Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 238
Filtrar
1.
J Nutr Sci Vitaminol (Tokyo) ; 70(1): 19-24, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38417848

RESUMO

In this study, we investigated the effects of a porcine liver protein hydrolysate (PLH) diet on lipid metabolism in Otsuka Long-Evans Tokushima Fatty (OLETF) rats, a model of type II diabetes. OLETF rats (20-wk-old males) were pair-fed with either a PLH diet containing 20% PLH or a casein diet for 14 wk. Dietary PLH significantly lowered serum cholesterol and phospholipid concentrations, mainly by decreasing low-density lipoprotein and high-density lipoprotein fractions. Fecal cholesterol was significantly increased in the PLH diet group; however, the total bile acid concentration in the feces was not significantly different between the groups. In addition, the PLH diet significantly decreased serum thiobarbituric acid reactive substance concentrations. These results suggest that dietary PLH exerts hyperlipidemic and antioxidant effects, indicating that it is a novel functional food ingredient.


Assuntos
Diabetes Mellitus Tipo 2 , Carne de Porco , Carne Vermelha , Ratos , Masculino , Animais , Suínos , Ratos Endogâmicos OLETF , Diabetes Mellitus Tipo 2/metabolismo , Antioxidantes/farmacologia , Hidrolisados de Proteína/farmacologia , Hidrolisados de Proteína/metabolismo , Fígado/metabolismo , Colesterol/metabolismo
2.
J Diabetes Investig ; 14(4): 560-569, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36815317

RESUMO

AIMS/INTRODUCTION: We previously showed that upregulation of myocardial adenosine monophosphate deaminase (AMPD) is associated with pressure overload-induced diastolic dysfunction in type 2 diabetes hearts. Here, we examined involvement of AMPD localized in the endoplasmic reticulum-mitochondria interface in mitochondrial Ca2+ overload and its pathological significance. MATERIALS AND METHODS: We used type 2 diabetes Otsuka Long-Evans Tokushima Fatty rats (OLETF) and non-diabetes Long-Evans Tokushima Otsuka Fatty rats (LETO) as well as AMPD3-overexpressing H9c2 cells and human embryonic kidney 293 cells. RESULTS: OLETF, but not LETO, showed diastolic dysfunction under the condition of phenylephrine-induced pressure overload. The levels of 90-kDa AMPD3 in outer mitochondrial membranes/endoplasmic reticulum and mitochondria-associated endoplasmic reticulum membrane (MAM) fractions were significantly higher in OLETF than in LETO. The area of the MAM quantified by electron microscopic analysis was 57% larger, mitochondrial Ca2+ level under the condition of pressure overload was 47% higher and Ca2+ retention capacity in MAM-containing crude mitochondria isolated before the pressure overloading was 21% lower in OLETF than in LETO (all P-values <0.05). Transfection of FLAG-AMPD3 in cells resulted in significant enlargement of the MAM area, and impairment in pyruvate/malate-driven adenosine triphosphate-stimulated and uncoupler-stimulated mitochondrial respiration compared with those in control cells. CONCLUSIONS: The findings suggest that 90-kDa AMPD3 localized in the endoplasmic reticulum-mitochondria interface promotes formation of the MAM, inducing mitochondrial Ca2+ overload and dysfunction in type 2 diabetes hearts.


Assuntos
Diabetes Mellitus Tipo 2 , Ratos , Animais , Humanos , Diabetes Mellitus Tipo 2/patologia , Ratos Endogâmicos OLETF , Ratos Long-Evans , Mitocôndrias/patologia , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/patologia , Monofosfato de Adenosina/metabolismo
3.
PLoS One ; 17(6): e0270330, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35749411

RESUMO

The preventive effects of regular exercise on obesity-related health problems are carried over to the non-exercise detraining period, even when physical activity decreases with aging. However, it remains unknown whether regular childhood exercises can be carried over to adulthood. Therefore, this study aimed to investigate the effects of long-term childhood exercise and detraining on lipid accumulation in organs to prevent obesity in adulthood. Four-week-old male Otsuka Long-Evans Tokushima Fatty (OLETF) rats were used as obese animals. OLETF rats were allocated into sedentary and exercise groups: exercise from 4- to 12-week-old and detraining from 12- to 20-week-old. At 12-week-old immediately after the exercise period, regular exercise completely inhibited hyperphagia, obesity, enlarged pancreatic islets, lipid accumulation and lobular inflammation in the liver, hypertrophied adipocytes in the white adipose tissue (WAT), and brown adipose tissue (BAT) whitening in OLETF rats. Additionally, exercise attenuated the decrease in the ratio of muscle wet weight to body weight associated with obesity. Decreased food consumption was maintained during the detraining period, which inhibited obesity and diabetes at 20-week-old after the detraining period. Histologically, childhood exercise inhibited the enlargement of pancreatic islets after the detraining period. In addition, inhibition of lipid accumulation was completely maintained in the WAT and BAT after the detraining period. However, the effectiveness was only partially successful in lipid accumulation and inflammation in the liver. The ratio of muscle wet weight to body weight was maintained after detraining. In conclusion, early long-term regular exercise effectively prevents obesity and diabetes in childhood, and its effectiveness can be tracked later in life. The present study suggests the importance of exercise during childhood and adolescence to inhibit hyperphagia-induced lipid accumulation in metabolic-related organs in adulthood despite exercise cessation.


Assuntos
Hiperfagia , Obesidade , Adulto , Animais , Exercício Físico , Humanos , Inflamação , Lipídeos , Masculino , Obesidade/patologia , Obesidade/prevenção & controle , Ratos , Ratos Endogâmicos OLETF
4.
Physiol Rep ; 10(10): e15300, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35585770

RESUMO

Follistatin-like 1 (FSTL1), which is mainly secreted from skeletal muscle and myocardium, upregulates protein kinase B (Akt) and endothelial nitric oxide synthase (eNOS) phosphorylation in vascular endothelial cells. It is unclear whether skeletal muscle- and myocardium-derived FSTL1 secretion induced by aerobic exercise training is involved in the reduction of arterial stiffness via arterial NO production in obese rats. This study aimed to clarify whether aerobic exercise training-induced FSTL1 secretion in myocardium and skeletal muscle is associated with a reduction in arterial stiffness via arterial Akt-eNOS signaling pathway in obese rats. Sixteen Otsuka Long-Evans Tokushima Fatty (OLETF) obese rats were randomly divided into two groups: sedentary control (OLETF-CON) and eight-week aerobic exercise training (treadmill for 60min at 25m/min, 5days/week, OLETF-AT). Eight Long-Evans Tokushima Otsuka (LETO) rats were used as a healthy sedentary control group. In OLETF-CON, serum FSTL1, arterial Akt and eNOS phosphorylation, and arterial nitrite/nitrate (NOx) levels were significantly lower, and carotid-femoral pulse wave velocity (cfPWV) was significantly greater than those in LETO. These parameters were improved in the OLETF-AT compared to the OLETF-CON. In the OLETF-AT, FSTL1 levels in slow-twitch fiber-rich soleus muscle were significantly greater than those in the OLETF-CON, but not in myocardium, fast-twitch fiber-rich tibialis anterior muscle, and adipose tissue. Serum FSTL1 levels were positively correlated with soleus FSTL1, arterial eNOS phosphorylation, and NOx levels and negatively correlated with cfPWV. Thus, aerobic exercise training-induced FSTL1 secretion in slow-twitch fiber-rich muscles may be associated with a reduction in arterial stiffness via arterial NO production in obese rats.


Assuntos
Proteínas Relacionadas à Folistatina , Músculo Esquelético , Óxido Nítrico , Obesidade , Condicionamento Físico Animal , Rigidez Vascular , Animais , Células Endoteliais/metabolismo , Folistatina/metabolismo , Proteínas Relacionadas à Folistatina/metabolismo , Músculo Esquelético/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Obesidade/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Análise de Onda de Pulso , Ratos , Ratos Endogâmicos OLETF
5.
Life Sci ; 298: 120504, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35367242

RESUMO

AIMS: Hyperinsulinemia is an important causative factor of prostate enlargement in type 2 diabetes (T2D), however, clinically prostate weight increases during hypoinsulinemic condition. To investigate the pathogenesis of prostate enlargement and effects of phosphodiesterase 5 inhibitor (PDE5i), male Otsuka Long-Evans Tokushima Fatty (OLETF) and Long-Evans Tokushima Otsuka (LETO) rats were used as T2D and control, respectively. MATERIALS AND METHODS: OLETF and LETO rats were treated with oral tadalafil (100 µg/kg/day) or vehicle for 12 wks from at the age of 36 wks. KEY FINDINGS: Prostate weight of OLETF rats was significantly higher than that of LETO at 36 wks, and increased at 48 wks. In OLETF rats, prostate blood flow was significantly lower at 48 wks versus 36 wks. Twelve-week-tadalafil treatment increased prostate blood flow and suppressed prostate weight increase in both strains. This change was inversely correlated with changes in prostate expressions of hypoxia-inducible factor-1 alpha (HIF-1α) and 8-hydroxy-2'-deoxyguanosine (8-OHdG). Increases with age were observed in mRNA and/or protein levels of cytokines interleukin (IL)-6, IL-8, and tumor necrosis factor-alpha (TNF-α) and cell growth factors insulin-like growth factor-1 (IGF-1), basic fibroblast growth factor (bFGF), and transforming growth factor-beta (TGF-ß); especially IL-6, TNF-α, IGF-1, bFGF and TGF-ß increased with T2D. Tadalafil suppressed these cytokines and growth factors. SIGNIFICANCE: These data suggest chronic ischemia caused by T2D leads to oxidative stress, resulting in prostate enlargement through upregulation of several cytokines and growth factors. Treatment with PDE5i improves prostate ischemia and might prevent enlargement via suppression of cytokines and growth factors in T2D.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Animais , Glicemia , Diabetes Mellitus Tipo 2/metabolismo , Fator de Crescimento Insulin-Like I , Masculino , Inibidores da Fosfodiesterase 5/farmacologia , Inibidores da Fosfodiesterase 5/uso terapêutico , Próstata/patologia , Ratos , Ratos Endogâmicos OLETF , Ratos Long-Evans , Tadalafila/farmacologia , Tadalafila/uso terapêutico , Fator de Crescimento Transformador beta , Fator de Necrose Tumoral alfa , Aumento de Peso
6.
Endocrinol Metab (Seoul) ; 37(2): 221-232, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35316888

RESUMO

BACKGROUND: Obesity, the prevalence of which is increasing due to the lack of exercise and increased consumption of Westernized diets, induces various complications, including ophthalmic diseases. For example, obesity is involved in the onset of cataracts. METHODS: To clarify the effects and mechanisms of midodrine, an α1-adrenergic receptor agonist, in cataracts induced by obesity, we conducted various analytic experiments in Otsuka Long-Evans Tokushima Fatty (OLETF) rats, a rat model of obesity. RESULTS: Midodrine prevented cataract occurrence and improved lens clearance in OLETF rats. In the lenses of OLETF rats treated with midodrine, we observed lower levels of aldose reductase, tumor necrosis factor-α, and sorbitol, but higher levels of hexokinase, 5'-adenosine monophosphate-activated protein kinase-alpha, adenosine 5´-triphosphate, peroxisome proliferator-activated receptordelta, peroxisome proliferator-activated receptor gamma coactivator 1-alpha, superoxide dismutase, and catalase. CONCLUSION: The ameliorating effects of midodrine on cataracts in the OLETF obesity rat model are exerted via the following three mechanisms: direct inhibition of the biosynthesis of sorbitol, which causes cataracts; reduction of reactive oxygen species and inflammation; and (3) stimulation of normal aerobic glycolysis.


Assuntos
Catarata , Midodrina , Animais , Catarata/tratamento farmacológico , Catarata/etiologia , Catarata/prevenção & controle , Glicólise , Midodrina/uso terapêutico , Obesidade/complicações , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Ratos , Ratos Endogâmicos OLETF , Ratos Long-Evans , Receptores Adrenérgicos/metabolismo , Receptores Adrenérgicos/uso terapêutico , Sorbitol/uso terapêutico
7.
PLoS One ; 17(1): e0263300, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35100325

RESUMO

d-allulose is a rare sugar that has been reported to possess anti-hyperglycemic effects. In the present study, we hypothesized that d-allulose is effective in attenuating the progression of diabetic nephropathy in the Otsuka Long-Evans Tokushima Fatty (OLETF) rat model of type 2 diabetes mellitus. Drinking water with or without 3% d-allulose was administered to OLETF rats for 13 weeks. Long-Evans Tokushima Otsuka rats that received drinking water without d-allulose were used as non-diabetic control rats. d-allulose significantly attenuated the increase in blood glucose levels and progressive mesangial expansion in the glomerulus, which is regarded as a characteristic of diabetic nephropathy, in OLETF rats. d-allulose also attenuated the significant increases in renal IL-6 and tumor necrosis factor-α mRNA levels in OLETF rats, which is a proinflammatory parameter. Additionally, we showed that d-allulose suppresses mesangial matrix expansion, but its correlation with suppressing renal inflammation in OLETF rats should be investigated further. Collectively, our results support the hypothesis that d-allulose can prevent diabetic nephropathy in rats.


Assuntos
Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/patologia , Nefropatias Diabéticas/tratamento farmacológico , Progressão da Doença , Frutose/uso terapêutico , Substâncias Protetoras/uso terapêutico , Animais , Glicemia/metabolismo , Peso Corporal , Citocinas/genética , Citocinas/metabolismo , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/urina , Nefropatias Diabéticas/sangue , Nefropatias Diabéticas/urina , Comportamento de Ingestão de Líquido , Jejum/sangue , Jejum/urina , Comportamento Alimentar , Frutose/farmacologia , Mediadores da Inflamação/metabolismo , Insulina/sangue , Rim/efeitos dos fármacos , Rim/patologia , Masculino , Tamanho do Órgão , Substâncias Protetoras/farmacologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos Endogâmicos OLETF
8.
J Diabetes Res ; 2021: 3181347, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34712738

RESUMO

AIMS: We investigated the changes of retinal structure in normal glucose tolerance (NGT), impaired glucose tolerance (IGT), diabetes mellitus (DM), and diabetic kidney disease (DKD) stages in Otsuka Long-Evans Tokushima Fatty (OLETF) rats. METHODS: We assigned OLETF rats to four groups based on their OGTT results and 24 h urinary microalbumin (24 h UMA) levels: NGT, IGT, DM, and DKD groups. We observed the structural and the corresponding pathological changes and quantified the expression of HIF-1α, iNOS, NF-κB, VEGF, ICAM-1, and occludin in the retina. RESULTS: Significant damage to the retinal structure, especially in retinal ganglion cells (RGCs), was observed in the IGT stage. The expression of HIF-1α, iNOS, NF-κB, VEGF, and ICAM-1 was significantly upregulated, while that of occludin was downregulated. CONCLUSION: Significant retinal neuropathy occurs in the IGT stage. Inflammation and hypoxia may damage the blood retina barrier (BRB), leading to diabetic retinopathy.


Assuntos
Diabetes Mellitus/metabolismo , Nefropatias Diabéticas/metabolismo , Retinopatia Diabética/metabolismo , Intolerância à Glucose/metabolismo , Retina/metabolismo , Animais , Barreira Hematorretiniana/metabolismo , Barreira Hematorretiniana/patologia , Barreira Hematorretiniana/ultraestrutura , Diabetes Mellitus/patologia , Retinopatia Diabética/patologia , Intolerância à Glucose/patologia , Teste de Tolerância a Glucose , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Molécula 1 de Adesão Intercelular/metabolismo , Microscopia Eletrônica de Transmissão , NF-kappa B/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Ocludina/metabolismo , Ratos , Ratos Endogâmicos OLETF , Retina/patologia , Retina/ultraestrutura , Células Ganglionares da Retina/metabolismo , Células Ganglionares da Retina/patologia , Células Ganglionares da Retina/ultraestrutura , Fator A de Crescimento do Endotélio Vascular/metabolismo
9.
Sci Rep ; 11(1): 9894, 2021 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-33972568

RESUMO

Excess fructose consumption contributes to development obesity, metabolic syndrome, and nonalcoholic fatty liver disease (NAFLD). Uric acid (UA), a metabolite of fructose metabolism, may have a direct role in development of NAFLD, with unclear mechanism. This study aimed to evaluate role of fructose and UA in NAFLD and explore mechanisms of allopurinol (Allo, a UA lowering medication) on NAFLD in Otsuka Long-Evans Tokushima Fatty (OLETF) rats fed a high fructose diet (HFrD), with Long-Evans Tokushima Otsuka (LETO) rats used as a control. There were six groups: LETO, LETO-Allo, OLETF, OLETF-Allo, OLETF-HFrD, and OLETF-HFrD-Allo. HFrD significantly increased body weight, epididymal fat weight, and serum concentrations of UA, cholesterol, triglyceride, HbA1c, hepatic enzymes, HOMA-IR, fasting insulin, and two hour-glucose after intraperitoneal glucose tolerance tests, as well as NAFLD activity score of liver, compared to the OLETF group. Allopurinol treatment significantly reduced hepatic steatosis, epididymal fat, serum UA, HOMA-IR, hepatic enzyme levels, and cholesterol in the OLETF-HFrD-Allo group. Additionally, allopurinol significantly downregulated expression of lipogenic genes, upregulated lipid oxidation genes, downregulated hepatic pro-inflammatory cytokine genes, and decreased ER-stress induced protein expression, in comparison with the OLETF-HFrD group. In conclusion, allopurinol ameliorates HFrD-induced hepatic steatosis through modulation of hepatic lipid metabolism, inflammation, and ER stress pathway. UA may have a direct role in development of fructose-induced hepatic steatosis, and allopurinol could be a candidate for prevention or treatment of NAFLD.


Assuntos
Alopurinol/farmacologia , Diabetes Mellitus Tipo 2/complicações , Frutose/efeitos adversos , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Alopurinol/uso terapêutico , Animais , Glicemia/análise , Glicemia/metabolismo , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/imunologia , Diabetes Mellitus Tipo 2/metabolismo , Modelos Animais de Doenças , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Frutose/metabolismo , Teste de Tolerância a Glucose , Humanos , Inflamação/sangue , Inflamação/tratamento farmacológico , Inflamação/imunologia , Inflamação/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/patologia , Masculino , Hepatopatia Gordurosa não Alcoólica/sangue , Hepatopatia Gordurosa não Alcoólica/imunologia , Hepatopatia Gordurosa não Alcoólica/metabolismo , Ratos , Ratos Endogâmicos OLETF , Ácido Úrico/metabolismo , Xantina Oxidase/antagonistas & inibidores , Xantina Oxidase/metabolismo
10.
Gut ; 70(10): 1847-1856, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33208408

RESUMO

OBJECTIVE: The mechanisms underlying type 2 diabetes resolution after Roux-en-Y gastric bypass (RYGB) are unclear. We suspected that glucose excretion may occur in the small bowel based on observations in humans. The aim of this study was to evaluate the mechanisms underlying serum glucose excretion in the small intestine and its contribution to glucose homeostasis after bariatric surgery. DESIGN: 2-Deoxy-2-[18F]-fluoro-D-glucose (FDG) was measured in RYGB-operated or sham-operated obese diabetic rats. Altered glucose metabolism was targeted and RNA sequencing was performed in areas of high or low FDG uptake in the ileum or common limb. Intestinal glucose metabolism and excretion were confirmed using 14C-glucose and FDG. Increased glucose metabolism was evaluated in IEC-18 cells and mouse intestinal organoids. Obese or ob/ob mice were treated with amphiregulin (AREG) to correlate intestinal glycolysis changes with changes in serum glucose homeostasis. RESULTS: The AREG/EGFR/mTOR/AKT/GLUT1 signal transduction pathway was activated in areas of increased glycolysis and intestinal glucose excretion in RYGB-operated rats. Intraluminal GLUT1 inhibitor administration offset improved glucose homeostasis in RYGB-operated rats. AREG-induced signal transduction pathway was confirmed using IEC-18 cells and mouse organoids, resulting in a greater capacity for glucose uptake via GLUT1 overexpression and sequestration in apical and basolateral membranes. Systemic and local AREG administration increased GLUT1 expression and small intestinal membrane translocation and prevented hyperglycaemic exacerbation. CONCLUSION: Bariatric surgery or AREG administration induces apical and basolateral membrane GLUT1 expression in the small intestinal enterocytes, resulting in increased serum glucose excretion in the gut lumen. Our findings suggest a novel, potentially targetable glucose homeostatic mechanism in the small intestine.


Assuntos
Glicemia/metabolismo , Fluordesoxiglucose F18/metabolismo , Intestino Delgado/metabolismo , Anfirregulina/farmacologia , Animais , Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Derivação Gástrica , Transportador de Glucose Tipo 1/metabolismo , Glicólise , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Ratos , Ratos Endogâmicos OLETF , Transdução de Sinais/efeitos dos fármacos
11.
Biol Pharm Bull ; 43(12): 1987-1992, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33268721

RESUMO

Extracellular nucleotides play an important role in the regulation of vascular function, and an abnormal vascular function is an important participant in the development and progression of diabetic vascular complications. The purpose of this study was to determine whether contractile responses induced by extracellular nucleotides and a dinucleotide, uridine adenosine tetraphosphate (Up4A), in femoral arteries would be altered at the chronic stage of type 2 diabetes. We determined the changes in contractile reactivity induced by ATP, uridine triphosphate (UTP), uridine diphosphate (UDP), and Up4A in the femoral arteries of Otsuka Long-Evans Tokushima Fatty (OLETF) rats (aged male type 2 diabetic rats) and, Long-Evans Tokushima Otsuka (LETO) rats (controls for OLETF rats). ATP-induced contractions were greater in OLETF rats than in LETO rats. UTP-induced contractions were lower in OLETF rats than in LETO rats. UDP- and Up4A-induced contractions were similar between OLETF and LETO rats. The femoral artery contractile changes induced by the extracellular nucleotides and dinucleotide were similar when nitric oxide synthase was inhibited. These results suggest that the extent of femoral artery contractile reactivity to nucleotides/dinucleotides differs during long-term duration of type 2 diabetes.


Assuntos
Diabetes Mellitus Tipo 2/fisiopatologia , Artéria Femoral/efeitos dos fármacos , Artéria Femoral/fisiopatologia , Contração Muscular/efeitos dos fármacos , Nucleotídeos/farmacologia , Animais , Diabetes Mellitus Tipo 2/genética , Masculino , Contração Muscular/fisiologia , Técnicas de Cultura de Órgãos , Ratos , Ratos Endogâmicos OLETF , Especificidade da Espécie
12.
Cells ; 9(10)2020 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-32993012

RESUMO

We attempted to design an ophthalmic in situ gel formulation incorporating disulfiram (DIS) nanoparticles (Dis-NPs/ISG) and demonstrated the therapeutic effect of Dis-NPs/ISG on retinal dysfunction in 15-month-old Otsuka Long-Evans Tokushima Fatty (OLETF) rats, a rat model of diabetes. The DIS particles were crushed using a bead mill to prepare the nanoparticles, and the Dis-NPs/ISG was prepared using a combination of the DIS nanoparticles and an in situ gelling system based on methylcellulose (MC). The particle size of the Dis-NPs/ISG was 80-250 nm, and there was no detectable precipitation or aggregation for 1 month. Moreover, the Dis-NPs/ISG was gelled at 37 °C, and the drug was delivered into the retina by instillation. Only diethyldithiocarbamate (DDC) was detected in the retina (DIS was not detected) when the Dis-NPs/ISG was instilled in the right eye, and the DDC levels in the right retina were significantly higher than those in the left retina. In addition, the retinal residence time of the drug was prolonged by the application of the in situ gelling system, since the DDC levels in the retinas of rats instilled with Dis-NPs/ISG were higher than those in DIS nanoparticles without MC. Furthermore, repetitive instillation of the Dis-NPs/ISG attenuated the deterioration of electroretinograms (ERGs) in 15-month-old OLETF rats by preventing the collapse of ATP production via excessive nitric oxide and recovered the decrease in retinal function. These findings provide important information for the development of novel therapeutic approaches to diabetic retinopathy.


Assuntos
Retinopatia Diabética/tratamento farmacológico , Géis/farmacologia , Nanopartículas/uso terapêutico , Doenças Retinianas/tratamento farmacológico , Trifosfato de Adenosina/metabolismo , Animais , Retinopatia Diabética/patologia , Modelos Animais de Doenças , Dissulfiram/química , Dissulfiram/farmacologia , Géis/química , Humanos , Nanopartículas/química , Ratos , Ratos Endogâmicos OLETF , Retina/efeitos dos fármacos , Retina/patologia , Doenças Retinianas/patologia
13.
Brain Res ; 1740: 146834, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32304687

RESUMO

To investigate the effect of electroacupuncture (EA) on cognitive function and insulin resistance (IR) in an Al/D-gal-induced aging model for Alzheimer's disease (AD) using Ostuka Long-Evans Tokushima Fatty (OLETF) rats. The Al/D-gal-OLETF rats for AD were randomly divided into the EA and non-EA groups. Cognitive function was assessed using the Morris water maze (MWM). The morphology of the hippocampal neurons was observed using hematoxylin & eosin (H&E) staining. Aß and total Tau in the hippocampus and cerebrospinal fluid (CSF) were detected using western blotting (WB) and enzyme-linked immunosorbent assay (ELISA). Fasting blood glucose (FPG) was determined using the glucose oxidase method. Plasma fasting insulin (FINS), serum C-peptide (C-P), and CSF insulin were detected using ELISA. The expression of the genes and proteins in the PI3K signaling pathway was detected using quantitative real-time PCR and WB. After EA intervention, the hippocampal Aß and total Tau protein levels, body weight, FPG, FINS, and C-P were significantly decreased. The MWM showed that the percentage of time in the target quadrant of the EA group was elevated in the probe test. The protein levels of p-IRS1, p-IRS2, IDE, and p-GSK3ß were significantly increased, while p-PI3K-p85α and p-Akt were decreased. In conclusion, EA improves cognitive function and insulin resistance in rat models of AD. The PI3K/Akt signaling pathway is involved in those changes.


Assuntos
Envelhecimento/metabolismo , Disfunção Cognitiva/metabolismo , Eletroacupuntura/métodos , Resistência à Insulina/fisiologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Envelhecimento/genética , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/terapia , Animais , Disfunção Cognitiva/genética , Disfunção Cognitiva/terapia , Galactose/genética , Galactose/metabolismo , Masculino , Aprendizagem em Labirinto/fisiologia , Fosfatidilinositol 3-Quinases/genética , Proteínas Proto-Oncogênicas c-akt/genética , Ratos , Ratos Endogâmicos OLETF , Ratos Long-Evans , Transdução de Sinais/fisiologia
14.
J Diabetes Res ; 2019: 2694215, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31828157

RESUMO

Hyperbaric treatment improves hyperglycemia and hyperinsulinemia in type 2 diabetes associated with obesity. However, its mode of action is unknown. The purpose of the present study was to investigate the influences of regular hyperbaric treatment with normal air at 1.3 atmospheres absolute (ATA) on glucose tolerance in type 2 diabetes with obesity. The focus was directed on inflammatory cytokines in the adipose tissue and skeletal muscle. Otsuka Long-Evans Tokushima Fatty (OLETF) rats were used as models of type 2 diabetes with obesity and Long-Evans Tokushima Otsuka (LETO) rats served as healthy controls. The rats were randomly assigned to untreated or hyperbaric treatment groups exposed to 1.3 ATA for 8 h d-1 and 5 d wk-1 for 16 wks. Glucose levels were significantly higher in the diabetic than in the healthy control rats. Nevertheless, glucose levels at 30 and 60 min after glucose administration were significantly lower in the diabetic rats treated with 1.3 ATA than in the untreated diabetic rats. Insulin levels at fasting and 120 min after glucose administration were significantly lower in the diabetic rats treated with 1.3 ATA than in the untreated diabetic rats. Hyperbaric treatment also increased interleukin-10 (IL-10) expression in the skeletal muscle and decreased tumor necrosis factor α (TNFα) expression in adipose tissue. These results suggested that TNFα downregulation and IL-10 upregulation in diabetic rats subjected to hyperbaric treatment participate in the crosstalk between the adipose and skeletal muscle tissues and improve glucose intolerance.


Assuntos
Pressão do Ar , Glicemia/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Insulina/metabolismo , Obesidade/metabolismo , Tecido Adiposo/metabolismo , Animais , Teste de Tolerância a Glucose , Inflamação/genética , Inflamação/metabolismo , Interleucina-10/genética , Interleucina-10/metabolismo , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Masculino , Músculo Esquelético/metabolismo , Obesidade/imunologia , RNA Mensageiro/metabolismo , Ratos , Ratos Endogâmicos OLETF , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
15.
J Diabetes Res ; 2019: 4709715, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31737684

RESUMO

AIMS: We investigated the changes of renal structure and its function in normal glucose tolerance (NGT), impaired glucose tolerance (IGT), diabetes mellitus (DM), and diabetic kidney disease (DKD) stages in OLETF rats and explored the role of the INS/IRS-1/PI3-K/Akt signaling pathway. METHODS: OLETF rats were assigned into four groups on the basis of OGTT results and 24 h urinary microalbumin: NGT, IGT, DM, and DKD groups. The changes of renal structure and function and the corresponding pathological changes were observed. The absorption of albumin and the expression of megalin, cubilin, IRS-1, PI3-K, and Akt in NRK-52E cells were measured after being stimulated by different concentrations of insulin. RESULTS: In the IGT group, the index which reflects the function of renal tubule-like N-acetyl-ß-glucosaminidase, neutrophil gelatinase-associated lipocalin, retinol-binding protein, and cystatin C was higher than those in the control group and the NGT group (P < 0.05). Significant renal structure damages, especially in renal tubules, were observed in the IGT group. In the presence of insulin at a high concentration, the IRS-1/PI3-K/Akt signaling pathway in renal tubular epithelial cells was inhibited, and the expression of megalin and cubilin was significantly downregulated which was accompanied by a minimum uptake of albumin. CONCLUSIONS: In contrast to DKD, the renal structural damage and functional changes in the IGT stage, in which we propose the term "IGT kidney disease," mainly manifest as renal tubular injury. Insulin resistance and compensatory hyperinsulinemia may be involved in its pathogenesis.


Assuntos
Hiperinsulinismo/metabolismo , Proteínas Substratos do Receptor de Insulina/metabolismo , Insulina/metabolismo , Nefropatias/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Glicemia/metabolismo , Intolerância à Glucose/complicações , Intolerância à Glucose/metabolismo , Intolerância à Glucose/patologia , Teste de Tolerância a Glucose , Hiperinsulinismo/complicações , Hiperinsulinismo/patologia , Rim/metabolismo , Rim/patologia , Nefropatias/etiologia , Nefropatias/patologia , Ratos , Ratos Endogâmicos OLETF , Transdução de Sinais/fisiologia
16.
BMC Cancer ; 18(1): 1164, 2018 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-30477453

RESUMO

BACKGROUND: Insulin resistance (IR) is closely associated with the progression of hepatocellular carcinoma (HCC). Acyclic retinoid (ACR) targets retinoid X receptor α and reportedly prevents HCC recurrence in clinical practice. Angiotensin-II receptor blocker (ARB) can also inhibit experimental hepatocarcinogenesis and HCC development. These are reported to suppress IR-based hepatocarcinogenesis; however, limited data are available regarding the combined effects of both these agents. This study aimed to investigate the combined chemopreventive effect of ACR and ARB on liver tumorigenesis on rats with congenital diabetes. METHODS: Male diabetic Otsuka Long-Evans Tokushima Fatty (OLETF) and non-diabetic Long-Evans Tokushima Otsuka (LETO) rats underwent 70% partial hepatectomy following a single intraperitoneal injection of diethylnitrosamine to induce hepatocarcinogenesis and the administration of ACR (peretinoin, 40 mg/kg/day), ARB (losartan, 30 mg/kg/day), and a combination of ACR and ARB. Six weeks thereafter, we assessed the size and number of the pre-neoplastic lesions (PNL) as well as the altered angiogenesis, oxidative stress, and chronic inflammation in the liver. Moreover, we assessed the effects exerted by ACR and ARB on in vitro cell growth in human HCC cell lines and human umbilical vascular endothelial cells (HUVECs). RESULTS: OLETF rats showed increase in the size and number of PNLs compared to LETO rats. ACR suppressed the augmentation in size and number of PNLs in the OLETF rats with suppression of cell growth, intrahepatic angiogenesis, lipid peroxidation, oxidative DNA damage, and proinflammatory cytokine production. Combining ACR with ARB enhanced the tumor-suppressive effect and ameliorated intrahepatic angiogenesis, lipid peroxidation, and proinflammatory status; however, cell growth and oxidative DNA damage remained unchanged. IR-mimetic condition accelerated in vitro proliferative activity in human HCC cells, while ACR inhibited this proliferation with G0/G1 arrest and apoptosis. Furthermore, ACR and ARB significantly attenuated the HUVECs proliferation and tubular formation under the IR-mimetic condition, and a combination of both agents demonstrated greater inhibitory effects on HUVEC growth than each single treatment. CONCLUSIONS: ACR and ARB exert a combined inhibitory effect against IR-based hepatocarcinogenesis by the inhibition of cell growth, intrahepatic angiogenesis, and oxidative stress. Thus, this combination therapy appears to hold potential as a chemopreventive treatment therapy against HCC.


Assuntos
Antagonistas de Receptores de Angiotensina/farmacologia , Transformação Celular Neoplásica/induzido quimicamente , Dietilnitrosamina/efeitos adversos , Neoplasias Hepáticas/induzido quimicamente , Neoplasias Hepáticas/prevenção & controle , Substâncias Protetoras/farmacologia , Tretinoína/análogos & derivados , Animais , Biomarcadores , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , Modelos Animais de Doenças , Sinergismo Farmacológico , Humanos , Peroxidação de Lipídeos/efeitos dos fármacos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas Experimentais , Masculino , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Endogâmicos OLETF , Tretinoína/farmacologia
17.
Int J Mol Sci ; 19(11)2018 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-30424007

RESUMO

Type 2 diabetes mellitus (T2DM) is a chronic disease manifested by hyperglycemia. It is essential to effectively control hyperglycemia to prevent complications of T2DM. Here, we hypothesize that repression of transcriptional activity of forkhead box O1 (FoxO1) via histone deacetylase inhibitors (HDACi) ameliorates hyperglycemia in T2DM rats. METHODS: Male Long-Evans Tokushima Otsuka (LETO) and Otsuka Long-Evans Tokushima Fatty (OLETF) rats aged 14 weeks were administered sodium valproate (VPA, 0.71% w/v) dissolved in water for 20 weeks. Electrophoretic mobility shift assay (EMSA) and luciferase assay were performed for elucidation of transcriptional regulation through acetylation of FoxO1 by HDACi. RESULTS: VPA attenuated blood glucose levels in accordance with a decrease in the expression of gluconeogenic genes in hyperglycemic OLETF rats. It has been shown that HDAC class I-specific and HDAC class IIa-specific inhibitors, as well as pan-HDAC inhibitors decrease FoxO1 enrichment at the cis-element of target gene promoters. Mutations in FoxO1 prevent its acetylation, thereby increasing its transcriptional activity. HDAC3 and HDAC4 interact with FoxO1, and knockdown of HDAC3, HDAC4, or their combination increases FoxO1 acetylation, thereby decreasing the expression of gluconeogenic genes. CONCLUSIONS: These results indicate that HDACi attenuates the transcriptional activity of FoxO1 by impeding deacetylation, thereby ameliorating hyperglycemia in T2DM rats.


Assuntos
Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/genética , Proteína Forkhead Box O1/genética , Inibidores de Histona Desacetilases/uso terapêutico , Hiperglicemia/tratamento farmacológico , Hiperglicemia/genética , Transcrição Gênica , Acetilação , Animais , Diabetes Mellitus Experimental/genética , Proteína Forkhead Box O1/metabolismo , Gluconeogênese/efeitos dos fármacos , Gluconeogênese/genética , Glucose/toxicidade , Glucose-6-Fosfato/metabolismo , Células Hep G2 , Histona Desacetilases/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Masculino , Fosfoenolpiruvato Carboxiquinase (GTP)/genética , Fosfoenolpiruvato Carboxiquinase (GTP)/metabolismo , Ratos Endogâmicos OLETF , Proteínas Repressoras , Transcrição Gênica/efeitos dos fármacos , Ácido Valproico/administração & dosagem , Ácido Valproico/farmacologia , Ácido Valproico/uso terapêutico
18.
PLoS One ; 13(10): e0205456, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30304029

RESUMO

This study examined the effect of changes in body temperature during exercise on signal transduction-related glucose uptake in the skeletal muscle of type 2 diabetic rats. Otsuka Long-Evans Tokushima Fatty rats (25 weeks of age), which have type 2 diabetes, were divided into the following four weight-matched groups; control (CON, n = 6), exercised under warm temperature (WEx, n = 8), exercised under cold temperature (CEx, n = 8), and heat treatment (HT, n = 6). WEx and CEx animals were subjected to running on a treadmill at 20 m/min for 30 min under warm (25°C) or cold (4°C) temperature. HT animals were exposed to single heat treatment (40-41°C for 30 min) in a heat chamber. Rectal and muscle temperatures were measured immediately after exercise and heat treatment, and the gastrocnemius muscle was sampled under anesthesia. Rectal and muscle temperatures increased significantly in rats in the WEx and HT, but not the CEx, groups. The phosphorylation levels of Akt, AS160, and TBC1D1 (Thr590) were significantly higher in the WEx and HT groups than the CON group (p < 0.05). In contrast, the phosphorylation levels of AMP-activated protein kinase, ACC, and TBC1D1 (Ser660) were significantly higher in rats in the WEx and CEx groups than the CON group (p < 0.05) but did not differ significantly between rats in the WEx and CEx groups. Body temperature elevation by heat treatment did not activate the AMPK signaling. Our data suggest that body temperature elevation during exercise is essential for activating the Akt signaling pathway in the skeletal muscle of rats with type 2 diabetic rats.


Assuntos
Temperatura Corporal/fisiologia , Diabetes Mellitus Experimental/fisiopatologia , Diabetes Mellitus Tipo 2/fisiopatologia , Atividade Motora/fisiologia , Músculo Esquelético/enzimologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Tipo 2/induzido quimicamente , Proteínas Ativadoras de GTPase/genética , Proteínas Ativadoras de GTPase/metabolismo , Insulina/sangue , Masculino , Condicionamento Físico Animal , Proteínas/genética , Proteínas/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Ratos , Ratos Endogâmicos OLETF
19.
PLoS One ; 13(5): e0196895, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29718998

RESUMO

Although exercise is effective in improving obesity and hyperinsulinemia, the exact influence of exercise on the capillary density of skeletal muscles remains unknown. The aim of this study was to investigate the effects of low-intensity exercise training on metabolism in obesity with hyperinsulinemia, focusing specifically on the capillary density within the skeletal muscle. Otsuka Long-Evans Tokushima fatty (OLETF) rats were used as animal models of obesity with hyperinsulinemia, whereas Long-Evans Tokushima Otsuka (LETO) rats served as controls (no obesity, no hyperinsulinemia). The animals were randomly assigned to either non-exercise or exercise groups (treadmill running for 60 min/day, for 4 weeks). The exercise groups were further divided into subgroups according to training mode: single bout (60 min, daily) vs. multiple bout (three bouts of 20 min, daily). Fasting insulin levels were significantly higher in OLETF than in LETO rats. Among OLETF rats, there were no significant differences in fasting glucose levels between the exercise and the non-exercise groups, but the fasting insulin levels were significantly lower in the exercise group. Body weight and triacylglycerol levels in the liver were significantly higher in OLETF than in LETO rats; however, among OLETF rats, these levels were significantly lower in the exercise than in the non-exercise group. The capillary-to-fiber ratio of the soleus muscle was significantly higher in OLETF than in LETO rats; however, among OLETF rats, the ratio was lower in the exercise group than in the non-exercise group. No significant differences in any of the studied parameters were noted between the single-bout and multiple-bout exercise training modes among either OLETF or LETO rats. These results suggest that low-intensity exercise training improves insulin sensitivity and fatty liver. Additionally, the fact that attenuation of excessive capillarization in the skeletal muscle of OLETF rats was accompanied by improvement in increased body weight.


Assuntos
Capilares/patologia , Hiperinsulinismo/sangue , Músculo Esquelético/irrigação sanguínea , Obesidade/sangue , Adiponectina/sangue , Animais , Glicemia , Terapia por Exercício , Ácidos Graxos/sangue , Hiperinsulinismo/patologia , Hiperinsulinismo/terapia , Insulina/sangue , Metabolismo dos Lipídeos , Masculino , Músculo Esquelético/metabolismo , Obesidade/patologia , Obesidade/terapia , Ratos Endogâmicos OLETF , Triglicerídeos/sangue , Fator de Necrose Tumoral alfa/sangue
20.
Am J Physiol Endocrinol Metab ; 314(6): E564-E571, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29406784

RESUMO

Adapter protein containing Pleckstrin homology (PH) domain, phosphotyrosine-binding (PTB) domain, and leucine zipper motif 1 (APPL1) has been reported as a positive regulator of insulin-stimulated Akt activation. The expression of APPL1 is reduced in skeletal muscles of type 2 diabetic (T2D) animals, implying that APPL1 may be an important factor affecting insulin sensitivity. However, the regulation of APPL1 expression and the physiological interventions modulating these effects are unclear. Accordingly, we first confirmed that APPL1 expression and insulin-induced Akt phosphorylation were significantly attenuated in skeletal muscles of T2D rats. Additionally, we found that APPL1 expression levels were significantly correlated with fasting blood glucose levels. Next, we identified important signals involved in the expression of APPL1. APPL1 mRNA expression increased upon AMP-activated protein kinase, calcium, p38 mitogen-activated protein kinase, and insulin-like growth factor-1 signal activation. Moreover, acute resistance exercise in vivo significantly activated these signaling pathways. Finally, through in vivo experiments, we found that chronic resistance training (RT) increased APPL1 expression and activated insulin-induced Akt signaling in skeletal muscles of rats with T2D. Furthermore, variations in APPL1 expression (i.e., the difference between control and RT muscles) significantly correlated with variations in insulin-stimulated Akt phosphorylation under the same conditions. Therefore, chronic RT recovered attenuated APPL1 expression and improved insulin-stimulated Akt phosphorylation in skeletal muscles of T2D rats. Accordingly, APPL1 may be a key regulator of insulin resistance in skeletal muscle, and RT may be an important physiological treatment increasing APPL1 expression, which is attenuated in T2D.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Insulina/metabolismo , Músculo Esquelético/metabolismo , Proteínas do Tecido Nervoso/genética , Treinamento Resistido , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Células Cultivadas , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Regulação para Baixo/genética , Insulina/farmacologia , Resistência à Insulina/genética , Camundongos , Proteínas do Tecido Nervoso/metabolismo , Condicionamento Físico Animal/fisiologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Ratos Endogâmicos OLETF , Ratos Long-Evans , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA