Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Brain Res Bull ; 211: 110939, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38574865

RESUMO

PURPOSE: To evaluate the potential efficacy of Triptolide (TP) on cerebral ischemia/reperfusion injury (CIRI) and to uncover the underlying mechanism through which TP regulates CIRI. METHODS: We constructed a middle cerebral artery occlusion/reperfusion (MCAO/R) mouse model to simulate CIRI, and established a lipopolysaccharide (LPS)-stimulated BV-2 cell model to mimic the inflammatory state during CIRI. The neurological deficits score (NS) of mice were measured for assessment of neurologic functions. Both the severity of cerebral infarction and the apoptosis level in mouse brain tissues or cells were respectively evaluated using corresponding techniques. The expression levels of Ionized calcium binding adapter molecule 1 (IBA-1), Inductible Nitric Oxide Synthase (iNOS), Arginase 1 (Arg-1), Tumor necrosis factor-α (TNF-α), Interleukin 1ß (IL-1ß), Cysteine histoproteinase S (CTSS), Fractalkine, chemokine C-X3-C motif receptor 1 (CX3CR1), BCL-2-associated X protein (BAX), and antiapoptotic proteins (Bcl-2) were detected using immunofluorescence, qRT-PCR as well as Western blot, respectively. RESULTS: Relative to the Sham group, treatment with TP attenuated the increased NS, infarct area and apoptosis levels observed in MCAO/R mice. Upregulated expression levels of IBA-1, iNOS, Arg-1, TNF-α and IL-1ß were found in MCAO/R mice, while TP suppressed iNOS, TNF-α and IL-1ß expression, and enhanced Arg-1 expression in both MCAO/R mice and LPS-stimulated BV-2 cells. Besides, TP inhibited the CTSS/Fractalkine/CX3CR1 pathway activation in both MCAO/R mice and LPS-induced BV-2 cells, while overexpression of CTSS reversed such effect. Co-culturing HT-22 cells with TP+LPS-treated BV-2 cells led to enhanced cell viability and decreased apoptosis levels. However, overexpression of CTSS further aggravated HT-22 cell injury. CONCLUSION: TP inhibits not only microglia polarization towards the M1 phenotype by suppressing the CTSS/Fractalkine/CX3CR1 pathway activation, but also HT-22 apoptosis by crosstalk with BV-2 cells, thereby ameliorating CIRI. These findings reveal a novel mechanism of TP in improving CIRI, and offer potential implications for addressing the preventive and therapeutic strategies of CIRI.


Assuntos
Isquemia Encefálica , Diterpenos , Compostos de Epóxi , Infarto da Artéria Cerebral Média , Fenantrenos , Traumatismo por Reperfusão , Transdução de Sinais , Animais , Masculino , Camundongos , Apoptose/efeitos dos fármacos , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/metabolismo , Quimiocina CX3CL1/efeitos dos fármacos , Quimiocina CX3CL1/metabolismo , Receptor 1 de Quimiocina CX3C/efeitos dos fármacos , Receptor 1 de Quimiocina CX3C/metabolismo , Modelos Animais de Doenças , Diterpenos/farmacologia , Compostos de Epóxi/farmacologia , Infarto da Artéria Cerebral Média/tratamento farmacológico , Infarto da Artéria Cerebral Média/metabolismo , Camundongos Endogâmicos C57BL , Microglia/efeitos dos fármacos , Microglia/metabolismo , Fármacos Neuroprotetores/farmacologia , Fenantrenos/farmacologia , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos
2.
Int Immunopharmacol ; 88: 106854, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32771945

RESUMO

Acute kidney injury (AKI) to chronic kidney disease (CKD) progression has become a life-threatening disease. However, an effective therapeuticstrategyis still needed. The pathophysiology of AKI-to-CKD progression involves chronic inflammation and renal fibrosis driven by macrophage activation, which is physiologically dependent on colony-stimulating factor-1 receptor (CSF-1R) signaling. In this study, we modulated macrophage infiltration through oral administration of the CSF-1R inhibitor GW2580 in an ischemia-reperfusion (I/R)-induced AKI model to evaluate its therapeutic effects on preventing the progression of AKI to CKD. We found that GW2580 induced a significant reduction in the number of macrophages in I/R-injured kidneys and attenuated I/R-induced renal injury and subsequent interstitial fibrosis. By flow cytometry, we observed that the reduced macrophages were primarily Ly6C+ inflammatory macrophages in the GW2580-treated kidneys, while there was no significant difference in the number and percentage of Ly6C-CX3CR1+ macrophages. We further found that these reduced macrophages also demonstrated some characteristics of M2-like macrophages, which have been generally regarded as profibrotic subtypes in chronic inflammation. These results indicate the existence of phenotypic and functional crossover between Ly6C+ and M2-like macrophages in I/R kidneys, which induces AKI worsening to CKD. In conclusion, therapeutic GW2580 treatment alleviates acute renal injury and subsequent fibrosis by reducing Ly6C+ M2-like macrophage infiltration in ischemia-induced AKI.


Assuntos
Injúria Renal Aguda/tratamento farmacológico , Anisóis/farmacologia , Antígenos Ly/imunologia , Macrófagos/imunologia , Inibidores de Proteínas Quinases/farmacologia , Pirimidinas/farmacologia , Receptor de Fator Estimulador de Colônias de Macrófagos/antagonistas & inibidores , Traumatismo por Reperfusão/complicações , Injúria Renal Aguda/etiologia , Injúria Renal Aguda/imunologia , Injúria Renal Aguda/patologia , Animais , Anisóis/uso terapêutico , Antígenos Ly/efeitos dos fármacos , Antígenos Ly/metabolismo , Receptor 1 de Quimiocina CX3C/efeitos dos fármacos , Receptor 1 de Quimiocina CX3C/imunologia , Receptor 1 de Quimiocina CX3C/metabolismo , Modelos Animais de Doenças , Fibrose/tratamento farmacológico , Fibrose/etiologia , Fibrose/imunologia , Túbulos Renais/efeitos dos fármacos , Ativação de Macrófagos/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos Endogâmicos C57BL , Inibidores de Proteínas Quinases/uso terapêutico , Pirimidinas/uso terapêutico , Insuficiência Renal Crônica/tratamento farmacológico , Insuficiência Renal Crônica/etiologia , Insuficiência Renal Crônica/imunologia
3.
Med Sci Monit ; 24: 8804-8811, 2018 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-30517088

RESUMO

BACKGROUND Fractalkine is widely expressed throughout the brain and spinal cord, where it can exert effects on pain enhancement and hyperalgesia by activating microglia through CX3C chemokine receptor 1 (CX3CR1), which triggers the release of several pro-inflammatory cytokines in the spinal cord. Fractalkine has also been shown to increase cytosolic calcium ([Ca2+]i) in microglia. MATERIAL AND METHODS Based on the characteristics of CX3CR1, a G protein-coupled receptor, we explored the role of inositol 1,4,5-trisphosphate (IP3) signaling in fractalkine-induced inflammatory response in BV-2 cells in vitro. The effect and the underlying mechanism induced by fractalkine in the brain were observed using a mouse model with intracerebroventricular (i.c.v.) injection of exogenous fractalkine. RESULTS [Ca2+]i was significantly increased and IL-1ß and TNF-α levels were higher in the fractalkine-treated cell groups than in the farctalkine+ 2-APB groups. We found that i.c.v. injection of fractalkine significantly increased p-p38MAPK, IL-1ß, and TNF-α expression in the brain, while i.c.v. injection of a fractalkine-neutralizing antibody (anti-CX3CR1), trisphosphate receptor (IP3R) antagonist (2-APB), or p38MAPK inhibitor (SB203580) prior to fractalkine addition yielded an effective and reliable anti-allodynia effect, following the reduction of p-p38MAPK, IL-1ß, and TNF-α expression. CONCLUSIONS Our results suggest that fractalkine leads to hyperalgesia, and the underlying mechanism may be associated with IP3/p38MAPK-mediated calcium signaling and its phlogogenic properties.


Assuntos
Receptor 1 de Quimiocina CX3C/efeitos dos fármacos , Quimiocina CX3CL1/fisiologia , Hiperalgesia/metabolismo , Animais , Cálcio/metabolismo , Sinalização do Cálcio , Linhagem Celular , Quimiocina CX3CL1/metabolismo , China , Injeções Espinhais , Inositol 1,4,5-Trifosfato/metabolismo , Interleucina-1beta/metabolismo , Ativação de Macrófagos , Camundongos , Microglia/metabolismo , Proteína Quinase 14 Ativada por Mitógeno/metabolismo , Dor/tratamento farmacológico , Receptores de Quimiocinas , Transdução de Sinais/efeitos dos fármacos , Medula Espinal/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
4.
JCI Insight ; 3(8)2018 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-29669928

RESUMO

Although immune checkpoint inhibitors have resulted in durable clinical benefits in a subset of patients with advanced cancer, some patients who did not respond to initial anti-PD-1 therapy have been found to benefit from the addition of salvage chemotherapy. However, the mechanism responsible for the successful chemoimmunotherapy is not completely understood. Here we show that a subset of circulating CD8+ T cells expressing the chemokine receptor CX3CR1 are able to withstand the toxicity of chemotherapy and are increased in patients with metastatic melanoma who responded to chemoimmunotherapy (paclitaxel and carboplatin plus PD-1 blockade). These CX3CR1+CD8+ T cells have effector memory phenotypes and the ability to efflux chemotherapy drugs via the ABCB1 transporter. In line with clinical observation, our preclinical models identified an optimal sequencing of chemoimmunotherapy that resulted in an increase of CX3CR1+CD8+ T cells. Taken together, we found a subset of PD-1 therapy-responsive CD8+ T cells that were capable of withstanding chemotherapy and executing tumor rejection with their unique abilities of drug efflux (ABCB1), cytolytic activity (granzyme B and perforin), and migration to and retention (CX3CR1 and CD11a) at tumor sites. Future strategies to monitor and increase the frequency of CX3CR1+CD8+ T cells may help to design effective chemoimmunotherapy to overcome cancer resistance to immune checkpoint blockade therapy.


Assuntos
Linfócitos T CD8-Positivos/efeitos dos fármacos , Receptor 1 de Quimiocina CX3C/efeitos dos fármacos , Imunoterapia/métodos , Melanoma/imunologia , Neoplasias/tratamento farmacológico , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Animais , Antineoplásicos/uso terapêutico , Linfócitos T CD8-Positivos/imunologia , Receptor 1 de Quimiocina CX3C/imunologia , Carboplatina/uso terapêutico , Citotoxinas/farmacologia , Quimioterapia Combinada , Feminino , Granzimas/farmacologia , Humanos , Masculino , Melanoma/tratamento farmacológico , Melanoma/secundário , Camundongos , Neoplasias/imunologia , Paclitaxel/uso terapêutico , Perforina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA