND METHODS: Dahl salt-sensitive (SS) rats were fed with normal-salt diet or HSE ± histidine in addition to drinking water for 14 days. Gas chromatography-mass spectrometry was used to analyze the hepatic metabolites. The metabolic profile was analyzed by SIMCA-14.1, the metabolic correlation network was performed using Gephi-0.9.2, and pathway enrichment was analyzed using MetaboAnalyst 5.0 online website. KEY FINDINGS: Results indicated that HSE disturbed the hepatic metabolic profile, generated abnormal liver metabolism and exacerbated oxidative stress. Histidine supplementation significantly reversed the hepatic metabolic profile. Of note, 14 differential metabolic pathways were enriched after histidine supplementation, most of which played an important role in ameliorating redox and nitric oxide (NO) metabolism. Histidine administration decreased the levels of hydroperoxide and malondialdehyde, and increased the activities of antioxidant enzymes (Catalase, Superoxide Dismutase, Glutathione S-transferase and Glutathione reductases). Histidine effectively enhanced the endogenous synthesis of glutathione by increasing the levels of glutamate and cysteine, thereby enhancing the antioxidant capacity of the glutathione system. After histidine administration, lysine, glutamate, and hypotaurine owned a higher metabolic centrality in the correlation network. In addition, histidine could also effectively increase the endogenous synthesis of NO by enhancing the L-arginine/NO pathway. SIGNIFICANCE: This study offers new insights into the metabolic mechanisms underlying the antioxidant protective effect of histidine on the liver.


Assuntos
Antioxidantes , Histidina , Estresse Oxidativo , Cloreto de Sódio na Dieta , Animais , Ratos , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Suplementos Nutricionais , Glutamatos/farmacologia , Glutationa/metabolismo , Histidina/farmacologia , Histidina/metabolismo , Fígado/metabolismo , Metabolômica , Oxirredução , Ratos Endogâmicos Dahl , Cloreto de Sódio na Dieta/efeitos adversos , Cloreto de Sódio na Dieta/metabolismo , Superóxido Dismutase/metabolismo
12.
Biochem Pharmacol ; 208: 115381, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36528069

RESUMO

Hydrogen sulfide (H2S) is the third member of gasotransmitter family together with nitric oxide and carbon monoxide. H2S is involved in the regulation of blood pressure by controlling vascular tone, sympathetic nervous system activity and renal sodium excretion. Moderate age-dependent hypertension and endothelial dysfunction develop in mice with knockout of cystathionine γ-lyase (CSE), the enzyme involved in H2S production in the cardiovascular system. Decreased H2S concentration as well as the expression and activities of H2S-producing enzymes have been observed in most commonly used animal models of hypertension such as spontaneously hypertensive rats, Dahl salt-sensitive rats, chronic administration of NO synthase inhibitors, angiotensin II infusion and two-kidney-one-clip hypertension, the model of renovascular hypertension. Administration of H2S donors decreases blood pressure in these models but has no major effects on blood pressure in normotensive animals. H2S donors not only reduce blood pressure but also end-organ injury such as vascular and myocardial hypertrophy and remodeling, hypertension-associated kidney injury or erectile dysfunction. H2S level and signaling are modulated by some antihypertensive medications as well as natural products with antihypertensive activity such as garlic polysulfides or plant-derived isothiocyanates as well as non-pharmacological interventions. Modifying H2S signaling is the potential novel therapeutic approach for the management of hypertension, however, more experimental clinical studies about the role of H2S in hypertension are required.


Assuntos
Sulfeto de Hidrogênio , Hipertensão , Ratos , Masculino , Camundongos , Animais , Sulfeto de Hidrogênio/metabolismo , Anti-Hipertensivos/farmacologia , Anti-Hipertensivos/uso terapêutico , Ratos Endogâmicos Dahl , Hipertensão/tratamento farmacológico , Hipertensão/metabolismo , Modelos Teóricos , Cistationina gama-Liase/metabolismo
13.
Int J Mol Sci ; 23(21)2022 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-36362352

RESUMO

Endogenous cardiotonic steroids (CTSs), such as telocinobufagin (TCB) and marinobufagin (MBG) contain a lactone moiety critical to their binding and signaling through the Na+/K+-ATPase. Their concentrations elevate in response to sodium intake and under volume-expanded conditions. Paraoxonase 3 (PON3) is an enzyme that can hydrolyze lactone substrates. Here, we examine the role of PON3 in regulating CTS levels in a rat model of chronic kidney diseases (CKD). TCB and MBG were extracted from rat urine samples, and the analyses were carried out using ultra-high pressure liquid chromatography−Orbitrap-mass spectrometry (UHPLC-Orbitrap-MS). Ten-week-old Dahl salt-sensitive wild type (SS-WT) and Dahl salt-sensitive PON3 knockout (SS-PON3 KO) rats were maintained on a high-salt diet (8% NaCl) for 8 weeks to initiate salt-sensitive hypertensive renal disease characteristic of this model. CTS extraction recovery from urine >80% was achieved. For animals maintained on a normal chow diet, the baseline amount of TCB excreted in 24 h urine of SS-PON3 KO rats (6.08 ± 1.47 ng/24 h; or 15.09 ± 3.25 pmol) was significantly higher than for SS-WT rats (1.48 ± 0.69 ng/24 h; or 3.67 ± 1.54 pmol, p < 0.05). Similarly, for the same animals, the amount of excreted MBG was higher in the urine of SS-PON3 KO rats (4.74 ± 1.30 ng/24 h versus 1.03 ± 0.25 ng/24 h in SS-WT; or 11.83 ± 2.91 pmol versus 2.57 ± 0.56 pmol in SS-WT, p < 0.05). For animals on a high-salt diet, the SS-PON3 KO rats had significantly increased levels of TCB (714.52 ± 79.46 ng/24 h; or 1774.85 ± 175.55 pmol) compared to SS-WT control (343.84 ± 157.54 ng/24 h; or 854.09 ± 350.02 pmol, p < 0.05), and comparatively higher levels of MBG were measured for SS-PON3 KO (225.55 ± 82.61 ng/24 h; or 563.19 ± 184.5 pmol) versus SS-WT (157.56 ± 85.53 ng/24 h; or 393.43 ± 191.01 pmol, p > 0.05) rats. These findings suggest that the presence and absence of PON3 dramatically affect the level of endogenous CTSs, indicating its potential role in CTS regulation.


Assuntos
Glicosídeos Cardíacos , Hipertensão , Insuficiência Renal Crônica , Ratos , Animais , Arildialquilfosfatase/genética , Arildialquilfosfatase/metabolismo , Ratos Endogâmicos Dahl , Cromatografia Líquida de Alta Pressão , ATPase Trocadora de Sódio-Potássio/metabolismo , Cloreto de Sódio na Dieta/metabolismo , Cloreto de Sódio/metabolismo , Lactonas , Hipertensão/metabolismo , Rim/metabolismo , Pressão Sanguínea
14.
J Food Biochem ; 46(12): e14497, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36314446

RESUMO

Salt-induced hypertension is one of the major issues worldwide and one of the main factors involved in heart and kidney failure. The objective of this study was to investigate the potential role of Benincasa hispida extracts on high salt-induced hypertension in Dahl-salt sensitive (D-SS) rats and to find out the metabolic and biochemical pattern involved in the reduction of hypertension. Twenty-six Dahl salt-sensitive (D-SS) rats were selected and divided into four groups. The metabolic strategy was applied to test the extracts on salt-sensitive hypertension in kidney. Gas Chromatography-Mass spectrometry (GC-MS) was used to identify the potent biochemical profile in renal medulla and cortex of rat kidneys. The differential metabolites of cortex and medulla, enrichment analysis and pathway analysis were performed using metabolomics data. The GC-MS data revealed that 24 different antihypertensive metabolites was detected in renal cortex, while 16 were detected in renal medulla between different groups. The significantly metabolic pathways namely citrate cycle, glutathione metabolism, glycine, serine, and threonine metabolism, glyoxylate and dicarboxylate metabolism, glycerolipid metabolism, alanine, aspartate and glutamate metabolism in renal cortex and glycerolipid metabolism, pentose phosphate pathway, citrate cycle, glycolysis, glycerophospholipid metabolism, phenylalanine, tyrosine and tryptophan biosynthesis in renal medulla were involved in the process of Hypertension. The results suggest that the extract mainly alter the metabolic pathways of amino acid in Dahl salt-sensitive rats and its antioxidant potential reduced the hypertension patterns of Salt-sensitive rat. The antihypertensive components malic acid, aspartic acid, and glycine of extract can be used as therapeutic drugs to protect kidneys from salt-induced hypertension. PRACTICAL APPLICATIONS: Hypertension is a multifactorial disease and one of the risk factors for heart and kidney failure. Benincasa hispida is a widely used vegetable in China, which belongs to the Cucurbitaceae family. Benincasa hispida (wax gourd) has been used in traditional Chinese medicine for the treatment of inflammation and hypertension. The Benincasa hispida contains many compounds such as amino acids, carbohydrates, volatile compounds, vitamins, and minerals. The amino acid present in the pulp of Benincasa hispida are ornithine, threonine, aspartate, glutamate, serine, glycine, proline, alanine, valine, cysteine, isoleucine, tyrosine, leucine, lysine, phenylalanine, histidine, arginine, and γ-aminobutyric acid. Our results showed that Benincasa hispida is one of the potent natural antioxidants and can maintain normal blood pressure in Dahl salt-sensitive rats (D-SS). In conclusion, the current results provide good theoretical basis for the development and research using Benincasa hispida as an effective natural antioxidant for hypertension.


Assuntos
Cucurbitaceae , Hipertensão , Insuficiência Renal , Ratos , Animais , Ratos Endogâmicos Dahl , Anti-Hipertensivos , Antioxidantes , Ácido Aspártico , Hipertensão/tratamento farmacológico , Hipertensão/etiologia , Cloreto de Sódio na Dieta/metabolismo , Cloreto de Sódio na Dieta/farmacologia , Cloreto de Sódio , Aminoácidos , Fenilalanina , Alanina , Glicina , Tirosina , Cucurbitaceae/metabolismo , Serina , Treonina , Extratos Vegetais/farmacologia
15.
Int J Mol Sci ; 23(19)2022 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-36233236

RESUMO

(1) Background: Heart failure with preserved ejection fraction (HFpEF) is a major subtype of HF with no effective treatments. Mitochondrial dysfunctions relevant to the imbalance of fusion and fission occur in HFpEF. Drp1 is a key protein regulating mitochondrial fission, and PINK1 is the upstream activator of Drp1, but their relationship with HF has not been clarified. The aim of the study is to investigate molecular mechanisms of mitochondrial dysfunctions in animals with hypertension-induced HFpEF. (2) Methods and Results: The hypertension-induced HFpEF model was established by feeding Dahl/SS rats with high salt, showing risk factors such as hypertension, mitochondrial dysfunctions, and so on. Physiological and biological measurements showed a decrease in the expression of mitochondrial function-related genes, ATP production, and mitochondrial fission index. PINK1 knockout in H9C2 cardiomyocytes showed similar effects. Moreover, PINK1 myocardium-specific overexpression activated Drp1S616 phosphorylation and enhanced mitochondrial fission to slow the progression of hypertension-induced HFpEF. (3) Conclusions: PINK1 could phosphorylate Drp1S616 to improve mitochondrial fission and relieve mitochondrial dysfunctions, which highlights potential treatments of HFpEF.


Assuntos
Dinaminas , Insuficiência Cardíaca , Hipertensão , Proteínas Quinases , Trifosfato de Adenosina/metabolismo , Animais , Dinaminas/genética , Dinaminas/metabolismo , Insuficiência Cardíaca/genética , Hipertensão/genética , Dinâmica Mitocondrial , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Ratos , Ratos Endogâmicos Dahl , Volume Sistólico
16.
Hypertension ; 79(11): 2397-2408, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35983758

RESUMO

Humans with salt-sensitive hypertension demonstrate increased morbidity, increased mortality, and renal end-organ damage when compared with normotensive subjects or those with salt-resistant hypertension. Substantial evidence from humans and animals has also demonstrated the role of dietary components other than salt to modulate hypertension. Evidence presented in this review provides support for the view that immunity and inflammation serve to amplify the development of salt-sensitive hypertension and leads to malignant disease accompanied by end-organ damage. Interestingly, salt-sensitive disease is modulated by changes in dietary protein intake, which also influences immune mechanisms. Together, the evidence presented in this review from animal and human studies indicates that changes in dietary protein source have profound effects on the gut microbiota, microbiota-derived metabolites, DNA methylation, gene expression, immune cell activation, the production of cytokines and other factors, and the development of salt-sensitive hypertension and related disease phenotypes.


Assuntos
Proteínas Alimentares , Hipertensão , Ratos , Animais , Humanos , Ratos Endogâmicos Dahl , Cloreto de Sódio na Dieta/efeitos adversos , Cloreto de Sódio na Dieta/metabolismo , Hipertensão/metabolismo , Rim/metabolismo , Pressão Sanguínea/fisiologia
17.
Physiol Genomics ; 54(7): 231-241, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35503009

RESUMO

Hypertension (HTN) is a complex disease influenced by heritable genetic elements and environmental interactions. Dietary salt is among the most influential modifiable factors contributing to increased blood pressure (BP). It is well established that men and women develop BP impairment in different patterns and a recent emphasis has been placed on identifying mechanisms leading to the differences observed between the sexes in HTN development. The current work reported here builds on an extensive genetic mapping experiment that sought to identify genetic determinants of salt-sensitive (SS) HTN using the Dahl SS rat. BTG antiproliferation factor 2 (Btg2) was previously identified by our group as a candidate gene contributing to SS HTN in female rats. In the current study, Btg2 was mutated using transcription activator-like effector nuclease (TALEN)-targeted gene disruption on the SSBN congenic rat background. The Btg2 mutated rats exhibited impaired BP and proteinuria responses to a high-salt diet compared with wild-type rats. Differences in body weight, mutant pup viability, skeletal morphology, and adult nephron density suggest a potential role for Btg2 in developmental signaling pathways. Subsequent cell cycle gene expression assessment provides several additional signaling pathways that Btg2 may function through during salt handling in the kidney. The expression analysis also identified several potential upstream targets that can be explored to further isolate therapeutic approaches for SS HTN.


Assuntos
Hipertensão , Proteínas Imediatamente Precoces , Animais , Pressão Sanguínea/genética , Feminino , Humanos , Hipertensão/tratamento farmacológico , Proteínas Imediatamente Precoces/genética , Proteínas Imediatamente Precoces/metabolismo , Proteínas Imediatamente Precoces/uso terapêutico , Rim/metabolismo , Mutação/genética , Ratos , Ratos Endogâmicos Dahl , Cloreto de Sódio na Dieta , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Proteínas Supressoras de Tumor/uso terapêutico
18.
Am J Hypertens ; 35(9): 820-827, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35439285

RESUMO

BACKGROUND: It has been shown that activated microglia in brain releasing proinflammatory cytokines (PICs) contribute to the progression of cardiovascular diseases. In this study, we tested the hypothesis that microglial activation in hypothalamic paraventricular nucleus (PVN), induced by high-salt diet, increases the oxidative stress via releasing PICs and promotes sympathoexcitation and development of hypertension. METHODS: High-salt diet was given to male Dahl salt-sensitive rats to induce hypertension. Those rats were bilaterally implanted with cannula for PVN infusion of minocycline, a selective microglial activation blocker, or artificial cerebrospinal fluid for 4 weeks. RESULTS: High-salt diet elevated mean arterial pressure of Dahl salt-sensitive rats. Meanwhile, elevations of renal sympathetic nerve activity and central prostaglandin E2, as well as increase of plasma norepinephrine, were observed in those hypertensive rats. Tumor necrosis factor-α, interleukin-1ß (IL-1ß), and IL-6 increased in the PVN of those rats, associated with a significant activation of microglia and prominent disruption of redox balance, which was demonstrated by higher superoxide and NAD(P)H oxidase 2 (NOX-2) and NAD(P)H oxidase 4 (NOX-4), and lower Cu/Zn superoxide dismutase in PVN. PVN infusion of minocycline attenuated all hypertension-related alterations described above. CONCLUSION: This study indicates that high salt leads to microglial activation within PVN of hypertensive rats, and those activated PVN microglia release PICs and trigger the production of reactive oxygen species, which contributes to sympathoexcitation and development of hypertension. Blockade of PVN microglial activation inhibits inflammation and oxidative stress, therefore attenuating the development of hypertension induced by high-salt diet.


Assuntos
Hipertensão , Núcleo Hipotalâmico Paraventricular , Animais , Citocinas/metabolismo , Masculino , Microglia/metabolismo , Minociclina/efeitos adversos , NADPH Oxidases/metabolismo , Núcleo Hipotalâmico Paraventricular/metabolismo , Ratos , Ratos Endogâmicos Dahl , Cloreto de Sódio na Dieta/efeitos adversos
19.
Int J Mol Sci ; 23(6)2022 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-35328808

RESUMO

As the resident immune cells of the central nervous system, microglia have a wide range of functions such as surveillance, phagocytosis, and signaling through production of chemokines and cytokines. Recent studies have identified and characterized macrophages residing at the meninges, a series of layers surrounding the brain and spinal cord. While perivascular microglia within the brain parenchyma increase following chronic hypertension, there are no reports of changes at the meninges, and specifically, associated with the pial vasculature. Thus, we used female Sprague Dawley and Dahl salt-sensitive (SS/Jr) rat brains, stained for ionized calcium-binding adapter molecule (Iba1), and characterized microglia/macrophages associated with pial vessels in the posterior brain. Results indicate that Iba1+ pial vessel-associated microglia (PVAM) completely surrounded the vessels in brains from the Dahl-SS/Jr rats. PVAM density was significantly higher and distance between PVAMs lower in Dahl-SS/Jr compared to the Sprague Dawley rat brains. Pregnancy history did not affect these findings. While the functional role of these cells are not known, we contextualize our novel findings with that of other studies assessing or characterizing myeloid cells at the borders of the CNS (meninges and choroid plexus) and perivascular macrophages and propose their possible origin in the Dahl-SS/Jr model of chronic hypertension.


Assuntos
Hipertensão , Microglia , Animais , Pressão Sanguínea/fisiologia , Feminino , Macrófagos , Gravidez , Ratos , Ratos Endogâmicos Dahl , Ratos Sprague-Dawley , História Reprodutiva
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA