Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 10.107
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
PLoS One ; 19(5): e0302991, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38722855

RESUMO

Recessive dystrophic epidermolysis bullosa is a rare genodermatosis caused by a mutation of the Col7a1 gene. The Col7a1 gene codes for collagen type VII protein, a major component of anchoring fibrils. Mutations of the Col7a1 gene can cause aberrant collagen type VII formation, causing an associated lack or absence of anchoring fibrils. This presents clinically as chronic blistering, scarring, and fibrosis, often leading to the development of cutaneous squamous cell carcinoma. Patients also experience persistent pain and pruritus. Pain management and supportive bandaging remain the primary treatment options. The pathology of recessive dystrophic epidermolysis bullosa was first described in the 1980s, and there has since been a multitude of encouraging treatment options developed. However, in vivo research has been hindered by inadequate models of the disease. The various mouse models in existence possess longevity and surface area constraints, or do not adequately model a normal human disease state. In this paper, we describe a novel rat model of recessive dystrophic epidermolysis bullosa that offers an alternative to previous murine models. An 8-base pair deletion was induced in the Col7a1 gene of Lewis rats, which was subsequently found to cause a premature stop codon downstream. Homozygous mutants presented with a fragile and chronically blistered phenotype postnatally. Further histological analysis revealed subepidermal clefting and the absence of anchoring fibrils. The generation of this novel model offers researchers an easily maintained organism that possesses a larger surface area for experimental topical and transfused therapies to be tested, which may provide great utility in the future study of this debilitating disease.


Assuntos
Colágeno Tipo VII , Modelos Animais de Doenças , Epidermólise Bolhosa Distrófica , Mutação da Fase de Leitura , Fenótipo , Colágeno Tipo VII/genética , Animais , Epidermólise Bolhosa Distrófica/genética , Epidermólise Bolhosa Distrófica/patologia , Ratos , Genes Recessivos , Ratos Endogâmicos Lew , Vesícula/genética , Vesícula/patologia , Pele/patologia , Masculino
2.
Brain Behav ; 14(5): e3482, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38715397

RESUMO

INTRODUCTION: Chronic adolescent stress profoundly affects prefrontal cortical networks regulating top-down behavior control. However, the neurobiological pathways contributing to stress-induced alterations in the brain and behavior remain largely unknown. Chronic stress influences brain growth factors and immune responses, which may, in turn, disrupt the maturation and function of prefrontal cortical networks. The tumor necrosis factor alpha-converting enzyme/a disintegrin and metalloproteinase 17 (TACE/ADAM17) is a sheddase with essential functions in brain maturation, behavior, and inflammatory responses. This study aimed to determine the impact of stress on the prefrontal cortex and whether TACE/ADAM17 plays a role in these responses. METHODS: We used a Lewis rat model that incorporates critical elements of chronic psychosocial stress, such as uncontrollability, unpredictability, lack of social support, and re-experiencing of trauma. RESULTS: Chronic stress during adolescence reduced the acoustic startle reflex and social interactions while increasing extracellular free water content and TACE/ADAM17 mRNA levels in the medial prefrontal cortex. Chronic stress altered various ethological behavioral domains in the observation home cages (decreased ingestive behaviors and increased walking, grooming, and rearing behaviors). A group of rats was injected intracerebrally either with a novel Accell™ SMARTpool TACE/ADAM17 siRNA or a corresponding siRNA vehicle (control). The RNAscope Multiplex Fluorescent v2 Assay was used to visualize mRNA expression. Automated puncta quantification and analyses demonstrated that TACE/ADAM17 siRNA administration reduced TACE/ADAM17 mRNA levels in the medial prefrontal cortex (59% reduction relative to control). We found that the rats that received prefrontal cortical TACE/ADAM17 siRNA administration exhibited altered eating patterns (e.g., increased food intake and time in the feeding zone during the light cycle). CONCLUSION: This study supports that the prefrontal cortex is sensitive to adolescent chronic stress and suggests that TACE/ADAM17 may be involved in the brain responses to stress.


Assuntos
Proteína ADAM17 , Córtex Pré-Frontal , Ratos Endogâmicos Lew , Estresse Psicológico , Animais , Masculino , Ratos , Proteína ADAM17/metabolismo , Comportamento Animal/fisiologia , Córtex Pré-Frontal/metabolismo , Reflexo de Sobressalto/fisiologia , Estresse Psicológico/fisiopatologia , Estresse Psicológico/metabolismo , Feminino
3.
Transpl Int ; 37: 12556, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38650846

RESUMO

Macrophages contribute to post-transplant lung rejection. Disulfiram (DSF), an anti-alcoholic drug, has an anti-inflammatory effect and regulates macrophage chemotactic activity. Here, we investigated DSF efficacy in suppressing acute rejection post-lung transplantation. Male Lewis rats (280-300 g) received orthotopic left lung transplants from Fisher 344 rats (minor histocompatibility antigen-mismatched transplantation). DSF (0.75 mg/h) monotherapy or co-solvent only (50% hydroxypropyl-ß-cyclodextrin) as control was subcutaneously administered for 7 days (n = 10/group). No post-transplant immunosuppressant was administered. Grades of acute rejection, infiltration of immune cells positive for CD68, CD3, or CD79a, and gene expression of monocyte chemoattractant protein and pro-inflammatory cytokines in the grafts were assessed 7 days post-transplantation. The DSF-treated group had significantly milder lymphocytic bronchiolitis than the control group. The infiltration levels of CD68+ or CD3+ cells to the peribronchial area were significantly lower in the DSF than in the control groups. The normalized expression of chemokine ligand 2 and interleukin-6 mRNA in allografts was lower in the DSF than in the control groups. Validation assay revealed interleukin-6 expression to be significantly lower in the DSF than in the control groups. DSF can alleviate acute rejection post-lung transplantation by reducing macrophage accumulation around peripheral bronchi and suppressing pro-inflammatory cytokine expression.


Assuntos
Dissulfiram , Rejeição de Enxerto , Transplante de Pulmão , Macrófagos , Ratos Endogâmicos F344 , Ratos Endogâmicos Lew , Animais , Transplante de Pulmão/efeitos adversos , Rejeição de Enxerto/prevenção & controle , Rejeição de Enxerto/imunologia , Masculino , Dissulfiram/farmacologia , Dissulfiram/uso terapêutico , Ratos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Aloenxertos , Antígenos CD/metabolismo , Antígenos de Diferenciação Mielomonocítica/metabolismo , Quimiocina CCL2/metabolismo , Pulmão/patologia , Pulmão/efeitos dos fármacos
4.
Mutat Res ; 828: 111857, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38603928

RESUMO

Inhaled anesthetics, such as isoflurane, may cause side effects, including short-term immunosuppression and DNA damage. In contrast, low molecular weight fucoidan (LMF), derived from brown seaweed, exhibits promising immunomodulatory effects. In this study, we determined the effect of isoflurane on telomeres and examined the potential of LMF to ameliorate the harmful effects of isoflurane. Male Lewis rats, the mouse lymphoma cell line YAC-1, and the human nature killer cell line NK-92 MI were exposed to isoflurane. The relative telomere length (T/S) ratio and mRNA expression were determined by quantitative PCR. The viability assay was used to assess cell viability. In vivo, 2% isoflurane exposure, which is a clinically relevant concentration, reduced telomere length, and correlated with exposure frequency and duration. Isoflurane concentrations above 2% shortened YAC-1 telomeres, with minimal impact on cell viability. LMF pre-treatment enhanced NK-92 MI cell survival resulting from isoflurane exposure and exerted superior telomere protection compared with LMF post-treatment. Furthermore, adding LMF during isoflurane exposure resulted in a significant increase in IFN-γ, TNF-α, and IL-10 mRNA compared with the untreated group. LMF protected against isoflurane-induced telomere shortening, enhanced NK cell viability, and modulated cytokine expression, thus mitigating postoperative immune suppression and risk of tumor metastasis.


Assuntos
Isoflurano , Células Matadoras Naturais , Polissacarídeos , Animais , Polissacarídeos/farmacologia , Isoflurano/farmacologia , Isoflurano/toxicidade , Camundongos , Masculino , Humanos , Ratos , Células Matadoras Naturais/efeitos dos fármacos , Células Matadoras Naturais/imunologia , Anestésicos Inalatórios/toxicidade , Anestésicos Inalatórios/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Telômero/efeitos dos fármacos , Ratos Endogâmicos Lew , Peso Molecular , Linhagem Celular Tumoral , Homeostase do Telômero/efeitos dos fármacos
5.
Int J Mol Sci ; 25(3)2024 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-38338887

RESUMO

Vascularized composite allotransplantation (VCA) represents a promising reconstructive solution primarily conducted to improve quality of life. However, tissue damage caused by cold-ischemia (CI) storage prior to transplant represents a major factor limiting widespread application. This study investigates the addition of the novel free radical scavenger PrC-210 to UW Organ Preservation Solution (UW Solution) to suppress CI-induced skeletal muscle injury in a rat hind limb amputation model. Lewis rats received systemic perfusion of UW solution +/- PrC-210 (0 mM control, 10 mM, 20 mM, 30 mM, or 40 mM), followed by bilateral transfemoral amputation. Limbs were stored in 40 mL of the same perfusate at 4 °C for 48 h. Muscle punch biopsies were taken at set times over the 48 h cold-storage period and analyzed for caspase-3,7 activity, cytochrome C levels, and qualitative histology. A single 15 s perfusion of PrC-210-containing UW Solution conferred a dose-dependent reduction in CI-induced muscle cell death over 48 h. In the presence of PrC-210, muscle cell mitochondrial cytochrome C release was equivalent to 0 h controls, with profound reductions in the caspase-3,7 apoptotic marker that correlated with limb histology. PrC-210 conferred complete prevention of ROS-induced mitochondrial lysis in vitro, as measured by cytochrome C release. We conclude that the addition of 30 mM PrC210 to UW Solution conferred the most consistent reduction in CI limb damage, and it warrants further investigation for clinical application in the VCA setting.


Assuntos
Aloenxertos Compostos , Diaminas , Soluções para Preservação de Órgãos , Traumatismo por Reperfusão , Compostos de Sulfidrila , Ratos , Animais , Sequestradores de Radicais Livres , Caspase 3 , Aloenxertos Compostos/patologia , Citocromos c , Qualidade de Vida , Ratos Endogâmicos Lew , Glutationa/farmacologia , Alopurinol/farmacologia , Insulina/farmacologia , Isquemia , Preservação de Órgãos , Temperatura Baixa , Traumatismo por Reperfusão/patologia , Rafinose , Adenosina
6.
Stem Cell Res Ther ; 15(1): 33, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38321490

RESUMO

BACKGROUND: There is growing evidence that extracellular vesicles (EVs) play a crucial role in the paracrine mechanisms of transplanted human mesenchymal stem cells (hMSCs). Little is known, however, about the influence of microenvironmental stimuli on the osteogenic effects of EVs. This study aimed to investigate the properties and functions of EVs derived from undifferentiated hMSC (Naïve-EVs) and hMSC during the early stage of osteogenesis (Osteo-EVs). A further aim was to assess the osteoinductive potential of Osteo-EVs for bone regeneration in rat calvarial defects. METHODS: EVs from both groups were isolated using size-exclusion chromatography and characterized by size distribution, morphology, flow cytometry analysis and proteome profiling. The effects of EVs (10 µg/ml) on the proliferation, migration, and osteogenic differentiation of cultured hMSC were evaluated. Osteo-EVs (50 µg) or serum-free medium (SFM, control) were combined with collagen membrane scaffold (MEM) to repair critical-sized calvarial bone defects in male Lewis rats and the efficacy was assessed using µCT, histology and histomorphometry. RESULTS: Although Osteo- and Naïve-EVs have similar characteristics, proteomic analysis revealed an enrichment of bone-related proteins in Osteo-EVs. Both groups enhance cultured hMSC proliferation and migration, but Osteo-EVs demonstrate greater efficacy in promoting in vitro osteogenic differentiation, as evidenced by increased expression of osteogenesis-related genes, and higher calcium deposition. In rat calvarial defects, MEM with Osteo-EVs led to greater and more consistent bone regeneration than MEM loaded with SFM. CONCLUSIONS: This study discloses differences in the protein profile and functional effects of EVs obtained from naïve hMSC and hMSC during the early stage of osteogenesis, using different methods. The significant protein profile and cellular function of EVs derived from hMSC during the early stage of osteogenesis were further verified by a calvarial bone defect model, emphasizing the importance of using differentiated MSC to produce EVs for bone therapeutics.


Assuntos
Vesículas Extracelulares , Células-Tronco Mesenquimais , Humanos , Ratos , Masculino , Animais , Osteogênese/genética , Proteômica , Células-Tronco Mesenquimais/metabolismo , Ratos Endogâmicos Lew , Regeneração Óssea/fisiologia , Diferenciação Celular , Vesículas Extracelulares/metabolismo
7.
Ann Plast Surg ; 92(3): 327-334, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38394271

RESUMO

BACKGROUND: Soft tissue defects with exposed avascular structures require reconstruction with well-vascularized tissues. Extensive research is ongoing to explore tissue engineered products that provide durable coverage. However, there is a lack of controlled and affordable testbeds in the preclinical setting to reflect this challenging clinical scenario. We aimed to address this gap in the literature and develop a feasible and easily reproducible model in rodents that reflects an avascular structure in the wound bed. METHODS: We created 20 × 20 mm full thickness wounds on the dorsal skin of Lewis rats and secured 0.5-mm-thick silicone sheets of varying sizes to the wound bed. A 3D-printed wound frame was designed to isolate the wound environment. Skin graft and free flap survival along with exposure of the underlying silicone was assessed. Rats were followed for 4 weeks with weekly dressing changes and photography. Samples were retrieved at the endpoint for tissue viability and histologic analysis. RESULTS: The total wound surface area was constant throughout the duration of the experiment in all groups and the wound frames were well tolerated. The portion of the skin graft without underlying silicone demonstrated integration with the underlying fascia and a histologically intact epidermis. Gradual necrosis of the portion of the skin graft overlying the silicone sheet was observed with varying sizes of the silicone sheet. When the size of the silicone sheet was reduced from 50% of the wound surface area, the portion surviving over the silicone sheet increased at the 4-week timepoint. The free flap provided complete coverage over the silicone sheet. CONCLUSION: We developed a novel model of rodent wound healing to maintain the same wound size and isolate the wound environment for up to 4 weeks. This model is clinically relevant to a complex wound with an avascular structure in the wound bed. Skin grafts failed to completely cover increasing sizes of the avascular structure, whereas the free flap was able to provide viable coverage. This cost-effective model will establish an easily reproducible platform to evaluate more complex bioengineered wound coverage solutions.


Assuntos
Roedores , Cicatrização , Ratos , Animais , Ratos Endogâmicos Lew , Transplante de Pele , Silicones , Impressão Tridimensional
8.
Exp Lung Res ; 50(1): 15-24, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38317565

RESUMO

Background: Lung ischemia-reperfusion injury (LIRI) is among the complications observed after lung transplantation and is associated with morbidity and mortality. Preconditioning of the donor lung before organ retrieval may improve organ quality after transplantation. We investigated whether preconditioning with metformin (Met) ameliorates LIRI after lung transplantation. Methods: Twenty Lewis rats were randomly divided into the sham, LIRI, and Met groups. The rats in the LIRI and Met groups received saline and Met, respectively, via oral gavage. Subsequently, a donor lung was harvested and kept in cold storage for 8 h. The LIRI and Met groups then underwent left lung transplantation. After 2 h of reperfusion, serum and transplanted lung tissues were examined. Results: The partial pressure of oxygen (PaO2) was greater in the Met group than in the LIRI group. In the Met group, wet-to-dry (W/D) weight ratios, inflammatory factor levels, oxidative stress levels and apoptosis levels were notably decreased. Conclusions: Met protects against ischemia-reperfusion injury after lung transplantation in rats, and its therapeutic effect is associated with its anti-inflammatory, antioxidative, and antiapoptotic properties.


Assuntos
Lesão Pulmonar , Transplante de Pulmão , Traumatismo por Reperfusão , Ratos , Animais , Ratos Sprague-Dawley , Ratos Endogâmicos Lew , Pulmão , Transplante de Pulmão/efeitos adversos , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/prevenção & controle
9.
mBio ; 15(3): e0330223, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38376248

RESUMO

Toxoplasma gondii is an intracellular parasite that can activate the NLRP1 inflammasome leading to macrophage pyroptosis in Lewis rats, but the underlying mechanism is not well understood. In this study, we performed a genome-wide CRISPR screen and identified the dense granule proteins GRA35, GRA42, and GRA43 as the Toxoplasma effectors mediating cell death in Lewis rat macrophages. GRA35 localizes on the parasitophorous vacuole membrane, where it interacts with the host E3 ubiquitin ligase ITCH. Inhibition of proteasome activity or ITCH knockout prevented pyroptosis in Toxoplasma-infected Lewis rat macrophages, consistent with the "NLRP1 functional degradation model." However, there was no evidence that ITCH directly ubiquitinates or interacts with rat NLRP1. We also found that GRA35-ITCH interaction affected Toxoplasma fitness in IFNγ-activated human fibroblasts, likely due to ITCH's role in recruiting ubiquitin and the parasite-restriction factor RNF213 to the parasitophorous vacuole membrane. These findings identify a new role of host E3 ubiquitin ligase ITCH in mediating effector-triggered immunity, a critical concept that involves recognizing intracellular pathogens and initiating host innate immune responses.IMPORTANCEEffector-triggered immunity represents an innate immune defense mechanism that plays a crucial role in sensing and controlling intracellular pathogen infection. The NLRP1 inflammasome in the Lewis rats can detect Toxoplasma infection, which triggers proptosis in infected macrophages and eliminates the parasite's replication niche. The work reported here revealed that host E3 ubiquitin ligase ITCH is able to recognize and interact with Toxoplasma effector protein GRA35 localized on the parasite-host interface, leading to NLRP1 inflammasome activation in Lewis rat macrophages. Furthermore, ITCH-GRA35 interaction contributes to the restriction of Toxoplasma in human fibroblasts stimulated by IFNγ. Thus, this research provides valuable insights into understanding pathogen recognition and restriction mediated by host E3 ubiquitin ligase.


Assuntos
Toxoplasma , Animais , Humanos , Ratos , Adenosina Trifosfatases , Imunidade Inata , Inflamassomos , Proteínas NLR , Proteínas de Protozoários/metabolismo , Ratos Endogâmicos Lew , Toxoplasma/metabolismo , Ubiquitina-Proteína Ligases
10.
Int Heart J ; 65(1): 109-118, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38296563

RESUMO

Ivabradine (IVA) reduces heart rate by inhibiting hyperpolarization-activated cyclic nucleotide-gated channels (HCNs), which play a role in the promotion of pacemaker activity in cardiac sinoatrial node cells. HCNs are highly expressed in neural and myocardial tissues and are involved in the modulation of inflammatory neuropathic pain. However, whether IVA exerts any effect on myocardial inflammation in the pathogenesis of heart failure is unclear. We employed single-cell RNA sequencing (scRNA-seq) in porcine cardiac myosin-induced experimental autoimmune myocarditis rat model to determine the effects and mechanisms of IVA. Lewis rats (n = 32) were randomly divided into the normal, control, high-dose-IVA, and low-dose-IVA groups. Heart rate and blood pressure were measured on days 0 and 21, respectively. Echocardiography was performed on day 22, and inflammation of the myocardium was evaluated via histopathological examination. Western blot was employed to detect the expression of HCN1-4, MinK-related protein 1 (MiRP1), matrix metalloproteinase 2 (MMP-2), MMP-9, and transforming growth factor-ß (TGF-ß). Furthermore, enzyme-linked immunosorbent assay was performed to measure serum IL-1, IL-6, and TNF-α. The relative mRNA levels of collagen I, collagen III, and α-smooth muscle actin (α-SMA) were determined via qRT-PCR. We found that IVA reduced the total number of cells infiltrated into the myocardium, particularly in the subset of fibroblasts, endocardia, and monocytes. IVA administration ameliorated cardiac inflammation and reduced collagen production. Results of the echocardiography indicated that left ventricular internal diameter at end-systole LVIDs increased whereas left ventricular ejection fraction and left ventricular fractional shortening decreased in the control group. IVA improved cardiac performance. The expression of HCN4 and MiRP1 protein and the level of serum IL-1, IL-6, and TNF-α were decreased by IVA treatment. In conclusion, HCNs and the helper proteins were increased in the profile of myocardial inflammation. HCNs may be involved in the regulation of myocardial inflammation by inhibiting immune cell infiltration. Our findings can contribute to the development of IVA-based combination therapies for the future treatment of cardiac inflammation and heart failure.


Assuntos
Insuficiência Cardíaca , Traumatismos Cardíacos , Miocardite , Ratos , Animais , Suínos , Ivabradina/farmacologia , Ivabradina/uso terapêutico , Miocardite/metabolismo , Metaloproteinase 2 da Matriz/metabolismo , Volume Sistólico , Interleucina-6/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Função Ventricular Esquerda , Ratos Endogâmicos Lew , Miocárdio/patologia , Insuficiência Cardíaca/metabolismo , Inflamação/metabolismo , Traumatismos Cardíacos/metabolismo , Colágeno/metabolismo , Interleucina-1/metabolismo
11.
Plast Reconstr Surg ; 153(1): 79e-90e, 2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-37014960

RESUMO

BACKGROUND: Adipose stem cells (ASCs) are a promising cell-based immunotherapy because of their minimally invasive harvest, high yield, and immunomodulatory capacity. In this study, the authors investigated the effects of local versus systemic ASC delivery on vascularized composite allotransplant survival and alloimmune regulation. METHODS: Lewis rats received hind-limb transplants from Brown Norway rats and were administered donor-derived ASCs (passage 3 or 4, 1 × 10 6 cells/rat) locally in the allograft, or contralateral limb, or systemically at postoperative day 1. Recipients were treated intraperitoneally with rabbit anti-rat lymphocyte serum on postoperative days 1 and 4 and daily tacrolimus for 21 days. Limb allografts were monitored for clinical signs of rejection. Donor cell chimerism, immune cell differentiation, and cytokine expression in recipient lymphoid organs were measured by flow cytometric analysis. The immunomodulation function of ASCs was tested by mixed lymphocyte reaction assay and ASC stimulation studies. RESULTS: Local-ASC-treated recipients achieved significant prolonged allograft survival (85.7% survived >130 days; n = 6) compared with systemic-ASC and contralateral-ASC groups. Secondary donor skin allografts transplanted to the local-ASC long-term surviving recipients accepted permanently without additional immunosuppression. The increases in donor cell chimerism and regulatory T-cells were evident in blood and draining lymph nodes of the local-ASC group. Moreover, mixed lymphocyte reaction showed that ASCs inhibited donor-specific T-cell proliferation independent of direct ASC-T-cell contact. ASCs up-regulated antiinflammatory molecules in response to cytokine stimulation in vitro. CONCLUSION: Local delivery of ASCs promoted long-term survival and modulated alloimmune responses in a full major histocompatibility complex-mismatched vascularized composite allotransplantation model and was more effective than systemic administration. CLINICAL RELEVANCE STATEMENT: ASCs are a readily available and abundant source of therapeutic cells that could decrease the amount of systemic immunosuppression required to maintain limb and face allografts.


Assuntos
Alotransplante de Tecidos Compostos Vascularizados , Ratos , Animais , Coelhos , Ratos Endogâmicos Lew , Ratos Endogâmicos BN , Membro Posterior/cirurgia , Aloenxertos , Citocinas , Células-Tronco , Sobrevivência de Enxerto , Imunossupressores
12.
J Plast Reconstr Aesthet Surg ; 88: 57-65, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37952438

RESUMO

BACKGROUND: The hypothesis of this study was that trigeminal nerve stimulation (TNS) or peripheral nerve stimulation (PNS) could improve functional outcomes of peripheral nerve injury in a rat forelimb model when compared to control rats not receiving electrical stimulation (ES). While PNS is known to improve outcomes after nerve surgery, the role of TNS has not been explored. METHODS: Lewis rats were trained to perform a reach and grasp task before receiving a 2 mm gap repair of the ulnar and median nerves and randomized into four treatment groups: (1) sham injury, (2) nerve injury with sham ES, (3) nerve injury with PNS, and (4) nerve injury with TNS. Functional motor (median pull force and percent success in motor task) and sensory metrics (forelimb paw withdrawal thresholds) were collected both pre-injury and throughout rehabilitation. Nerves stained using Gomori's trichrome were assessed quantitatively and qualitatively. RESULTS: The sham ES group did not recover their pre-injury baseline functional outcomes. In contrast, the TNS and PNS groups fully recovered following injury, with no difference in functional outcomes between the pre-injury baseline and the final week of rehabilitation (P > 0.05, all). Histomorphology results demonstrated no quantitative difference, but qualitative differences in architecture were evident. CONCLUSIONS: Electrical stimulation of the trigeminal nerve or the injured nerve improved the functional outcomes of nerve regeneration in rodents. Histomorphology results of nerves from the TNS group support the proposed central mechanisms. This is an important step in translating this therapy as an adjunct, non-invasive treatment for high, mixed nerve injuries in humans.


Assuntos
Traumatismos dos Nervos Periféricos , Roedores , Animais , Ratos , Estimulação Elétrica/métodos , Membro Anterior , Nervo Mediano , Regeneração Nervosa/fisiologia , Traumatismos dos Nervos Periféricos/cirurgia , Ratos Endogâmicos Lew , Recuperação de Função Fisiológica/fisiologia , Nervo Trigêmeo
13.
Macromol Biosci ; 24(4): e2300414, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38035771

RESUMO

This study focuses to develop a unique hybrid hydrogel bioink formulation that incorporates poly(ethylene glycol) dimethacrylate (PEGDMA), gelatin (Gel), and methylcellulose (MC). This formulation achieves the necessary viscosity for extrusion-based three-dimensional (3D) printing of scaffolds intended for bone regeneration. After thorough optimization of the hybrid bioink system with Gel, three distinct scaffold groups are investigated in vitro: 0%, 3%, and 6% (w/v) Gel. These scaffold groups are examined for their morphology, mechanical strength, biodegradation, in vitro cell proliferation and differentiation, and in vivo bone formation using a rat cranial defect model. Among these scaffold compositions, the 3% Gel scaffold exhibits the most favorable characteristics, prompting further evaluation as a rat mesenchymal stem cell (rMSC) carrier in a critical-size cranial defect within a Lewis rat model. The compressive strength of all three scaffold groups range between 1 and 2 MPa. Notably, the inclusion of Gel in the scaffolds leads to enhanced bioactivity and cell adhesion. The Gel-containing scaffolds notably amplify osteogenic differentiation, as evidenced by alkaline phosphatase (ALP) and Western blot analyses. The in vivo results, as depicted by microcomputed tomography, showcase augmented osteogenesis within cell-seeded scaffolds, thus validating this innovative PEGDMA-based scaffold system as a promising candidate for cranial bone defect healing.


Assuntos
Metacrilatos , Engenharia Tecidual , Alicerces Teciduais , Ratos , Animais , Engenharia Tecidual/métodos , Osteogênese , Microtomografia por Raio-X , Ratos Endogâmicos Lew , Polietilenoglicóis/farmacologia , Regeneração Óssea , Hidrogéis/farmacologia , Diferenciação Celular , Impressão Tridimensional
14.
J Burn Care Res ; 45(1): 234-241, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-37801462

RESUMO

Skin substitutes including allografts remain a standard therapeutic approach to promote healing of both acute and chronic large wounds. However, none have resulted in the regrowth of lost and damaged tissues and scarless wound healing. Here, we demonstrate skin allograft chimerism and repair through the mobilization of endogenous bone marrow-derived stem and immune cells in rats and swine. We show that pharmacological mobilization of bone marrow stem cells and immune cells into the circulation promotes host repopulation of skin allografts and restoration of the skin's normal architecture without scarring and minimal contracture. When skin allografts from DA rats are transplanted into GFP transgenic Lewis recipients with a combination of AMD3100 and low-dose FK506 (AF) therapy, host-derived GFP-positive cells repopulate and/or regenerate cellular components of skin grafts including epidermis and hair follicles and the grafts become donor-host chimeric skin. Using AF combination therapy, burn wounds with skin allografts were healed by newly regenerated chimeric skin with epidermal appendages and pigmentation and without contracture in swine.


Assuntos
Queimaduras , Contratura , Ratos , Animais , Suínos , Transplante de Medula Óssea , Medula Óssea , Quimerismo , Ratos Endogâmicos Lew , Queimaduras/cirurgia , Transplante de Pele , Aloenxertos , Células-Tronco , Sobrevivência de Enxerto
15.
Zhongguo Zhong Yao Za Zhi ; 48(20): 5603-5611, 2023 Oct.
Artigo em Chinês | MEDLINE | ID: mdl-38114153

RESUMO

This study aims to investigate the effects of Blaps rynchopetera Fairmaire and/or cyclophosphamide on the proliferation and apoptosis of lung cancer cells and decipher the underlying mechanism. B. rynchopetera and cyclophosphamide-containing serum and blank serum were prepared from SD rats. Cell counting kit-8(CCK-8) assay was employed to examine the proliferation of lung cancer cell lines A549 and Lewis treated with corresponding agents. The Jin's formula method was used to evaluate the combined effect of the two drugs. According to the evaluation results, appropriate drug concentrations and lung cancer cell line were selected for subsequent experiments, which included control, B. rynchopetera, cyclophosphamide, B. rynchopetera + cyclophosphamide, and B. rynchopetera + Wnt/ß-catenin pathway agonist lithium chloride(LiCl) groups. Immunocytochemistry was employed to measure the expression of proliferation-related proteins in Lewis cells after drug interventions. Flow cytometry was employed to determine the cell cycle and apoptosis. The expression levels of proliferating cell nuclear antigen(PCNA), cyclinD1, B-cell lymphoma 2(Bcl-2), Bcl-2-assiocated X protein(Bax), Wnt1, and ß-catenin were determined by Western blot. The results showed that B. rynchopetera and/or cyclophosphamide significantly inhibited the proliferation of A549 and Lewis cells. Compared with B. rynchopetera alone, the combination increased the inhibition rate on cell proliferation. The combination of B. rynchopetera and cyclophosphamide demonstrated a synergistic effect according to Jin's formula-based evaluation. Compared with the control group, the B. rynchopetera, cyclophosphamide, and B. rynchopetera + cyclophosphamide groups showed increased proportion of Lewis cells in G_0/G_1 phase, increased apoptosis rate, up-regulated expression of Bax, and down-regulated expression of PCNA, cyclinD1, Bcl-2, Wnt1, and ß-catenin. Compared with the cyclophosphamide group, the combination group showed increased proportion of cells in G_0/G_1 phase, increased apoptosis rate, up-regulated expression of Bax, and down-regulated expression of PCNA, cyclinD1, Bcl-2, Wnt1, and ß-catenin. Compared with the B. rynchopetera group, the B. rynchopetera + LiCl group had deceased proportion of cells in G_0/G_1 phase, decreased apoptosis rate, down-regulated expression of Bax, and up-regulated expression of PCNA, cyclinD1, Bcl-2, Wnt1, and ß-catenin. The results indicated that B. rynchopetera could inhibit the proliferation, arrest the cell cycle, and induce the apoptosis of lung cancer cells by inhibiting the Wnt/ß-catenin signaling pathway. Moreover, B. rynchopetera had a synergistic effect with cyclophosphamide.


Assuntos
Neoplasias Pulmonares , Via de Sinalização Wnt , Ratos , Animais , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , beta Catenina/genética , beta Catenina/metabolismo , Antígeno Nuclear de Célula em Proliferação , Proteína X Associada a bcl-2/metabolismo , Ratos Endogâmicos Lew , Ratos Sprague-Dawley , Apoptose , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proliferação de Células , Ciclofosfamida , Linhagem Celular Tumoral
16.
Front Immunol ; 14: 1274982, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38143768

RESUMO

Background: This study aimed to analyze the biomarkers that may reliably indicate rejection or tolerance and the mechanism that underlie the induction and maintenance of liver transplantation (LT) tolerance related to immunosuppressant or mesenchymal stem cells (MSCs). Methods: LT models of Lewis-Lewis and F344-Lewis rats were established. Lewis-Lewis rats model served as a control (Syn). F344-Lewis rats were treated with immunosuppressant alone (Allo+IS) or in combination with MSCs (Allo+IS+MSCs). Intrahepatic cell composition particularly immune cells was compared between the groups by single-cell sequencing. Analysis of subclusters, KEGG pathway analysis, and pseudotime trajectory analysis were performed to explore the potential immunoregulatory mechanisms of immunosuppressant alone or combined with MSCs. Results: Immunosuppressants alone or combined with MSCs increases the liver tolerance, to a certain extent. Single-cell sequencing identified intrahepatic cell composition signature, including cell subpopulations of B cells, cholangiocytes, endothelial cells, erythrocytes, hepatic stellate cells, hepatocytes, mononuclear phagocytes, neutrophils, T cells, and plasmacytoid dendritic cells. Immunosuppressant particularly its combination with MSCs altered the landscape of intrahepatic cells in transplanted livers, as well as gene expression patterns in immune cells. MSCs may be included in the differentiation of T cells, classical monocytes, and non-classical monocytes. Conclusion: These findings provided novel insights for better understanding the heterogeneity and biological functions of intrahepatic immune cells after LT treated by IS alone or in combination with MSCs. The identified markers of immune cells may serve as the immunotherapeutic targets for MSC treatment of liver transplant rejection.


Assuntos
Transplante de Fígado , Células-Tronco Mesenquimais , Ratos , Animais , Células Endoteliais , Ratos Endogâmicos F344 , Ratos Endogâmicos Lew , Imunossupressores/metabolismo , Células-Tronco Mesenquimais/metabolismo , Análise de Célula Única
17.
J Transl Med ; 21(1): 799, 2023 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-37946197

RESUMO

BACKGROUND: Heart transplantation (HTX) is the standard treatment for end-stage heart failure. However, reperfusion following an ischemic period can contribute to myocardial injury. Neutrophil infiltration, along with the subsequent release of tissue-degrading neutrophil elastase (NE)-related serine proteases and oxygen-derived radicals, is associated with adverse graft outcomes. The inhibition of cathepsin C (CatC) has been shown to block NE-related protease activation. We hypothesized that the CatC inhibitor BI-9740 improves graft function after HTX. METHODS: In a rat model of HTX, the recipient Lewis rats were orally administered with either a placebo (n = 12) or BI-9740 (n = 11, 20 mg/kg) once daily for 12 days. Donor hearts from untreated Lewis rats were explanted, preserved in a cardioplegic solution, and subsequently heterotopically implanted. In vivo left-ventricular (LV) graft function was assessed after 1 h of reperfusion. The proteolytic activity of neutrophil serine proteases was determined in bone marrow lysates from BI-9740-treated and control rats. Additionally, myocardial morphological changes were examined, and heart samples underwent immunohistochemistry and western blot analysis. RESULTS: The NE-related proteolytic activity in bone marrow cell lysates was markedly decreased in the BI-9740-treated rats compared to those of the placebo group. Histopathological lesions, elevated CatC and myeloperoxidase-positive cell infiltration, and nitrotyrosine immunoreactivity with an increased number of poly(ADP-ribose) polymerase (PARP)-1-positive cells were lowered in the hearts of animals treated with BI-9740 compared to placebo groups. Regarding the functional parameters of the implanted graft, improvements were observed in both systolic function (LV systolic pressure 110 ± 6 vs 74 ± 6 mmHg; dP/dtmax 2782 ± 149 vs 2076 ± 167 mmHg/s, LV developed pressure, at an intraventricular volume of 200 µl, p < 0.05) and diastolic function in the hearts of BI-9740 treated animals compared with those receiving the only placebo. Furthermore, the administration of BI-9740 resulted in a shorter graft re-beating time compared to the placebo group. However, this study did not provide evidence of DNA fragmentation, the generation of both superoxide anions and hydrogen peroxide, correlating with the absence of protein alterations related to apoptosis, as evidenced by western blot in grafts after HTX. CONCLUSIONS: We provided experimental evidence that pharmacological inhibition of CatC improves graft function following HTX in rats.


Assuntos
Cisteína Proteases , Transplante de Coração , Ratos , Animais , Humanos , Transplante de Coração/métodos , Catepsina C , Doadores de Tecidos , Ratos Endogâmicos Lew , Coração , Espécies Reativas de Oxigênio , Serina Proteases
18.
J Plast Reconstr Aesthet Surg ; 87: 329-338, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37925923

RESUMO

BACKGROUND: Motor function recovery following acellular nerve allograft (ANA) repair remains inferior to autologous nerve reconstruction. We investigated the functional recovery of ANAs after combined mesenchymal stem cell (MSC) delivery and surgical angiogenesis in a rat sciatic nerve defect model. METHODS: In 100 Lewis rats, unilateral sciatic nerve defects were reconstructed with (I) autografts, (II) ANAs, (III) ANAs wrapped with a superficial inferior epigastric artery fascial (SIEF) flap, combined with either (IV) undifferentiated MSCs or (V) Schwann cell-like differentiated MSCs. The tibialis anterior muscle area was evaluated during the survival period using ultrasonography. Functional recovery, histomorphometry, and immunofluorescence were assessed at 12 and 16 weeks. RESULTS: At 12 weeks, the addition of surgical angiogenesis and MSCs improved ankle contractures. The SIEF flap also significantly improved compound muscle action potential (CMAP) outcomes compared with ANAs. Autografts outperformed all groups in muscle force and weight. At 16 weeks, ankle contractures of ANAs remained inferior to autografts and SIEF, whereas the CMAP amplitude was comparable between groups. The muscle force of autografts remained superior to all other groups, and the muscle weight of ANAs remained inferior to autografts. No differences were found in histomorphometry outcomes between SIEF groups and ANAs. Vascularity, determined by CD34 staining, was significantly higher in SIEF groups compared with ANAs. CONCLUSIONS: The combination of surgical angiogenesis and MSCs did not result in a synergistic improvement in functional outcomes. In a short nerve gap model, the adipofascial flap may provide sufficient MSCs to ANAs without additional ex vivo MSC seeding.


Assuntos
Contratura , Células-Tronco Mesenquimais , Ratos , Animais , Aloenxertos , Ratos Endogâmicos Lew , Nervo Isquiático/cirurgia , Nervo Isquiático/irrigação sanguínea , Células-Tronco Mesenquimais/fisiologia , Regeneração Nervosa/fisiologia
19.
Cells ; 12(20)2023 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-37887332

RESUMO

Bone morphogenetic protein (BMP) gene delivery to Lewis rat lumbar intervertebral discs (IVDs) drives bone formation anterior and external to the IVD, suggesting the IVD is inhospitable to osteogenesis. This study was designed to determine if IVD destruction with a proteoglycanase, and/or generating an IVD blood supply by gene delivery of an angiogenic growth factor, could render the IVD permissive to intra-discal BMP-driven osteogenesis and fusion. Surgical intra-discal delivery of naïve or gene-programmed cells (BMP2/BMP7 co-expressing or VEGF165 expressing) +/- purified chondroitinase-ABC (chABC) in all permutations was performed between lumbar 4/5 and L5/6 vertebrae, and radiographic, histology, and biomechanics endpoints were collected. Follow-up anti-sFlt Western blotting was performed. BMP and VEGF/BMP treatments had the highest stiffness, bone production and fusion. Bone was induced anterior to the IVD, and was not intra-discal from any treatment. chABC impaired BMP-driven osteogenesis, decreased histological staining for IVD proteoglycans, and made the IVD permissive to angiogenesis. A soluble fragment of VEGF Receptor-1 (sFlt) was liberated from the IVD matrix by incubation with chABC, suggesting dysregulation of the sFlt matrix attachment is a possible mechanism for the chABC-mediated IVD angiogenesis we observed. Based on these results, the IVD can be manipulated to foster vascular invasion, and by extension, possibly osteogenesis.


Assuntos
Disco Intervertebral , Núcleo Pulposo , Ratos , Animais , Núcleo Pulposo/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Ratos Endogâmicos Lew , Disco Intervertebral/patologia , Proteoglicanas/metabolismo
20.
HNO ; 71(12): 763-766, 2023 Dec.
Artigo em Alemão | MEDLINE | ID: mdl-37819274

RESUMO

In November/December 1978, the first successful tracheal transplantation in humans was performed at the University ENT Clinic in Cologne by the then senior physicians Kurt G. Rose (later chief physician in Dortmund) and Klaus Sesterhenn (later chief physician in Duisburg). Director of the clinic at that time was Prof. Dr. Dr. Fritz Wustrow [10]. The immunological foundations and preliminary work were laid by Sesterhenn in the context of a total of 338 tracheal transplants in Lewis rats in the 1970s (details in the text). The first successful tracheal transplantation was performed on 18 November 1978 in a, then 19-year-old patient who had previously had a motorcycle accident. The donor organ was explanted in the University Hospital Essen and transplanted about 160 min later in the Cologne University ENT Clinic, first into a pocket of the right sternocleidomastoid muscle. The definitive transplantation took place on 06 December 1978. In the article, the circumstances at that time and the perioperative course in the Cologne University ENT Clinic are described by an eyewitness. The former patient is still well and without complications after more than four decades.


Assuntos
Traqueia , Ratos , Animais , Humanos , Adulto Jovem , Adulto , Ratos Endogâmicos Lew , Traqueia/transplante
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA