Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 419
Filtrar
1.
Vopr Virusol ; 68(4): 315-326, 2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-38156588

RESUMO

INTRODUCTION: Hepatitis C is a liver disease with high chronicity, the cause of cirrhosis and hepatocarcinoma. The main obstacle to controlling hepatitis C is the lack of vaccines. The aim of the work was to compare the immunogenic activity of nonstructural recombinant proteins NS3, NS4 and NS5B of hepatitis C virus (HCV) as components of a subunit candidate vaccine and to analyze the adjuvant properties of two available commercial drugs, polymuramil and pyrogenalum. MATERIALS AND METHODS: BALB/c, DBA/2J and C57BL/6 mice were immunized with nonstructural proteins without adjuvants or with polymuramyl (NOD1 and NOD2 agonist) and pyrogenalum (TLR-4 agonist). The activity of antibodies was determined in ELISA, the cellular response - by antigen-specific lymphocyte proliferation and by production of IFN-γ in vitro. RESULTS: Recombinant proteins showed different immunogenicity. NS4 induced antibodies more efficiently than NS3 and NS5B. Significant differences were found in the immune response of three inbred lines mice: the level of IFN-γ in BALB/c and DBA/2J mice induced by NS5B protein was 30 times higher than in C57Bl/6 mice. In contrast, the induction of antibodies in BALB/c mice was lower than in C57Bl/6 and DBA/2J. Polymuramil did not increase the humoral response to NS5B and enhanced the cellular response only in C57BL/6 mice. The combined use of polymuramil with pyrogenalum significantly increased both the humoral and cellular response of mice to all recombinant HCV proteins. CONCLUSION: Different immunogenic properties and different functions of recombinant non-structural HCV proteins indicate the feasibility of their combined inclusion in subunit vaccines. It was established for the first time that immunization with HCV proteins with a complex adjuvant (polymuramyl + pyrogenalum) has a synergistic effect, significantly exceeding the effect of each of them separately.


Assuntos
Hepatite C , Receptor 4 Toll-Like , Vacinas de DNA , Vacinas contra Hepatite Viral , Animais , Camundongos , Adjuvantes Imunológicos/farmacologia , Hepacivirus , Imunidade Celular , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Proteínas Recombinantes , Receptor 4 Toll-Like/agonistas , Vacinas de DNA/farmacologia , Vacinas contra Hepatite Viral/farmacologia , Proteínas não Estruturais Virais
2.
JAMA Oncol ; 9(12): 1660-1668, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37824131

RESUMO

Importance: Metastatic soft tissue sarcomas (STSs) have limited systemic therapy options, and immunomodulation has not yet meaningfully improved outcomes. Intratumoral (IT) injection of the toll-like receptor 4 (TLR4) agonist glycopyranosyl lipid A in stable-emulsion formulation (GLA-SE) has been studied as immunotherapy in other contexts. Objective: To evaluate the safety, efficacy, and immunomodulatory effects of IT GLA-SE with concurrent radiotherapy in patients with metastatic STS with injectable lesions. Design, Setting, and Participants: This phase 1 nonrandomized controlled trial of patients with STS was performed at a single academic sarcoma specialty center from November 17, 2014, to March 16, 2016. Data analysis was performed from August 2016 to September 2022. Interventions: Two doses of IT GLA-SE (5 µg and 10 µg for 8 weekly doses) were tested for safety in combination with concurrent radiotherapy of the injected lesion. Main Outcomes and Measures: Primary end points were safety and tolerability. Secondary and exploratory end points included local response rates as well as measurement of antitumor immunity with immunohistochemistry and T-cell receptor (TCR) sequencing of tumor-infiltrating and circulating lymphocytes. Results: Twelve patients (median [range] age, 65 [34-78] years; 8 [67%] female) were treated across the 2 dose cohorts. Intratumoral GLA-SE was well tolerated, with only 1 patient (8%) experiencing a grade 2 adverse event. All patients achieved local control of the injected lesion after 8 doses, with 1 patient having complete regression (mean regression, -25%; range, -100% to 4%). In patients with durable local response, there were detectable increases in tumor-infiltrating lymphocytes. In 1 patient (target lesion -39% at 259 days of follow-up), TCR sequencing revealed expansion of preexisting and de novo clonotypes, with convergence of numerous rearrangements coding for the same binding sequence (suggestive of clonal convergence to antitumor targets). Single-cell sequencing identified these same expanded TCR clones in peripheral blood after treatment; these T cells had markedly enhanced Tbet expression, suggesting TH1 phenotype. Conclusions and Relevance: In this nonrandomized controlled trial, IT GLA-SE with concurrent radiotherapy was well tolerated and provided more durable local control than radiotherapy alone. Patients with durable local response demonstrated enhanced IT T-cell clonal expansion, with matched expansion of these clonotypes in the circulation. Additional studies evaluating synergism of IT GLA-SE and radiotherapy with systemic immune modulation are warranted. Trial Registration: ClinicalTrials.gov Identifier: NCT02180698.


Assuntos
Sarcoma , Neoplasias de Tecidos Moles , Humanos , Feminino , Idoso , Masculino , Receptor 4 Toll-Like/agonistas , Linfócitos T , Neoplasias de Tecidos Moles/tratamento farmacológico , Neoplasias de Tecidos Moles/radioterapia , Sarcoma/tratamento farmacológico , Sarcoma/radioterapia , Receptores de Antígenos de Linfócitos T
3.
Innate Immun ; 29(6): 122-131, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37545346

RESUMO

Consumption of diets high in fat has been linked to the development of obesity and related metabolic complications. Such associations originate from the enhanced, chronic, low-grade inflammation mediated by macrophages in response to translocated bacteria, bacterial products, or dietary constituents such as fatty acids (FAs). Nucleotide-binding Oligomerization Domain 2 (NOD2) senses muramyl dipeptide (MDP), a component of bacterial peptidoglycan. The inability to sense peptidoglycan through NOD2 has been demonstrated to lead to dysbiosis, increased bacterial translocation, inflammation and metabolic dysfunction. Currently, it is unknown how consumption of HFDs with different FA compositions might influence NOD2-dependent responses. In this study, we subjected WT mice to a control diet or to HFDs comprised of various ratios of unsaturated to saturated fats and determined the macrophage response to TLR4 and NOD2 agonists. A HFD with equal ratios of saturated and unsaturated fats enhanced subsequent responsiveness of macrophages to LPS but not to MDP. However, a high-unsaturated fat diet (HUFD) or a high-saturated fat diet (HSFD) both decreased the responsiveness to NOD2 agonists compared to that observed in control diet (CD) fed mice. These data suggest that dietary fatty acid composition can influence the subsequent macrophage responsiveness to bacterial products.


Assuntos
Gorduras na Dieta , Macrófagos , Proteína Adaptadora de Sinalização NOD2 , Receptor 4 Toll-Like , Animais , Camundongos , Acetilmuramil-Alanil-Isoglutamina , Dieta Hiperlipídica , Gorduras na Dieta/metabolismo , Inflamação/metabolismo , Macrófagos/metabolismo , Proteína Adaptadora de Sinalização NOD2/agonistas , Peptidoglicano/metabolismo , Receptor 4 Toll-Like/agonistas
4.
Radiat Res ; 200(2): 127-138, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37302147

RESUMO

Heavy-ion radiation received during radiotherapy as well as the heavy-ion radiation received during space flight are equally considered harmful. Our previous study showed that TLR4 low toxic agonist, monophosphoryl lipid A (MPLA), alleviated radiation injury resulting from exposure to low-LET radiation. However, the role and mechanism of MPLA in heavy-ion-radiation injury are unclear. This study aimed to investigate the role of MPLA on radiation damage. Our data showed that MPLA treatment alleviated the heavy-ion-induced damage to microstructure and the spleen and testis indexes. The number of karyocytes in the bone marrow from the MPLA-treated group was higher than that in the irradiated group. Meanwhile, western blotting analysis of intestine proteins showed that pro-apoptotic proteins (cleaved-caspase3 and Bax) were downregulated while anti-apoptotic proteins (Bcl-2) were upregulated in the MPLA-treated group. Our in vitro study demonstrated that MPLA significantly improved cell proliferation and inhibited cell apoptosis after irradiation. Moreover, immunofluorescence staining and quantification of nucleic γ-H2AX and 53BP1 foci also suggested that MPLA significantly attenuated cellular DNA damage repair. Collectively, the above evidence supports the potential ability of MPLA to protect against heavy-ion-radiation injury by inhibiting apoptosis and alleviating DNA damage in vivo and vitro, which could be a promising medical countermeasure for the prevention of heavy-ion-radiation injury.


Assuntos
Lesões por Radiação , Receptor 4 Toll-Like , Humanos , Masculino , Apoptose/efeitos da radiação , Dano ao DNA , Reparo do DNA , Receptor 4 Toll-Like/agonistas
5.
Front Immunol ; 14: 1066402, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37223101

RESUMO

Bacterial lipopolysaccharides (LPS) are potent innate immunostimulants targeting the Toll-like receptor 4 (TLR4), an attractive and validated target for immunostimulation in cancer therapy. Although LPS possess anti-tumor activity, toxicity issues prevent their systemic administration at effective doses in humans. We first demonstrated that LPS formulated in liposomes preserved a potent antitumor activity per se upon systemic administration in syngeneic models, and significantly enhance the antitumor activity of the anti-CD20 antibody rituximab in mice xenografted with the human RL lymphoma model. Liposomal encapsulation also allowed a 2-fold reduction in the induction of pro-inflammatory cytokines by LPS. Mice receiving an intravenous administration demonstrated a significant increase of neutrophils, monocytes and macrophages at the tumor site as well as an increase of macrophages in spleen. Further, we chemically detoxified LPS to obtain MP-LPS that was associated with a 200-fold decrease in the induction of proinflammatory cytokines. When encapsulated in a clinically approved liposomal formulation, toxicity, notably pyrogenicity (10-fold), was limited while the antitumor activity and immunoadjuvant effect were maintained. This improved tolerance profile of liposomal MP-LPS was associated with the preferential activation of the TLR4-TRIF pathway. Finally, in vitro studies demonstrated that stimulation with encapsulated MP-LPS reversed the polarization of M2 macrophages towards an M1 phenotype, and a phase 1 trial in healthy dogs validated its tolerance upon systemic administration up to very high doses (10µg/kg). Altogether, our results demonstrate the strong therapeutic potential of MPLPS formulated in liposomes as a systemically active anticancer agent, supporting its evaluation in patients with cancer.


Assuntos
Adjuvantes Imunológicos , Lipopolissacarídeos , Receptor 4 Toll-Like , Animais , Cães , Humanos , Camundongos , Citocinas , Lipossomos , Receptor 4 Toll-Like/agonistas
6.
Am J Physiol Renal Physiol ; 324(5): F472-F482, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36995924

RESUMO

Acute kidney injury (AKI) is common in surgical and critically ill patients. This study examined whether pretreatment with a novel Toll-like receptor 4 agonist attenuated ischemia-reperfusion injury (IRI)-induced AKI (IRI-AKI). We performed a blinded, randomized-controlled study in mice pretreated with 3-deacyl 6-acyl phosphorylated hexaacyl disaccharide (PHAD), a synthetic Toll-like receptor 4 agonist. Two cohorts of male BALB/c mice received intravenous vehicle or PHAD (2, 20, or 200 µg) at 48 and 24 h before unilateral renal pedicle clamping and simultaneous contralateral nephrectomy. A separate cohort of mice received intravenous vehicle or 200 µg PHAD followed by bilateral IRI-AKI. Mice were monitored for evidence of kidney injury for 3 days postreperfusion. Kidney function was assessed by serum blood urea nitrogen and creatinine measurements. Kidney tubular injury was assessed by semiquantitative analysis of tubular morphology on periodic acid-Schiff (PAS)-stained kidney sections and by kidney mRNA quantification of injury [neutrophil gelatinase-associated lipocalin (Ngal), kidney injury molecule-1 (Kim-1), and heme oxygenase-1 (Ho-1)] and inflammation [interleukin-6 (IL-6), interleukin-1ß (IL-1ß), and tumor necrosis factor-α (Tnf-α)] using quantitative RT-PCR. Immunohistochemistry was used to quantify proximal tubular cell injury and renal macrophages by quantifying the areas stained with Kim-1 and F4/80 antibodies, respectively, and TUNEL staining to detect the apoptotic nuclei. PHAD pretreatment yielded dose-dependent kidney function preservation after unilateral IRI-AKI. Histological injury, apoptosis, Kim-1 staining, and Ngal mRNA were lower in PHAD-treated mice and IL-1ß mRNA was higher in PHAD-treated mice. Similar pretreatment protection was noted with 200 mg PHAD after bilateral IRI-AKI, with significantly reduced Kim-1 immunostaining in the outer medulla of mice treated with PHAD after bilateral IRI-AKI. In conclusion, PHAD pretreatment leads to dose-dependent protection from renal injury after unilateral and bilateral IRI-AKI in mice.NEW & NOTEWORTHY Pretreatment with 3-deacyl 6-acyl phosphorylated hexaacyl disaccharide; a novel synthetic Toll-like receptor 4 agonist, preserves kidney function during ischemia-reperfusion injury-induced acute kidney injury.


Assuntos
Injúria Renal Aguda , Traumatismo por Reperfusão , Receptor 4 Toll-Like , Animais , Masculino , Camundongos , Injúria Renal Aguda/etiologia , Injúria Renal Aguda/patologia , Injúria Renal Aguda/prevenção & controle , Rim/patologia , Lipocalina-2 , Camundongos Endogâmicos C57BL , Traumatismo por Reperfusão/complicações , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/patologia , RNA Mensageiro , Receptor 4 Toll-Like/agonistas
7.
Toxicol Appl Pharmacol ; 460: 116358, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36572229

RESUMO

A full nonclinical safety package was performed to support the clinical use of SPA14, a novel liposome-based vaccine adjuvant containing the synthetic toll-like receptor 4 agonist E6020 and saponin QS21. E6020 and QS21 were tested negative for their potential genotoxic effects in Ames, micronucleus, or mouse-lymphoma TK (thymidine kinase) assay. To evaluate the potential local and systemic effects of SPA14, two toxicity studies were performed in rabbits. In the first dose range finding toxicity study, rabbits received two intramuscular injections of SPA14 at increasing doses of E6020 combined with two antigens, a control (saline), the two antigens alone, or the antigens adjuvanted with a liposome-based adjuvant AS01B. No systemic toxicity was detected, supporting the dose of 5 µg of E6020 for the subsequent pivotal study. In the second repeated dose toxicity study, rabbits received four intramuscular injections of SPA14 alone, a control (saline), SPA14 combined with two antigens, the two antigens alone, or the antigens combined with AF03 adjuvant, which is a squalene-based emulsion. SPA14 alone or in combination with the antigens was well tolerated and did not cause any systemic toxicity. Finally, two safety pharmacology studies were conducted to assess potential cardiovascular and respiratory effects of E6020 and SPA14 in conscious telemetered cynomolgus monkeys and beagle dogs, respectively. One subcutaneous injection of E6020 in monkeys and one intramuscular injection of SPA14 in dogs had no consequences on respiratory and cardiovascular functions. Altogether these results support the clinical development of SPA14.


Assuntos
Adjuvantes de Vacinas , Receptor 4 Toll-Like , Camundongos , Animais , Coelhos , Cães , Receptor 4 Toll-Like/agonistas , Lipossomos , Adjuvantes Imunológicos/farmacologia
8.
Cytotherapy ; 25(1): 33-45, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36257875

RESUMO

BACKGROUND AIMS: Mesenchymal stromal cells (MSCs) are a multipotent cell population of clinical interest because of their ability to migrate to injury and tumor sites, where they may participate in tissue repair and modulation of immune response. Although the processes regulating MSC function are incompletely understood, it has been shown that stimulation of Toll-like receptors (TLRs) can alter MSC activity. More specifically, it has been reported that human bone marrow-derived MSCs can be "polarized" by TLR priming into contrasting immunomodulatory functions, with opposite (supportive or suppressive) roles in tumor progression and inflammation. Adipose-derived MSCs (ASCs) represent a promising alternative MSC subpopulation for therapeutic development because of their relative ease of isolation and higher abundance compared with their bone marrow-derived counterparts; however, the polarization of ASCs remains unreported. METHODS: In this study, we evaluated the phenotypic and functional consequences of short-term, low-level stimulation of ASCs with TLR3 and TLR4 agonists. RESULTS: In these assays, we identified transient gene expression changes resembling the reported pro-inflammatory and anti-inflammatory MSC phenotypes. Furthermore, these priming strategies led to changes in the functional properties of ASCs, affecting their ability to migrate and modulate immune-mediated responses to prostate cancer cells in vitro. CONCLUSIONS: TLR3 stimulation significantly decreased ASC migration, and TLR4 stimulation increased ASC immune-mediated killing potential against prostate cancer cells.


Assuntos
Células-Tronco Mesenquimais , Neoplasias da Próstata , Humanos , Masculino , Diferenciação Celular , Células Cultivadas , Células-Tronco Mesenquimais/fisiologia , Obesidade , Neoplasias da Próstata/genética , Neoplasias da Próstata/terapia , Neoplasias da Próstata/metabolismo , Receptor 3 Toll-Like/agonistas , Receptor 3 Toll-Like/metabolismo , Receptor 4 Toll-Like/agonistas , Receptor 4 Toll-Like/metabolismo
9.
Clin Transl Sci ; 15(11): 2625-2639, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36097345

RESUMO

A phase I trial (NCT03447314; 204686) evaluated the safety and efficacy of GSK1795091, a Toll-like receptor 4 (TLR4) agonist, in combination with immunotherapy (GSK3174998 [anti-OX40 monoclonal antibody], GSK3359609 [anti-ICOS monoclonal antibody], or pembrolizumab) in patients with solid tumors. The primary endpoint was safety; other endpoints included efficacy, pharmacokinetics, and pharmacodynamics (PD). Manufacturing of GSK1795091 formulation was modified during the trial to streamline production and administration, resulting in reduced PD (cytokine) activity. Fifty-four patients received GSK1795091 with a combination partner; 32 received only the modified GSK1795091 formulation, 15 received only the original formulation, and seven switched mid-study from the original to the modified formulation. Despite the modified formulation demonstrating higher systemic GSK1795091 exposure compared with the original formulation, the transient, dose-dependent elevations in cytokine and chemokine concentrations were no longer observed (e.g., IP-10, IL10, IL1-RA). Most patients (51/54; 94%) experienced ≥1 treatment-emergent adverse event (TEAE) during the study. Safety profiles were similar between formulations, but a higher incidence of TEAEs associated with immune responses (chills, fatigue, pyrexia, nausea, and vomiting) were observed with the original formulation. No conclusions can be made regarding GSK1795091 anti-tumor activity due to the limited data collected. Manufacturing changes were hypothesized to have caused the change in biological activity in this study. Structural characterization revealed GSK1795091 aggregate size in the modified formulation to be twice that in the original formulation, suggesting a negative correlation between GSK1795091 aggregate size and PD activity. This may have important clinical implications for future development of structurally similar compounds.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica , Neoplasias , Humanos , Anticorpos Monoclonais/uso terapêutico , Antineoplásicos/uso terapêutico , Citocinas , Lipídeo A/uso terapêutico , Neoplasias/tratamento farmacológico , Receptor 4 Toll-Like/agonistas , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos
10.
Vaccine ; 40(38): 5544-5555, 2022 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-35773119

RESUMO

Toll-like receptor (TLR) agonists can act as immune stimulants alone or as part of alum or oil formulations. Humoral and cellular immune responses were utilized to assess quantitative and qualitative immune response enhancement by TLR agonists using recombinant protective antigen (rPA) of B. anthracis as a model antigen. To rPA, combined with aluminum hydroxide (Alhydrogel; Al(OH)3) or squalene (AddaVax™), was added one of 7 TLR agonists: TLR2 agonist Pam3CysSK4 (PamS), TLR3 agonist double stranded polyinosinic:polycytidylic acid (PolyIC), TLR4 agonists Monophosphoryl lipid A (MPLA) or glucopyranosyl lipid A (GLA), TLR7-8 agonists 3M-052 or Resiquimod (Resiq), or TLR9 agonist CPG 7909 (CPG). CD-1 or BALB/c mice received two intraperitoneal or intramuscular immunizations 14 days apart, followed by serum or spleen sampling 14 days later. All TLR agonists except PamS induced high levels of B. anthracis lethal toxin-neutralizing antibodies and immunoglobulin G (IgG) anti-PA. Some responses were >100-fold higher than those without a TLR agonist, and IP delivery (0.5 mL) induced higher TLR-mediated antibody response increases compared to IM delivery (0.05 mL). TLR7-8 and TLR9 agonists induced profound shifts of IgG anti-PA response to IgG2a or IgG2b. Compared to the 14-day immunization schedule, use of a shortened immunization schedule of only 7 days between prime and boost found that TLR9 agonist CPG in a squalene formulation maintained higher interferon-γ-positive cells than TLR4 agonist GLA. Variability in antibody responses was lower in BALB/c mice than CD-1 mice but antibody responses were higher in CD-1 mice. Lower serum 50% effective concentration (EC50) values were found for rPA-agonist formulations and squalene formulations compared to Al(OH)3 formulations. Lower EC50 values also were associated with low frequency detection of linear peptide epitopes. In summary, TLR agonists elicited cellular immune responses and markedly boosted humoral responses.


Assuntos
Bacillus anthracis , Adjuvantes Imunológicos , Hidróxido de Alumínio , Animais , Antígenos , Imunoglobulina G , Camundongos , Camundongos Endogâmicos BALB C , Esqualeno , Receptor 2 Toll-Like , Receptor 4 Toll-Like/agonistas , Receptor 7 Toll-Like/agonistas , Receptor Toll-Like 9/agonistas
11.
Oncoimmunology ; 11(1): 2073010, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35558158

RESUMO

The glucocorticoid-induced tumor necrosis factor receptor (GITR) agonistic antibody (DTA-1) has been proved to elicit robust immune response in various kinds of tumors. However, only a few of the HCC patients could benefit from it, and the mechanism of DTA-1 resistance remains unknown. Here, we measured GITR expression in different immunocytes in HCC microenvironment, and we observed that tumor-infiltrating regulatory T cells (Ti-Tregs) significantly expressed GITR, which were associated with poor prognosis. Meanwhile, we analyzed the variation of tumor-infiltrating immune components and associated inflammation response after DTA-1 treatment in orthotopic liver cancer model of mice. Surprisingly, DTA-1 treatment reduced the infiltration of Tregs but failed to activate CD8+ T cells and elicit antitumor efficacy. In particular, DTA-1 treatment enforced alternative M2 polarization of macrophage, and macrophage depletion could enhance DTA-1-mediated antitumor efficacy in HCC. Mechanistically, macrophage M2 polarization attributed to the IL-4 elevation induced by Th2 immune activation in the treatment of DTA-1, resulting in DTA-1 resistance. Furthermore, Toll-like receptor 4 (TLR4) agonist could diminish the macrophage (M2) polarization and reverse the M2-mediated DTA-1 resistance, eliciting robust antitumor effect in HCC. Our finding demonstrated that the TLR4 agonist synergized with DTA-1 was a potential strategy for HCC treatment.


Assuntos
Carcinoma Hepatocelular , Proteína Relacionada a TNFR Induzida por Glucocorticoide , Neoplasias Hepáticas , Receptor 4 Toll-Like , Animais , Linfócitos T CD8-Positivos , Carcinoma Hepatocelular/tratamento farmacológico , Linhagem Celular Tumoral , Proteína Relacionada a TNFR Induzida por Glucocorticoide/agonistas , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Macrófagos/citologia , Camundongos , Camundongos Endogâmicos C57BL , Linfócitos T Reguladores , Receptor 4 Toll-Like/agonistas , Microambiente Tumoral
12.
J Control Release ; 347: 476-488, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35577151

RESUMO

Despite success in vaccinating populations against SARS-CoV-2, concerns about immunity duration, continued efficacy against emerging variants, protection from infection and transmission, and worldwide vaccine availability remain. Molecular adjuvants targeting pattern recognition receptors (PRRs) on antigen-presenting cells (APCs) could improve and broaden the efficacy and durability of vaccine responses. Native SARS-CoV-2 infection stimulates various PRRs, including toll-like receptors (TLRs) and retinoic acid-inducible gene I (RIG-I)-like receptors. We hypothesized that targeting PRRs using molecular adjuvants on nanoparticles (NPs) along with a stabilized spike protein antigen could stimulate broad and efficient immune responses. Adjuvants targeting TLR4 (MPLA), TLR7/8 (R848), TLR9 (CpG), and RIG-I (PUUC) delivered on degradable polymer NPs were combined with the S1 subunit of spike protein and assessed in vitro with isogeneic mixed lymphocyte reactions (isoMLRs). For in vivo studies, the adjuvant-NPs were combined with stabilized spike protein or spike-conjugated NPs and assessed using a two-dose intranasal or intramuscular vaccination model in mice. Combination adjuvant-NPs simultaneously targeting TLR and RIG-I receptors (MPLA+PUUC, CpG+PUUC, and R848+PUUC) differentially induced T cell proliferation and increased proinflammatory cytokine secretion by APCs in vitro. When delivered intranasally, MPLA+PUUC NPs enhanced CD4+CD44+ activated memory T cell responses against spike protein in the lungs while MPLA NPs increased anti-spike IgA in the bronchoalveolar (BAL) fluid and IgG in the blood. Following intramuscular delivery, PUUC NPs induced strong humoral immune responses, characterized by increases in anti-spike IgG in the blood and germinal center B cell populations (GL7+ and BCL6+ B cells) in the draining lymph nodes (dLNs). MPLA+PUUC NPs further boosted spike protein-neutralizing antibody titers and T follicular helper cell populations in the dLNs. These results suggest that protein subunit vaccines with particle-delivered molecular adjuvants targeting TLR4 and RIG-I could lead to robust and unique route-specific adaptive immune responses against SARS-CoV-2.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Proteína DEAD-box 58 , Nanopartículas , Receptores Imunológicos , Receptor 4 Toll-Like , Adjuvantes Imunológicos , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19/prevenção & controle , Vacinas contra COVID-19/imunologia , Sistemas de Liberação de Medicamentos , Imunidade Humoral , Imunoglobulina G , Camundongos , Nanopartículas/química , Receptores Imunológicos/agonistas , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Receptor 4 Toll-Like/agonistas
13.
Leuk Lymphoma ; 63(4): 821-833, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34865586

RESUMO

Intratumoral injection of G100, a toll-like receptor 4 (TLR4) agonist, was shown pre-clinically to stimulate anti-tumor immune responses and tumor regression. This open-label, multicenter, phase 1/2 trial evaluated the safety, tolerability, and preliminary efficacy of intratumoral G100 injections following localized low-dose radiation in patients with follicular lymphoma (ClinicalTrials.gov #NCT02501473). The study was comprised of a G100 dose escalation (5 or 10 µg/dose, or 20 µg/dose for large tumors); a randomized component comparing G100 to G100 plus pembrolizumab; and G100 20 µg/dose expansion. Adverse events grade ≥3 were uncommon in patients treated with G100, and no unexpected toxicities were observed when combined with pembrolizumab. G100 20 µg (n = 18) resulted in an overall response rate of 33.3% and abscopal tumor regression in 72.2% of patients. This early-phase study provides a foundation for combining an intratumoral TLR4 agonist with agents to produce immune-mediated responses in follicular lymphoma with limited added toxicity.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica , Linfoma Folicular , Receptor 4 Toll-Like , Anticorpos Monoclonais Humanizados/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Humanos , Linfoma Folicular/tratamento farmacológico , Receptor 4 Toll-Like/agonistas
14.
PLoS One ; 16(12): e0259301, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34855754

RESUMO

Systemic interleukin-12 (IL12) anti-tumor therapy is highly potent but has had limited utility in the clinic due to severe toxicity. Here, we present two IL12-expressing vector platforms, both of which can overcome the deficiencies of previous systemic IL12 therapies: 1) an integrating lentiviral vector, and 2) a self-replicating messenger RNA formulated with polyethyleneimine. Intratumoral administration of either IL12 vector platform resulted in recruitment of immune cells, including effector T cells and dendritic cells, and the complete remission of established tumors in multiple murine models. Furthermore, concurrent intratumoral administration of the synthetic TLR4 agonist glucopyranosyl lipid A formulated in a stable emulsion (GLA-SE) induced systemic memory T cell responses that mediated complete protection against tumor rechallenge in all survivor mice (8/8 rechallenged mice), whereas only 2/6 total rechallenged mice treated with intratrumoral IL12 monotherapy rejected the rechallenge. Taken together, expression of vectorized IL12 in combination with a TLR4 agonist represents a varied approach to broaden the applicability of intratumoral immune therapies of solid tumors.


Assuntos
Glucosídeos/farmacologia , Memória Imunológica/efeitos dos fármacos , Interleucina-12/genética , Lipídeo A/farmacologia , Neoplasias Experimentais/imunologia , Receptor 4 Toll-Like/agonistas , Animais , Linfócitos T CD8-Positivos/imunologia , Feminino , Regulação da Expressão Gênica , Vetores Genéticos/administração & dosagem , Vetores Genéticos/farmacologia , Imunidade Inata/efeitos dos fármacos , Imunidade Inata/genética , Memória Imunológica/genética , Imunoterapia/métodos , Interferon gama/sangue , Interleucina-12/sangue , Interleucina-12/imunologia , Lentivirus/genética , Melanoma Experimental/genética , Melanoma Experimental/imunologia , Melanoma Experimental/terapia , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neoplasias Experimentais/genética , Neoplasias Experimentais/patologia
15.
Bull Exp Biol Med ; 172(2): 175-179, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34853967

RESUMO

In 3-month bone marrow transplants of CBA mice from bone marrow donors receiving single injections of TLR-4 ligand (LPS) or NOD-2 ligand (muramyl dipeptide, MDP) 24 h before transplantation, an increase in the total number of MSCs (by 2.6 and 1.9 times, respectively), as well as a slight increase in the number of nuclear cells and the mass of bone capsules (by 1.3 and 1.2 times) were observed. After combined administration of MDР and LPS to donors, the total content of MSCs in the grafts was higher by 1.6 times in comparison with the total result of their isolated administration (and by 7.2 times in comparison with the control). At the same time, the concentration of osteogenic MSCs in the grafts of all groups was almost the same and corresponded to the control level. The number of nuclear cells and the mass of bone capsules of the grafts after combined administration of LPS and MDP were close (~80%) to the sum of the results of their isolated administration. These findings suggest that activation of the stromal tissue and the success of bone marrow transplantation depend on the intensity of innate immune responses. These data can be useful for the development of optimal methods of tissue transplantation.


Assuntos
Acetilmuramil-Alanil-Isoglutamina/administração & dosagem , Células da Medula Óssea/efeitos dos fármacos , Transplante de Medula Óssea , Lipopolissacarídeos/administração & dosagem , Doadores de Tecidos , Acetilmuramil-Alanil-Isoglutamina/farmacologia , Animais , Células da Medula Óssea/citologia , Células da Medula Óssea/fisiologia , Contagem de Células , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Combinação de Medicamentos , Lipopolissacarídeos/farmacologia , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos CBA , Células-Tronco Multipotentes/citologia , Células-Tronco Multipotentes/efeitos dos fármacos , Proteína Adaptadora de Sinalização NOD2/agonistas , Receptor 4 Toll-Like/agonistas
16.
ACS Chem Biol ; 16(11): 2651-2664, 2021 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-34761908

RESUMO

Covalent conjugation of allergens to toll-like receptor (TLR) agonists appears to be a powerful strategy for the development of safety compounds for allergen-specific immunomodulatory response toward tolerance in allergy. In this work, we have synthesized two family of ligands, an 8-oxoadenine derivative as a ligand for TLR7 and a pyrimido[5,4-b]indole as a ligand for TLR4, both conjugated with a T-cell peptide of Pru p 3 allergen, the lipid transfer protein (LTP) responsible for LTP-dependent food allergy. These conjugates interact with dendritic cells, inducing their specific maturation, T-cell proliferation, and cytokine production in peach allergic patients. Moreover, they increased the Treg-cell frequencies in these patients and could induce the IL-10 production. These outcomes were remarkable in the case of the TLR7 ligand conjugated with Pru p 3, opening the door for the potential application of these allergen-adjuvant systems in food allergy immunotherapy.


Assuntos
Hipersensibilidade Alimentar/metabolismo , Imunomodulação , Peptídeos/metabolismo , Receptor 4 Toll-Like/metabolismo , Receptor 7 Toll-Like/metabolismo , Alérgenos/metabolismo , Proteínas de Transporte/metabolismo , Proliferação de Células , Citocinas/biossíntese , Hipersensibilidade Alimentar/imunologia , Humanos , Ligantes , Linfócitos T/citologia , Linfócitos T/imunologia , Receptor 4 Toll-Like/agonistas , Receptor 7 Toll-Like/agonistas
17.
Toxicol Appl Pharmacol ; 432: 115755, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34673087

RESUMO

The polarization of macrophages has been previously demonstrated to be closely related to immune and inflammatory processes in the tumorigenesis and progression of breast cancer. In the present study, Anemoside A3 (A3), an active compound from Pulsatilla saponins, was screened out and polarized M0 macrophages into the classically activated macrophages (M1-phenotype). We found that A3 is an activator of TLR4/NF-κB/MAPK signaling pathway. A3 increased the expression of CD86+ (a marker of M1 macrophage) in M0 macrophage, and increased the typical M1 macrophage pro-inflammatory cytokines TNF-α, and IL-12 expression in a TLR4-dependent manner. A macrophage-cancer cell co-culture system was established to evaluate whether A3 can could switch tumor-associated macrophages (TAMs) to the M1-phenotype. In the co-culture system, A3 increased the expression of IL-12 in macrophages, whereby suppressing MCF-7 breast cancer cell line proliferation and VEGF-mediated angiogenesis. Moreover, A3 induced M1 macrophage polarization in the 4 T1 murine breast cancer model and effectively inhibited tumor growth and tumor angiogenesis. Collectively, these findings indicated that A3 induced M1 macrophages polarization to repress breast tumorigenesis via targeting the TLR4/NF-κB/MAPK signaling pathway. This study provides a rationale for utilizing traditional Chinese medicine extracts in the immunotherapy of breast cancer.


Assuntos
Inibidores da Angiogênese/farmacologia , Neoplasias da Mama/tratamento farmacológico , Neovascularização Patológica , Saponinas/farmacologia , Receptor 4 Toll-Like/agonistas , Triterpenos/farmacologia , Macrófagos Associados a Tumor/efeitos dos fármacos , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Proliferação de Células/efeitos dos fármacos , Técnicas de Cocultura , Citocinas/metabolismo , Feminino , Humanos , Células MCF-7 , Camundongos , Camundongos Endogâmicos BALB C , Proteínas Quinases Ativadas por Mitógeno/metabolismo , NF-kappa B/metabolismo , Fenótipo , Transdução de Sinais , Células THP-1 , Receptor 4 Toll-Like/metabolismo , Carga Tumoral/efeitos dos fármacos , Macrófagos Associados a Tumor/metabolismo
18.
J Immunol ; 207(9): 2310-2324, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34551966

RESUMO

IFN-γ, a proinflammatory cytokine produced primarily by T cells and NK cells, activates macrophages and engages mechanisms to control pathogens. Although there is evidence of IFN-γ production by murine macrophages, IFN-γ production by normal human macrophages and their subsets remains unknown. Herein, we show that human M1 macrophages generated by IFN-γ and IL-12- and IL-18-stimulated monocyte-derived macrophages (M0) produce significant levels of IFN-γ. Further stimulation of IL-12/IL-18-primed macrophages or M1 macrophages with agonists for TLR-2, TLR-3, or TLR-4 significantly enhanced IFN-γ production in contrast to the similarly stimulated M0, M2a, M2b, and M2c macrophages. Similarly, M1 macrophages generated from COVID-19-infected patients' macrophages produced IFN-γ that was enhanced following LPS stimulation. The inhibition of M1 differentiation by Jak inhibitors reversed LPS-induced IFN-γ production, suggesting that differentiation with IFN-γ plays a key role in IFN-γ induction. We subsequently investigated the signaling pathway(s) responsible for TLR-4-induced IFN-γ production in M1 macrophages. Our results show that TLR-4-induced IFN-γ production is regulated by the ribosomal protein S6 kinase (p70S6K) through the activation of PI3K, the mammalian target of rapamycin complex 1/2 (mTORC1/2), and the JNK MAPK pathways. These results suggest that M1-derived IFN-γ may play a key role in inflammation that may be augmented following bacterial/viral infections. Moreover, blocking the mTORC1/2, PI3K, and JNK MAPKs in macrophages may be of potential translational significance in preventing macrophage-mediated inflammatory diseases.


Assuntos
Interferon gama/biossíntese , Macrófagos/efeitos dos fármacos , Poli I-C/farmacologia , COVID-19/imunologia , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Quinases JNK Ativadas por Mitógeno/imunologia , Lipopolissacarídeos/antagonistas & inibidores , Lipopolissacarídeos/farmacologia , MAP Quinase Quinase Quinases/antagonistas & inibidores , MAP Quinase Quinase Quinases/imunologia , Macrófagos/imunologia , Fosfatidilinositol 3-Quinases/imunologia , Proteínas Quinases S6 Ribossômicas 70-kDa/antagonistas & inibidores , Proteínas Quinases S6 Ribossômicas 70-kDa/imunologia , Serina-Treonina Quinases TOR/antagonistas & inibidores , Serina-Treonina Quinases TOR/imunologia , Receptor 4 Toll-Like/agonistas
19.
Inflammopharmacology ; 29(4): 1101-1109, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34218389

RESUMO

There are accumulating reports regarding poor response to common antidepressant therapy. Antidepressant resistance is often linked to inflammatory system activation and patients displaying inflammation prior to the treatment are less responsive to antidepressants. We hypothesized that the inefficacy of antidepressant therapy in some patients may be attributable to the drugs' inflammatory mode of action, which has been overlooked because of their substantial therapeutic benefit. Bupropion is a commonly prescribed antidepressant that is often used to treat seasonal affective disorders as well. Nevertheless, research suggests that bupropion causes inflammation and worsens depressive symptoms. Therefore, we investigated the impact of bupropion on cytokines of innate and adaptive immunity, as well as immune signaling pathways. We treated lipopolysaccharide (LPS)-stimulated human peripheral blood mononuclear cells (PBMCs) with different doses of bupropion. Pro-/anti-inflammatory cytokines [tumor necrosis factor alpha (TNFα), interleukin-1ß (IL-1ß), IL-17, and IL-10] were assessed at both transcriptional and translational levels as well as the involvement of JAK2 /STAT3, TLR2, and TLR4 signaling in this process. Bupropion reduced IL-17A, TNFα, and IL-1ß protein levels in the cultures. Nonetheless, bupropion increased IL-1ß (P < 0.0001), TNFα (P < 0.0001), and IL-17A (P < 0.05) mRNA levels. Treatment enhanced both IL-10 concentration (P < 0.0001) and gene expression (P < 0.0001). TLR2 (P < 0.0001), TLR4 (P < 0.0001), JAK2 (P < 0.0001), and STAT3 (P < 0.0001) gene expression also rose in response to bupropion. The findings imply that bupropion, particularly 50 µM and 100 µM, has pro-inflammatory effects and should be co-administered with anti-inflammatory medications, at least in patients with inflammatory conditions.


Assuntos
Anti-Inflamatórios/farmacologia , Bupropiona/farmacologia , Janus Quinase 2/biossíntese , Fator de Transcrição STAT3/biossíntese , Receptor 2 Toll-Like/biossíntese , Receptor 4 Toll-Like/biossíntese , Adulto , Células Cultivadas , Relação Dose-Resposta a Droga , Humanos , Janus Quinase 2/imunologia , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/metabolismo , Masculino , Fator de Transcrição STAT3/agonistas , Fator de Transcrição STAT3/imunologia , Receptor 2 Toll-Like/agonistas , Receptor 2 Toll-Like/imunologia , Receptor 4 Toll-Like/agonistas , Receptor 4 Toll-Like/imunologia , Adulto Jovem
20.
Sci Rep ; 11(1): 15406, 2021 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-34321536

RESUMO

Brucella lumazine synthase (BLS) is a homodecameric protein that activates dendritic cells via toll like receptor 4, inducing the secretion of pro-inflammatory cytokines and chemokines. We have previously shown that BLS has a therapeutic effect in B16 melanoma-bearing mice only when administered at early stages of tumor growth. In this work, we study the mechanisms underlying the therapeutic effect of BLS, by analyzing the tumor microenvironment. Administration of BLS at early stages of tumor growth induces high levels of serum IFN-γ, as well as an increment of hematopoietic immune cells within the tumor. Moreover, BLS-treatment increases the ratio of effector to regulatory cells. However, all treated mice eventually succumb to the tumors. Therefore, we combined BLS administration with anti-PD-1 treatment. Combined treatment increases the outcome of both monotherapies. In conclusion, we show that the absence of the therapeutic effect at late stages of tumor growth correlates with low levels of serum IFN-γ and lower infiltration of immune cells in the tumor, both of which are essential to delay tumor growth. Furthermore, the combined treatment of BLS and PD-1 blockade shows that BLS could be exploited as an essential immunomodulator in combination therapy with an immune checkpoint blockade to treat skin cancer.


Assuntos
Interferon gama/genética , Melanoma Experimental/tratamento farmacológico , Receptor de Morte Celular Programada 1/genética , Receptor 4 Toll-Like/genética , Animais , Quimiocinas/genética , Citocinas/genética , Células Dendríticas/efeitos dos fármacos , Modelos Animais de Doenças , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Fatores Imunológicos/farmacologia , Melanoma Experimental/genética , Melanoma Experimental/patologia , Camundongos , Receptor 4 Toll-Like/agonistas , Microambiente Tumoral/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA