Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.656
Filtrar
1.
Int J Mol Sci ; 25(8)2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38674095

RESUMO

During periodontitis, the extracellular capsule of Porphyromonas gingivalis favors alveolar bone loss by inducing Th1 and Th17 patterns of lymphocyte response in the infected periodontium. Dendritic cells recognize bacterial antigens and present them to T lymphocytes, defining their activation and polarization. Thus, dendritic cells could be involved in the Th1 and Th17 response induced against the P. gingivalis capsule. Herein, monocyte-derived dendritic cells were obtained from healthy individuals and then stimulated with different encapsulated strains of P. gingivalis or two non-encapsulated isogenic mutants. Dendritic cell differentiation and maturation were analyzed by flow cytometry. The mRNA expression levels for distinct Th1-, Th17-, or T-regulatory-related cytokines and transcription factors, as well as TLR2 and TLR4, were assessed by qPCR. In addition, the production of IL-1ß, IL-6, IL-23, and TNF-α was analyzed by ELISA. The encapsulated strains and non-encapsulated mutants of P. gingivalis induced dendritic cell maturation to a similar extent; however, the pattern of dendritic cell response was different. In particular, the encapsulated strains of P. gingivalis induced higher expression of IRF4 and NOTCH2 and production of IL-1ß, IL-6, IL-23, and TNF-α compared with the non-encapsulated mutants, and thus, they showed an increased capacity to trigger Th1 and Th17-type responses in human dendritic cells.


Assuntos
Citocinas , Células Dendríticas , Porphyromonas gingivalis , Células Th17 , Receptor 2 Toll-Like , Receptor 4 Toll-Like , Porphyromonas gingivalis/imunologia , Humanos , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Células Dendríticas/microbiologia , Células Th17/imunologia , Células Th17/metabolismo , Receptor 2 Toll-Like/metabolismo , Receptor 2 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo , Receptor 4 Toll-Like/genética , Citocinas/metabolismo , Diferenciação Celular , Células Th1/imunologia , Fatores Reguladores de Interferon/metabolismo , Fatores Reguladores de Interferon/genética , Receptor Notch2/genética , Receptor Notch2/metabolismo , Células Cultivadas , Cápsulas Bacterianas/imunologia , Cápsulas Bacterianas/metabolismo , Infecções por Bacteroidaceae/imunologia , Infecções por Bacteroidaceae/microbiologia , Fator de Necrose Tumoral alfa/metabolismo
2.
Viruses ; 16(4)2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38675975

RESUMO

Lymphocytic choriomeningitis virus (LCMV) and Lassa virus (LASV) share many genetic and biological features including subtle differences between pathogenic and apathogenic strains. Despite remarkable genetic similarity, the viscerotropic WE strain of LCMV causes a fatal LASV fever-like hepatitis in non-human primates (NHPs) while the mouse-adapted Armstrong (ARM) strain of LCMV is deeply attenuated in NHPs and can vaccinate against LCMV-WE challenge. Here, we demonstrate that internalization of WE is more sensitive to the depletion of membrane cholesterol than ARM infection while ARM infection is more reliant on endosomal acidification. LCMV-ARM induces robust NF-κB and interferon response factor (IRF) activation while LCMV-WE seems to avoid early innate sensing and failed to induce strong NF-κB and IRF responses in dual-reporter monocyte and epithelial cells. Toll-like receptor 2 (TLR-2) signaling appears to play a critical role in NF-κB activation and the silencing of TLR-2 shuts down IL-6 production in ARM but not in WE-infected cells. Pathogenic LCMV-WE infection is poorly recognized in early endosomes and failed to induce TLR-2/Mal-dependent pro-inflammatory cytokines. Following infection, Interleukin-1 receptor-associated kinase 1 (IRAK-1) expression is diminished in LCMV-ARM- but not LCMV-WE-infected cells, which indicates it is likely involved in the LCMV-ARM NF-κB activation. By confocal microscopy, ARM and WE strains have similar intracellular trafficking although LCMV-ARM infection appears to coincide with greater co-localization of early endosome marker EEA1 with TLR-2. Both strains co-localize with Rab-7, a late endosome marker, but the interaction with LCMV-WE seems to be more prolonged. These findings suggest that LCMV-ARM's intracellular trafficking pathway may facilitate interaction with innate immune sensors, which promotes the induction of effective innate and adaptive immune responses.


Assuntos
Imunidade Inata , Vírus da Coriomeningite Linfocítica , Internalização do Vírus , Vírus da Coriomeningite Linfocítica/imunologia , Vírus da Coriomeningite Linfocítica/patogenicidade , Vírus da Coriomeningite Linfocítica/fisiologia , Animais , Humanos , Camundongos , Receptor 2 Toll-Like/metabolismo , Receptor 2 Toll-Like/genética , Endossomos/metabolismo , NF-kappa B/metabolismo , Transdução de Sinais , Linhagem Celular , Coriomeningite Linfocítica/imunologia , Coriomeningite Linfocítica/virologia , Células Epiteliais/virologia , Células Epiteliais/imunologia
3.
Infect Immun ; 92(5): e0044723, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38629841

RESUMO

Streptococcus pneumoniae, a common colonizer of the upper respiratory tract, invades nasopharyngeal epithelial cells without causing disease in healthy participants of controlled human infection studies. We hypothesized that surface expression of pneumococcal lipoproteins, recognized by the innate immune receptor TLR2, mediates epithelial microinvasion. Mutation of lgt in serotype 4 (TIGR4) and serotype 6B (BHN418) pneumococcal strains abolishes the ability of the mutants to activate TLR2 signaling. Loss of lgt also led to the concomitant decrease in interferon signaling triggered by the bacterium. However, only BHN418 lgt::cm but not TIGR4 lgt::cm was significantly attenuated in epithelial adherence and microinvasion compared to their respective wild-type strains. To test the hypothesis that differential lipoprotein repertoires in TIGR4 and BHN418 lead to the intraspecies variation in epithelial microinvasion, we employed a motif-based genome analysis and identified an additional 525 a.a. lipoprotein (pneumococcal accessory lipoprotein A; palA) encoded by BHN418 that is absent in TIGR4. The gene encoding palA sits within a putative genetic island present in ~10% of global pneumococcal isolates. While palA was enriched in the carriage and otitis media pneumococcal strains, neither mutation nor overexpression of the gene encoding this lipoprotein significantly changed microinvasion patterns. In conclusion, mutation of lgt attenuates epithelial inflammatory responses during pneumococcal-epithelial interactions, with intraspecies variation in the effect on microinvasion. Differential lipoprotein repertoires encoded by the different strains do not explain these differences in microinvasion. Rather, we postulate that post-translational modifications of lipoproteins may account for the differences in microinvasion.IMPORTANCEStreptococcus pneumoniae (pneumococcus) is an important mucosal pathogen, estimated to cause over 500,000 deaths annually. Nasopharyngeal colonization is considered a necessary prerequisite for disease, yet many people are transiently and asymptomatically colonized by pneumococci without becoming unwell. It is therefore important to better understand how the colonization process is controlled at the epithelial surface. Controlled human infection studies revealed the presence of pneumococci within the epithelium of healthy volunteers (microinvasion). In this study, we focused on the regulation of epithelial microinvasion by pneumococcal lipoproteins. We found that pneumococcal lipoproteins induce epithelial inflammation but that differing lipoprotein repertoires do not significantly impact the magnitude of microinvasion. Targeting mucosal innate immunity and epithelial microinvasion alongside the induction of an adaptive immune response may be effective in preventing pneumococcal colonization and disease.


Assuntos
Células Epiteliais , Lipoproteínas , Infecções Pneumocócicas , Streptococcus pneumoniae , Streptococcus pneumoniae/imunologia , Streptococcus pneumoniae/genética , Streptococcus pneumoniae/patogenicidade , Humanos , Lipoproteínas/genética , Lipoproteínas/metabolismo , Lipoproteínas/imunologia , Células Epiteliais/microbiologia , Células Epiteliais/imunologia , Infecções Pneumocócicas/imunologia , Infecções Pneumocócicas/microbiologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Receptor 2 Toll-Like/metabolismo , Receptor 2 Toll-Like/genética , Receptor 2 Toll-Like/imunologia , Nasofaringe/microbiologia , Mutação , Aderência Bacteriana
4.
J Photochem Photobiol B ; 253: 112871, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38402658

RESUMO

Programmed cell death or apoptosis is a critically important mechanism of tissue remodeling and regulates conditions such as cancer, neurodegeneration or stroke. The aim of this research article was to assess the caged Z-DEVD-aminoluciferin substrate for in vivo monitoring of apoptosis after ischemic stroke in TLR2-deficient mice and their TLR2-expressing counterparts. Postischemic inflammation is a significant contributor to ischemic injury development and apoptosis, and it is modified by the TLR2 receptor. Caged Z-DEVD-aminoluciferin is made available for bioluminescence enzymatic reaction by cleavage with activated caspase-3, and therefore it is assumed to be capable of reporting and measuring apoptosis. Apoptosis was investigated for 28 days after stroke in mice which ubiquitously expressed the firefly luciferase transgene. Middle cerebral artery occlusion was performed to achieve ischemic injury, which was followed with magnetic resonance imaging. The scope of apoptosis was determined by bioluminescence with caged Z-DEVD-aminoluciferin, immunofluorescence with activated caspase-3, flow cytometry with annexin-V and TUNEL assay. The linearity of Z-DEVD-aminoluciferin substrate dose effect was shown in the murine brain. Z-DEVD-aminoluciferin was validated as a good tool for monitoring apoptosis following adequate adjustment. By utilizing bioluminescence of Z-DEVD-aminoluciferin after ischemic stroke it was shown that TLR2-deficient mice had lower post-stroke apoptosis than TLR2-expressing wild type mice. In conclusion, Z-DEVD-aminoluciferin could be a valuable tool for apoptosis measurement in living mice.


Assuntos
Luciferina de Vaga-Lumes/análogos & derivados , AVC Isquêmico , Oligopeptídeos , Receptor 2 Toll-Like , Camundongos , Animais , Caspase 3/metabolismo , Receptor 2 Toll-Like/genética , Receptor 2 Toll-Like/metabolismo , Apoptose
5.
J Dent Res ; 103(3): 329-338, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38344758

RESUMO

Porphyromonas gingivalis is a Gram-negative anaerobic bacterium strongly associated with periodontal disease. Toll-like receptor 2 (TLR2) is indispensable for the host response to P. gingivalis, but P. gingivalis escapes from immune clearance via TLR2-dependent activation of phosphoinositide-3-kinase (PI3K). To probe the TLR2-dependent escape pathway of P. gingivalis, we analyzed the TLR2 interactome induced following P. gingivalis infection or activation by a synthetic lipopeptide TLR2/1 agonist on human macrophages overexpressing TLR2. Interacting proteins were stabilized by cross-linking and then immunoprecipitated and analyzed by mass spectrometry. In total, 792 proteins were recovered and network analysis enabled mapping of the TLR2 interactome at baseline and in response to infection. The P. gingivalis infection-induced TLR2 interactome included the poly (ADP-ribose) polymerase family member mono-ADP-ribosyltransferase protein 9 (PARP9) and additional members of the PARP9 complex (DTX3L and NMI). PARP9 and its complex members are highly upregulated in macrophages exposed to P. gingivalis or to the synthetic TLR2/1 ligand Pam3Cys-Ser-(Lys)4 (PAM). Consistent with its known role in virally induced interferon production, PARP9 knockdown blocked type I interferon (IFN-I) production in response to P. gingivalis and reduced inflammatory cytokine production. We found that P. gingivalis drives signal transducer and activation of transcription (STAT) 1 (S727) phosphorylation through TLR2-PARP9, explaining PARP9's role in the induction of IFN-I downstream of TLR2. Furthermore, PARP9 knockdown reduced PI3K activation by P. gingivalis, leading to improved macrophage bactericidal activity. In summary, PARP9 is a novel TLR2 interacting partner that enables IFN-I induction and P. gingivalis immune escape in macrophages downstream of TLR2 sensing.


Assuntos
Porphyromonas gingivalis , Receptor 2 Toll-Like , Humanos , Receptor 2 Toll-Like/genética , Receptor 2 Toll-Like/metabolismo , Composição de Bases , Filogenia , RNA Ribossômico 16S , Análise de Sequência de DNA , Porphyromonas gingivalis/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas de Neoplasias/metabolismo , Poli(ADP-Ribose) Polimerases/metabolismo
6.
Front Biosci (Landmark Ed) ; 29(2): 81, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38420813

RESUMO

BACKGROUND: Previous clinical studies have suggested that Toll-like receptor (TLR)2 had predictive function for endocrine resistance in HER2-positive breast cancer (BCa). Nevertheless, it remains unclear whether TLR2 would relate to development of endocrine therapy resistance in triple-positive breast cancer (TPBC). METHODS: Bioinformatic analysis of TLR2 was carried out through a database. Ten tumor tissues were obtained from TPBC patients who underwent surgery, with five patients displaying primary resistance to tamoxifen (TAM) with the remaining 5 being sensitive. Different levels of proteins were identified through mass spectrometry analysis and confirmed through reverse transcription polymerase chain reaction (RT-PCR) and western blot. TAM-resistant cell lines (BT474-TAM) were established by continuous exposure to TAM, and TAM resistance was assessed via IC50. Additionally, TLR2 mRNA was analyzed through western blot and RT-PCR in BT474, BT474-TAM, MCF-7, and MCF10A cells. Furthermore, TLR2-specific interference sequences were utilized to downregulate TLR2 expression in BT474-TAM cells to elucidate its role in TAM resistance. RESULTS: TLR2 had a correlation with decreased relapse-free survival in BCa patients from the GSE1456-GPL96 cohort, and it was involved in cancer development predominantly mediated by MAPK and PI3K pathways. TLR2 protein expression ranked in the top 5 proteins within the TAM-resistant group, and was 1.9 times greater than that in the sensitive group. Additionally, TLR2 mRNA and protein expression increased significantly in the established TAM-resistant BT474/TAM cell lines. The sensitivity of TAM was restored upon TLR2 downregulation in BT474/TAM cells. CONCLUSIONS: TLR2 might have a therapeutic value as it was involved in the TAM resistance in TPBC, with potential to be a marker for primary endocrine resistance.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Receptor 2 Toll-Like/genética , Receptor 2 Toll-Like/metabolismo , Receptor 2 Toll-Like/uso terapêutico , Antineoplásicos Hormonais/farmacologia , Antineoplásicos Hormonais/uso terapêutico , Fosfatidilinositol 3-Quinases/metabolismo , Linhagem Celular Tumoral , Transdução de Sinais , Proliferação de Células , Recidiva Local de Neoplasia/tratamento farmacológico , Recidiva Local de Neoplasia/genética , Tamoxifeno/farmacologia , Tamoxifeno/uso terapêutico , RNA Mensageiro/genética , Resistencia a Medicamentos Antineoplásicos/genética , Regulação Neoplásica da Expressão Gênica
7.
Fish Shellfish Immunol ; 147: 109436, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38369071

RESUMO

IFN-γ plays a crucial role in both innate and adaptive immune responses and is a typical Th1 cytokine that promotes Th1 response and activates macrophages. When macrophages were incubated with IFN-γ, their phagocytosis ratio against Mycobacterium marinum increased significantly, as observed under fluorescence microscopy. The macrophages engulfed a large number of M. marinum. The proliferative ability of macrophages treated with IFN-γ was significantly weaker on the 4th and 7th day after phagocytosis and subsequent re-infection with marine chlamydia (P < 0.001). This suggests that IFN-γ enhances the phagocytosis and killing ability of macrophages against M. marinum. IFN-γ protein also significantly increased the production of reactive oxygen species (H2O2) and nitric oxide (NO) by macrophages. Additionally, the expression levels of toll-like receptor 2 (tlr2) and caspase 8 (casp8) were significantly higher in macrophages after IFN-γ incubation compared to direct infection after 12 h of M. marinum stimulation. Apoptosis was also observed to a higher degree in IFN-γ incubated macrophage. Moreover, mRNA expression of major histocompatibility complex (MHC) molecules produced by macrophages after IFN-γ incubation was significantly higher than direct infection. This indicates that IFN-γ enhances antigen presentation by upregulating MHC expression. It also upregulates tlr2 and casp8 expression through the TLR2 signaling pathway to induce apoptosis in macrophages. The pro-inflammatory cytokine showed an initial increase followed by a decline, suggesting that IFN-γ enhances the immune response of macrophages against M. marinum infection. On the other hand, the anti-inflammatory cytokine showed a delayed increase, significantly reducing the expression of pro-inflammatory cytokines. The expression of both cytokines balanced each other and together regulated the inflammatory reaction against M. marinum infection.


Assuntos
Mycobacterium marinum , Receptor 2 Toll-Like , Animais , Receptor 2 Toll-Like/genética , Peróxido de Hidrogênio/metabolismo , Macrófagos , Citocinas/metabolismo
8.
Virology ; 593: 110018, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38368639

RESUMO

-Respiratory syncytial virus (RSV) is a pivotal virus leading to acute lower respiratory tract infections in children under 5 years old. This study aimed to explore the correlation between p53 and Toll-like receptors (TLRs) post RSV infection. p53 levels exhibited a substantial decrease in nasopharyngeal aspirates (NPAs) from infants with RSV infection compared to control group. Manipulating p53 expression had no significant impact on RSV replication or interferon signaling pathway. Suppression of p53 expression led to heightened inflammation following RSV infection in A549 cells or airways of BALB/c mice. while stabilizing p53 expression using Nutlin-3a mitigated the inflammatory response in A549 cells. Additionally, Inhibiting p53 expression significantly increased Toll-like receptor 2 (TLR2) expression in RSV-infected epithelial cells and BALB/c mice. Furthermore, the TLR2 inhibitor, C29, effectively reduced inflammation mediated by p53 in A549 cells. Collectively, our results indicate that p53 modulates the inflammatory response after RSV infection through TLR2.


Assuntos
Infecções por Vírus Respiratório Sincicial , Vírus Sincicial Respiratório Humano , Receptor 2 Toll-Like , Proteína Supressora de Tumor p53 , Animais , Criança , Pré-Escolar , Humanos , Camundongos , Inflamação , Infecções por Vírus Respiratório Sincicial/genética , Infecções por Vírus Respiratório Sincicial/metabolismo , Vírus Sincicial Respiratório Humano/metabolismo , Receptor 2 Toll-Like/genética , Receptor 2 Toll-Like/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Células A549/metabolismo , Células A549/virologia
9.
J Ethnopharmacol ; 323: 117709, 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38181931

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Shangkehuangshui (SK) has been traditionally used to treat traumatic injury, soft tissue and bone injury in Foshan hospital of traditional Chinese medicine for more than 60 years, which composed of many Chinese herbs such as Coptis chinensis Franch., Gardenia jasminoides Ellis, Phellodendron chinense Schneid. and etc. SK exhibits heat-clearing and detoxifying, enhancing blood circulation to eliminate blood stasis properties, and demonstrates noteworthy clinical efficacy. Nevertheless, the underlying mechanism remains uncertain. AIM OF THE STUDY: The early study found that SK had good anti-inflammatory effects in acute soft tissue injury model. This research is to verify the anti-inflammatory properties of SK both in vitro and in vivo via TLR4/TLR2-NF-κB signaling pathway, to clarify the underlying mechanisms responsible for the curative effect of SK. METHODS: The RAW264.7 cells inflammatory model was established with lipopolysaccharide (LPS) in vitro. NO and TNF-α, IL-6, IL-1ß were determined with Griess method and ELISA method respectively. The mRNA and protein expression levels of TLR4/TLR2-NF-κB pathway were evaluated by qPCR and Western blot method. In vivo experiment, chronic soft tissue injury rat models were established by tracking gastrocnemius muscle with electrical stimulation, then local appearance and pathological changes were observed and recorded, the contents of inflammatory factors in serum and tissue were performed. Moreover, we also measured and contrasted the expression of TLR4/TLR2-NF-κB related factors. RESULTS: SK effectively inhibited the LPS-induced generation of inflammatory cytokines, including NO, TNF-α, IL-6 and IL-1ß in RAW264.7 cells, and significantly suppressed the expression of TLR4, TLR2, MyD88, IκB, and NF-κB. In vivo, SK remarkably decreased the damage appearance scores after 4 and 14 days of administration and inhibit the quantity of NO and leukocytes present in the serum. Additionally, the inflammatory infiltration in the pathological section was alleviated, myofibrillar hyperplasia and blood stasis were reduced. SK markedly downregulated NO, TNF-α, IL-6 and IL-1ß in injured tissues of rats, also declined the expression of TLR4, TLR2, MyD88, IκB, NF-κB, IL-6, TNF-α and IL-1ß. CONCLUSION: This study revealed that SK had obvious effects of anti-inflammatory actions in vivo and vitro, effectively reduced acute and chronic soft tissue injury in clinical, this might be attributed to inhibit the TLR4/TLR2-NF-κB pathway, further inhibit the expression of downstream relevant pro-inflammatory cytokines.


Assuntos
NF-kappa B , Lesões dos Tecidos Moles , Ratos , Animais , NF-kappa B/metabolismo , Receptor 4 Toll-Like/metabolismo , Receptor 2 Toll-Like/genética , Receptor 2 Toll-Like/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Interleucina-6/metabolismo , Fator 88 de Diferenciação Mieloide/metabolismo , Lipopolissacarídeos/farmacologia , Transdução de Sinais , Citocinas/metabolismo , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Lesões dos Tecidos Moles/tratamento farmacológico
10.
Virulence ; 15(1): 2298548, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38169345

RESUMO

Moraxella catarrhalis is a major cause of chronic obstructive pulmonary disease. Toll-like receptor 2 (TLR2) plays an important role in the inflammatory response in host respiratory epithelial cells. M. catarrhalis induces an inflammatory immune response in respiratory epithelial cells that is mostly dependent on TLR2. However, the mechanisms by which this pathogen adheres to and invades the respiratory epithelium are not well understood. The present study aimed to reveal the role of TLR2 in M. catarrhalis adhesion to and invasion into alveolar epithelial cells, using molecular techniques. Pretreatment with the TLR2 inhibitor TLR2-IN-C29 enhanced M. catarrhalis adhesion to A549 cells but reduced its invasion, whereas the agonist Pam3CSK4 reduced both M. catarrhalis adhesion and invasion into A549 cells. Similarly, M. catarrhalis 73-OR strain adhesion and invasion were significantly reduced in TLR2-/- A549 cells. Moreover, the lung clearance rate of the 73-OR strain was significantly higher in TLR2-/- C57/BL6J mice than in wild-type (WT) mice. Histological analysis showed that inflammatory responses were milder in TLR2-/- C57/BL6J mice than in WT mice, which was confirmed by a decrease in cytokine levels in TLR2-/- C57/BL6J mice. Overall, these results indicate that TLR2 promoted M. catarrhalis adhesion and invasion of A549 cells and lung tissues and mediated inflammatory responses in infected lungs. This study provides important insights into the development of potential therapeutic strategies against M. catarrhalis and TLR2-induced inflammatory responses.


Assuntos
Células Epiteliais Alveolares , Receptor 2 Toll-Like , Animais , Camundongos , Células Epiteliais , Pulmão , Moraxella catarrhalis/genética , Receptor 2 Toll-Like/genética
11.
Int Immunopharmacol ; 126: 111152, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-37977066

RESUMO

OBJECTIVE: This study aimed to analyze the differences in the expression of Toll-like receptors (TLRs) and nuclear factor erythroid 2-related factor 2 (Nrf2) in ear effusion in children with different types of otitis media (OM), to elaborate the relationship between the expression of TLRs and Nrf2 in ear effusion and the pathogenesis of OM, and to explore the relationship between the two indicators and pro-inflammatory cytokines in children with OM, thereby laying a scientific foundation for revealing the underlying molecular mechanisms of the progression of different types of OM. METHODS: A total of 73 children with OM who were treated in our hospital from March 2019 to July 2021 were selected as the study subjects. By using the cross-sectional investigation method, participants were divided into three groups according to the different pathological types, including the secretory OM group (30 cases), the chronic suppurative OM group (27 cases), and the cystic lesional OM group (16 cases). The levels of Nrf2, TLR2, TLR4 and proinflammatory cytokines [interferon-γ (IFN-γ), tumor necrosis factor-α (TNF-α), transforming growth factor-ß 1(TGF-ß1), procalcitonin (PCT) and interleukin-1ß (IL-1ß)] were detected in ear effusion of children with different types of OM. Linear regression was used to analyze the correlation between the Nrf2, TLR2 and TLR4 expression levels and pro-inflammatory cytokines in ear effusion. RESULTS: The expression levels of TNF-α and PCT in the ear effusion of the children under 3 years old were significantly higher than that of the children between 3 and 5 years old and that of the children between 6 and 8 years old (all P < 0.001). The mRNA levels of Nrf2, TLR2 and TLR4 in the ear effusion of the children from the chronic suppurative OM group were higher than these from the secretory OM group (P < 0.001, P = 0.008 and P = 0.021). The mRNA levels of Nrf2, TLR2, and TLR4 in the ear effusion of the children from the cystic lesional OM group were higher than those from the chronic suppurative OM group (P < 0.001, P = 0.029 and P = 0.018). A prominent increase in the concentrations of IFN-γ, TNF-α, TGF-ß1, PCT and IL-1ß was found in the ear effusion of children from the chronic suppurative OM group compared to these from the secretory OM group (P = 0.021, P = 0.044, P = 0.048, P = 0.004 and P = 0.001). The concentrations of IFN-γ, TNF-α, TGF-ß1, PCT and IL-1ß in the ear effusion of the children from the cystic lesional OM group were markedly increased as compared with these from the chronic suppurative OM group (P < 0.001, P = 0.004, P = 0.003, P < 0.001 and P < 0.001). Nrf2, TLR2 and TLR4 were taken as independent variables, and inflammatory indexes, including IFN-γ, TNF-α, TGF-ß1, PCT and IL-1ß were used as dependent variables for the linear regression analysis. The results showed that Nrf2, TLR2 and TLR4 were positively correlated with the secretion levels of pro-inflammatory cytokines after adjusting for age, sex, course and the OM classification (all P < 0.05). CONCLUSION: The expressions of Nrf2, TLR2 and TLR4 in the ear effusion of children with different types of OM gradually increased with the severity of the disease, these were significantly positively correlated with the pro-inflammatory cytokines of the children. Nrf2/TLR signaling pathway maintained chronic inflammation in OM, induced damage of middle ear tissue, and promoted the transition from acute OM to chronic OM.


Assuntos
Otite Média , Fator de Crescimento Transformador beta1 , Criança , Pré-Escolar , Humanos , Estudos Transversais , Citocinas/metabolismo , Interferon gama/genética , Fator 2 Relacionado a NF-E2/genética , Otite Média/genética , RNA Mensageiro/metabolismo , Receptor 2 Toll-Like/genética , Receptor 2 Toll-Like/metabolismo , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo , Receptores Toll-Like/genética , Fator de Necrose Tumoral alfa/metabolismo
12.
Dig Dis Sci ; 69(1): 95-111, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37943385

RESUMO

BACKGROUND: Recent epidemiological studies suggested correlation between gastric cancer (GC) and periodontal disease. AIMS: We aim to clarify involvement of lipopolysaccharide of Porphyromonas gingivalis (Pg.), one of the red complex periodontal pathogens, in the GC development. METHODS: To evaluate barrier function of background mucosa against the stimulations, we applied biopsy samples from 76 patients with GC using a Ussing chamber system (UCs). K19-Wnt1/C2mE transgenic (Gan) mice and human GC cell-lines ± THP1-derived macrophage was applied to investigate the role of Pg. lipopolysaccharide in inflammation-associated carcinogenesis. RESULTS: In the UCs, Pg. lipopolysaccharide reduced the impedance of metaplastic and inflamed mucosa with increases in mRNA expression of toll-like receptor (TLR) 2, tumor necrosis factor (TNF) α, and apoptotic markers. In vitro, Pg. lipopolysaccharide promoted reactive oxidative stress (ROS)-related apoptosis as well as activated TLR2-ß-catenin-signaling on MKN7, and it increased the TNFα production on macrophages, respectively. TNFα alone activated TLR2-ß-catenin-signaling in MKN7, while it further increased ROS and TNFα in macrophages. Under coculture with macrophages isolated after stimulation with Pg. lipopolysaccharide, ß-catenin-signaling in MKN7 was activated with an increase in supernatant TNFα concentration, both of which were decreased by adding a TNFα neutralization antibody into the supernatant. In Gan mice with 15-week oral administration of Pg. lipopolysaccharide, tumor enlargement with ß-catenin-signaling activation were observed with an increase in TNFα with macrophage infiltration. CONCLUSIONS: Local exposure of Pg. lipopolysaccharide may increase ROS on premalignant gastric mucosa to induce apoptosis-associated barrier dysfunction and to secrete TNFα from activated macrophages, and both stimulation of Pg. lipopolysaccharide and TNFα might activate TLR2-ß-catenin-signaling in GC.


Assuntos
Gastrite , Porphyromonas gingivalis , Humanos , Animais , Camundongos , Porphyromonas gingivalis/metabolismo , Receptor 2 Toll-Like/genética , Receptor 2 Toll-Like/metabolismo , Lipopolissacarídeos/metabolismo , beta Catenina/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Mucosa/metabolismo , Carcinogênese
13.
Microbes Infect ; 26(1-2): 105244, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37914020

RESUMO

OBJECTIVE: This study aimed to investigate the impact of Corydalis Saxicola Bunting Total Alkaloid (CSBTA) on Porphyromonas gingivalis internalization within macrophages and explore the potential role of Toll-Like Receptor 2 (TLR2) in this process. METHODS: We established a P. gingivalis internalization model in macrophages by treating P. gingivalis-infected macrophages (MOI=100:1) with 200 µg/mL metronidazole and 300 µg/mL gentamicin for 1 h. Subsequently, the model was exposed to CSBTA at concentrations of 0.02 g/L or 1 µg/mL Pam3CSK4. After a 6 h treatment, cell lysis was performed with sterile water to quantify bacterial colonies. The mRNA expressions of TLR2 and interleukin-8 (IL-8) in macrophages were analyzed using RT-qPCR, while their protein levels were assessed via Western blot and ELISA respectively. RESULTS: P. gingivalis could internalize into macrophages and enhance the expression of TLR2 and IL-8. Activation of TLR2 by Pam3CSK4 contributed to P. gingivalis survival within macrophages and increased TLR2 and IL-8 expression. Conversely, 0.02 g/L CSBTA effectively cleared intracellular P. gingivalis, achieving a 90 % clearance rate after 6 h. Moreover, it downregulated the expression of TLR2 and IL-8 induced by P. gingivalis. However, the inhibitory effect of CSBTA on the internalized P. gingivalis model was attenuated by Pam3CSK4. CONCLUSION: CSBTA exhibited the ability to reduce the presence of live intracellular P. gingivalis and lower IL-8 expression in macrophages, possibly by modulating TLR2 activity.


Assuntos
Alcaloides , Corydalis , Receptor 2 Toll-Like/genética , Receptor 2 Toll-Like/metabolismo , Interleucina-8/genética , Interleucina-8/metabolismo , Porphyromonas gingivalis/metabolismo , Corydalis/metabolismo , Alcaloides/metabolismo , Alcaloides/farmacologia , Macrófagos/microbiologia
14.
Infect Immun ; 92(1): e0038323, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38018994

RESUMO

The virulence-associated protein A (VapA) produced by virulent Rhodococcus equi allows it to replicate in macrophages and cause pneumonia in foals. It is unknown how VapA interacts with mammalian cell receptors, but intracellular replication of avirulent R. equi lacking vapA can be restored by supplementation with recombinant VapA (rVapA). Our objectives were to determine whether the absence of the surface receptors Toll-like receptor 2 (TLR2), complement receptor 3 (CR3), or Fc gamma receptor III (FcγRIII) impacts R. equi phagocytosis and intracellular replication in macrophages, and whether rVapA restoration of virulence in R. equi is dependent upon these receptors. Wild-type (WT) murine macrophages with TLR2, CR3, or FcγRIII blocked or knocked out (KO) were infected with virulent or avirulent R. equi, with or without rVapA supplementation. Quantitative bacterial culture and immunofluorescence imaging were performed. Phagocytosis of R. equi was not affected by blockade or KO of TLR2 or CR3. Intracellular replication of virulent R. equi was not affected by TLR2, CR3, or FcγRIII blockade or KO; however, avirulent R. equi replicated in TLR2-/- and CR3-/- macrophages but not in WT and FcγRIII-/-. rVapA supplementation did not affect avirulent R. equi phagocytosis but promoted intracellular replication in WT and all KO cells. By demonstrating that TLR2 and CR3 limit replication of avirulent but not virulent R. equi and that VapA-mediated virulence is independent of TLR2, CR3, or FcγRIII, our study provides novel insights into the role of these specific surface receptors in determining the entry and intracellular fate of R. equi.


Assuntos
Infecções por Actinomycetales , Rhodococcus equi , Animais , Camundongos , Infecções por Actinomycetales/metabolismo , Infecções por Actinomycetales/microbiologia , Proteínas de Bactérias/genética , Cavalos , Macrófagos/microbiologia , Mamíferos , Fagocitose , Rhodococcus equi/genética , Rhodococcus equi/patogenicidade , Receptor 2 Toll-Like/genética , Fatores de Virulência , Interações Hospedeiro-Patógeno
15.
Cell Biochem Biophys ; 82(1): 91-105, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37853249

RESUMO

Toll-like receptors are important molecules of innate immunity. They are known as pattern recognition receptors. They recognise certain molecules known as pathogen-associated molecular pattern on a pathogen and release chemicals that causes inflammation. Toll-like receptors (TLR) help in the removal of the infected cell and thus stop the spread of infection and are being studied for their association with cancer. Oral carcinoma has emerged as a major problem of our country today; it is found ranks first in men and third in women. Toll-like receptors have been implicated in the development of cancer. Certain polymorphisms in toll-like receptor can make a cell more susceptible to develop oral cancer. The identification of toll-like receptors and the different genotypes that are involved in the development of cancer can be utilised for using them as biomarkers of the disease. The study revealed that toll-like receptors like TLR7 and TLR5 are found to have a role in suppression of oral cancer while toll-like receptors like TLR4 and TLR2 are found to be associated with the progression of oral cancer. Toll-like receptors can turn out as important target molecules in the future in designing therapeutic strategies for oral cancer.


Assuntos
Neoplasias Bucais , Receptor 2 Toll-Like , Masculino , Feminino , Humanos , Receptor 2 Toll-Like/genética , Receptor 4 Toll-Like/genética , Receptor Toll-Like 9/genética , Receptores Toll-Like
16.
Exp Eye Res ; 239: 109749, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38113956

RESUMO

Pam3CSK4 activates Toll-like receptors 2 and 1 (TLR1/2), which recognize mainly molecules from gram-positive pathogens. The effect of Pam3CSK4 on various cytokine and chemokine expression in cultured human uveal melanocytes (UM) has not been studied systematically. The purpose of this study was to investigate the mechanistic expressions of seven cytokines and chemokines of interleukin- (IL-) 6, IL-10, MCP-1 (CCL-2), CXCL-1 (GRO-α), CXCL-8 (IL-8), interferon-gamma (IFN-γ), and tumor necrosis factor-alpha (TNF-α) in UM. These cytokines are reported to be increased in intraocular fluids or tissues of the patients with endophthalmitis and non-infectious uveitis, as well as in various experimental animal uveitic models in the literature. Flow cytometry was used to measure the effects of Pam3CSK4 on the expression of TLR1/2 in UM. ELISA and Real-time PCR analysis were used to estimate the ability of Pam3CSK4 to elevate these cytokines and chemokines levels in conditioned media and cell lysates of UM, respectively. Flow cytometry measured and compared the phosphorylated MAPK pathway and activated NF-κB signals pathway in UM, treated with and without Pam3CSK4. ELISA analysis tested the effect of various signal inhibitors (ERK1/2, JNK1/2, p38 and NF-κB) on Pam3CSK4-induced IL-6 levels in cultured UM. The role of TLR2 in Pam3CSK4-induced acute anterior uveitis in experimental mouse model was tested in TLR2 knockout (TLR2 KO) mice and their wild-type C57Bl/6 controls. Pam3CSK4 increased the expression of TLR1/2 proteins in cultured UM. Pam3CSK4 significantly elevated the IL-6, MCP-1, CXCL-1, CXCL-8 protein, and mRNA levels in cultured UM, but not IL-10, TNF-α, or IFN-γ. Pam3CSK4 activated NF-κB, ERK, JNK, and p38 expression. Pam3CSK4-induced expression of IL-6 was decreased by NF-κB, ERK, INK, and p38 inhibitors; especially the NF-κB inhibitor, which can completely block the IL-6 stimulation. Intravitreal injection of Pam3CSK4 induced acute anterior uveitis in C57Bl/6 mice, this effect was significantly reduced in TLR2 KO mice. TLR1/2 plays an important role against invading pathogens, especially gram-positive bacteria; but an excessive reaction to molecules from gram-positive bacteria may promote non-infectious uveitis. UM can produce IL-6, MCP-1, CXCL-1, and CXCL-8, and are one of the target cells of TNF-α and IFN-γ. TLR-2 inhibitors might have a beneficial effect in the treatment of certain types of uveitis and other ocular inflammatory-related diseases and warrant further investigation.


Assuntos
Uveíte Anterior , Uveíte , Humanos , Animais , Camundongos , Receptor 2 Toll-Like/genética , Receptor 2 Toll-Like/metabolismo , Receptor 1 Toll-Like/metabolismo , NF-kappa B/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Interleucina-6/metabolismo , Citocinas/metabolismo , Melanócitos/metabolismo , Quimiocinas/metabolismo , Uveíte/metabolismo , Uveíte Anterior/metabolismo
17.
Cytokine ; 175: 156482, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38159469

RESUMO

Endocan is an endothelial cell-specific proteoglycan that contributes to vascular dysfunction by impairing endothelial function and inducing vascular smooth muscle cell migration. However, its role in regulating macrophage inflammation, a key pathological feature of vascular dysfunction, is not well understood. In this study, we investigated the effect of endocan on macrophage inflammation to better understand its contribution to vascular dysfunction. We found that endocan upregulated pro-inflammatory cytokines including IL-1ß, IL-6 and TNF-α in RAW 264.7 cells and activated MAPK/NFkB signaling pathways. Inhibiting these pathways reduced endocan-induced cytokine levels, while inhibiting TLR2 compromised the MAPK/NFkB regulation. Additionally, LPS-induced HUVEC conditioned medium stimulated cytokine levels in RAW 264.7 cells, which were reduced by endocan siRNA treatment in HUVEC. These results suggest that endocan positively regulates pro-inflammation in macrophages through the TLR2-MAPK-NFkB axis, highlighting the potential of targeting endocan to reduce inflammation in vascular dysfunction.


Assuntos
Transdução de Sinais , Receptor 2 Toll-Like , Animais , Camundongos , Citocinas/metabolismo , Inflamação/metabolismo , Lipopolissacarídeos/farmacologia , Lipopolissacarídeos/metabolismo , Macrófagos/metabolismo , NF-kappa B/metabolismo , Receptor 2 Toll-Like/genética , Receptor 2 Toll-Like/metabolismo
18.
Life Sci ; 337: 122348, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38103725

RESUMO

Our previous work has demonstrated protein kinase D2 (PKD2) played a critical influence in experimental colitis in animal. However, the role of PKD2 in human norovirus (HuNoVs)-induced diarrhea remained unknown. Aquaporin 3 (AQP3) expression, a critical protein mediating diarrhea, was assessed by western blot, qRT-PCR in intestinal epithelial cells (IECs). Luciferase, IF, IP and ChIP assay were used to explore the mechanism through which HuNoVs regulated AQP3. Herein, we found that AQP3 expression was drastically decreased in IECs in response to VP1 transfection, the major capsid protein of HuNoVs, or HuNoVs infection. Mechanistically, HuNoVs triggered phosphorylation of PKD2 through TLR2/MyD88/IRAK4, which further inhibited AP2γ activation and nuclear translocation, leading to suppress AQP3 transactivation in IECs. Most importantly, PKD2 interacted with MyD88/IRAK4, and VP1 overexpression enhanced this complex form, which, in turn, to increase PKD2 phosphorylation. In addition, endogenous PKD2 interacted with AP2γ, and this interaction was enhanced in response to HuNoVs treatment, and subsequently resulting in AP2γ phosphorylation inhibition. Moreover, inhibition of PKD2 activation could reverse the inhibitory effect of HuNoVs on AQP3 expression. In summary, we established a novel mechanism that HuNoV inhibited AQP3 expression through TLR2/MyD88/IRAK4/PKD2 signaling pathway, targeting PKD2 activity could be a promising strategy for prevention of HuNoVs-induced gastroenteritis.


Assuntos
Norovirus , Proteína Quinase D2 , Animais , Humanos , Aquaporina 3/genética , Aquaporina 3/metabolismo , Quinases Associadas a Receptores de Interleucina-1/metabolismo , Norovirus/metabolismo , Fator 88 de Diferenciação Mieloide/metabolismo , Receptor 2 Toll-Like/genética , Receptor 2 Toll-Like/metabolismo , Células Epiteliais/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Diarreia
19.
Parasit Vectors ; 16(1): 450, 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38066526

RESUMO

BACKGROUND: The primary pathophysiological process of sepsis is to stimulate a massive release of inflammatory mediators to trigger systemic inflammatory response syndrome (SIRS), the major cause of multi-organ dysfunction and death. Like other helminths, Echinococcus granulosus induces host immunomodulation. We sought to determine whether E. granulosus cyst fluid (EgCF) displays a therapeutic effect on sepsis-induced inflammation and tissue damage in a mouse model. METHODS: The anti-inflammatory effects of EgCF were determined by in vitro culture with bone marrow-derived macrophages (BMDMs) and in vivo treatment of BALB/C mice with cecal ligation and puncture (CLP)-induced sepsis. The macrophage phenotypes were determined by flow cytometry, and the levels of cytokines in cell supernatants or in sera of mice were measured (ELISA). The therapeutic effect of EgCF on sepsis was evaluated by observing the survival rates of mice for 72 h after CLP, and the pathological injury to the liver, kidney, and lung was measured under a microscope. The expression of TLR-2/MyD88 in tissues was measured by western blot to determine whether TLR-2/MyD88 is involved in the sepsis-induced inflammatory signaling pathway. RESULTS: In vitro culture with BMDMs showed that EgCF promoted macrophage polarization to M2 type and inhibited lipopolysaccharide (LPS)-induced M1 macrophages. EgCF treatment provided significant therapeutic effects on CLP-induced sepsis in mice, with increased survival rates and alleviation of tissue injury. The EgCF conferred therapeutic efficacy was associated with upregulated anti-inflammatory cytokines (IL-10 and TGF-ß) and reduced pro-inflammatory cytokines (TNF-α and INF-γ). Treatment with EgCF induced Arg-1-expressed M2, and inhibited iNOS-expressed M1 macrophages. The expression of TLR-2 and MyD88 in EgCF-treated mice was reduced. CONCLUSIONS: The results demonstrated that EgCF confers a therapeutic effect on sepsis by inhibiting the production of pro-inflammatory cytokines and inducing regulatory cytokines. The anti-inflammatory effect of EgCF is carried out possibly through inducing macrophage polarization from pro-inflammatory M1 to regulatory M2 phenotype to reduce excessive inflammation of sepsis and subsequent multi-organ damage. The role of EgCF in regulating macrophage polarization may be achieved by inhibiting the TLR2/MyD88 signaling pathway.


Assuntos
Echinococcus granulosus , Sepse , Camundongos , Animais , Echinococcus granulosus/metabolismo , Líquido Cístico/metabolismo , Fator 88 de Diferenciação Mieloide/metabolismo , Receptor 2 Toll-Like/genética , Receptor 2 Toll-Like/metabolismo , Camundongos Endogâmicos BALB C , Citocinas/metabolismo , Sepse/tratamento farmacológico , Inflamação/tratamento farmacológico , Anti-Inflamatórios , Lipopolissacarídeos
20.
Int J Mol Sci ; 24(21)2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37958501

RESUMO

The aim of this study was to investigate the inhibitory effects of Cordyceps militaris solid medium extract (CME) and cordycepin (COR) on LTA-induced inflammation in MH-S cells and their mechanisms of action. In this study, the establishment of an LTA-induced MH-S inflammation model was determined, the CCK-8 method was used to determine the safe concentration range for a drug for COR and CME, the optimal concentration of COR and CME to exert anti-inflammatory effects was further selected, and the expression of inflammatory factors of TNF-α, IL-1ß, IL-18, and IL-6 was detected using ELISA. The relative expression of TNF-α, IL-1ß, IL-18, IL-6, IL-10, TLR2 and MyD88 mRNA was detected using RT-PCR, and the IL-1ß, IL-18, TLR2, MyD88, NF-κB p-p65, NLRP3, pro-caspase-1, Caspase-1 and ASC protein expression in the cells were detected using Western blot; immunofluorescence assay detected the expression of Caspase-1 in MH-S cells. The results revealed that both CME and COR inhibited the levels of IL-1ß, IL-18, IL-6, and TNF-α in the supernatants of LTA-induced MH-S cells and the mRNA expression levels of IL-1ß, IL-18, IL-6, TNF-α, TLR2 and MyD88, down-regulated the LTA-induced IL-1ß, IL-18, TLR2 in MH-S cells, MyD88, NF-κB p-p65/p65, NLRP3, ASC, pro-caspase-1, and caspase-1 protein expression levels, and inhibited LTA-induced caspase-1 activation in MH-S cells. In conclusion, CME can play a therapeutic role in LTA-induced inflammation in MH-S cells via TLR2/NF-κB/NLRP3, and may serve as a potential drug for bacterial pneumonia caused by Gram-positive bacteria.


Assuntos
Cordyceps , NF-kappa B , NF-kappa B/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Interleucina-18/metabolismo , Cordyceps/metabolismo , Receptor 2 Toll-Like/genética , Receptor 2 Toll-Like/metabolismo , Caspase 1/metabolismo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Interleucina-6/metabolismo , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , RNA Mensageiro
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA