Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 301
Filtrar
1.
Peptides ; 179: 171246, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38821119

RESUMO

Changes in renal hemodynamics impact renal function during physiological and pathological conditions. In this context, renal vascular resistance (RVR) is regulated by components of the Renin-Angiotensin System (RAS) and the Kallikrein-Kinin System (KKS). However, the interaction between these vasoactive peptides on RVR is still poorly understood. Here, we studied the crosstalk between angiotensin-(1-7) and kinins on RVR. The right kidneys of Wistar rats were isolated and perfused in a closed-circuit system. The perfusion pressure and renal perfusate flow were continuously monitored. Ang-(1-7) (1.0-25.0 nM) caused a sustained, dose-dependent reduction of relative RVR (rRVR). This phenomenon was sensitive to 10 nM A-779, a specific Mas receptor (MasR) antagonist. Bradykinin (BK) promoted a sustained and transient reduction in rRVR at 1.25 nM and 125 nM, respectively. The transient effect was abolished by 4 µM des-Arg9-Leu8-bradykinin (DALBK), a specific kinin B1 receptor (B1R) antagonist. Accordingly, des-Arg9-bradykinin (DABK) 1 µM (a B1R agonist) increased rRVR. Interestingly, pre-perfusion of Ang-(1-7) changed the sustained reduction of rRVR triggered by 1.25 nM BK into a transient effect. On the other hand, pre-perfusion of Ang-(1-7) primed and potentiated the DABK response, this mechanism being sensitive to A-779 and DALBK. Binding studies performed with CHO cells stably transfected with MasR, B1R, and kinin B2 receptor (B2R) showed no direct interaction between Ang-(1-7) with B1R or B2R. In conclusion, our findings suggest that Ang-(1-7) differentially modulates kinin's effect on RVR in isolated rat kidneys. These results help to expand the current knowledge regarding the crosstalk between the RAS and KKS complex network in RVR.


Assuntos
Angiotensina I , Bradicinina , Fragmentos de Peptídeos , Ratos Wistar , Receptor B1 da Bradicinina , Resistência Vascular , Animais , Angiotensina I/farmacologia , Angiotensina I/metabolismo , Fragmentos de Peptídeos/farmacologia , Receptor B1 da Bradicinina/metabolismo , Ratos , Bradicinina/farmacologia , Bradicinina/análogos & derivados , Masculino , Resistência Vascular/efeitos dos fármacos , Rim/metabolismo , Rim/efeitos dos fármacos , Receptores Acoplados a Proteínas G/metabolismo , Células CHO , Cricetulus , Proteínas Proto-Oncogênicas/metabolismo , Proto-Oncogene Mas , Circulação Renal/efeitos dos fármacos , Cininas/metabolismo , Sistema Renina-Angiotensina/efeitos dos fármacos , Sistema Renina-Angiotensina/fisiologia , Sistema Calicreína-Cinina/fisiologia , Sistema Calicreína-Cinina/efeitos dos fármacos , Cricetinae , Angiotensina II/análogos & derivados
2.
Mol Neurobiol ; 61(3): 1627-1642, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37740866

RESUMO

Anastrozole, an aromatase inhibitor, induces painful musculoskeletal symptoms, which affect patients' quality of life and lead to therapy discontinuation. Efforts have been made to understand the mechanisms involved in these painful symptoms to manage them better. In this context, we explored the role of the Transient Receptor Potential Vanilloid 4 (TRPV4), a potential transducer of several nociceptive mechanisms, in anastrozole-induced musculoskeletal pain in mice. Besides, we evaluated the possible sensibilization of TRPV4 by signalling pathways downstream, PLC, PKC and PKCε from kinin B2 (B2R) and B1 (B1R) receptors activation in anastrozole-induced pain. Anastrozole caused mechanical allodynia and muscle strength loss in mice. HC067047, TRPV4 antagonist, reduced the anastrozole-induced mechanical allodynia and muscle strength loss. In animals previously treated with anastrozole, the local administration of sub-nociceptive doses of the TRPV4 (4α-PDD or hypotonic solution), B2R (Bradykinin) or B1R (DABk) agonists enhanced the anastrozole-induced pain behaviours. The sensitizing effects induced by local injection of the TRPV4, B2R and B1R agonists in animals previously treated with anastrozole were reduced by pre-treatment with TRPV4 antagonist. Furthermore, inhibition of PLC, PKC or PKCε attenuated the mechanical allodynia and muscle strength loss induced by TRPV4, B2R and B1R agonists. The generation of painful conditions caused by anastrozole depends on direct TRPV4 activation or indirect, e.g., PLC, PKC and PKCε pathways downstream from B2R and B1R activation. Thus, the TRPV4 channels act as sensors of extracellular and intracellular changes, making them potential therapeutic targets for alleviating pain related to aromatase inhibitors use, such as anastrozole.


Assuntos
Antineoplásicos , Canais de Cátion TRPV , Humanos , Camundongos , Animais , Anastrozol , Hiperalgesia/induzido quimicamente , Qualidade de Vida , Receptor B1 da Bradicinina/metabolismo , Receptor B2 da Bradicinina/metabolismo , Dor/tratamento farmacológico , Bradicinina/farmacologia
3.
Sci Rep ; 13(1): 4418, 2023 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-36932156

RESUMO

Pain caused by the tumor or aromatase inhibitors (AIs) is a disabling symptom in breast cancer survivors. Their mechanisms are unclear, but pro-algesic and inflammatory mediators seem to be involved. Kinins are endogenous algogenic mediators associated with various painful conditions via B1 and B2 receptor activation, including chemotherapy-induced pain and breast cancer proliferation. We investigate the involvement of the kinin B1 and B2 receptors in metastatic breast tumor (4T1 breast cancer cells)-caused pain and in aromatase inhibitors (anastrozole or letrozole) therapy-associated pain. A protocol associating the tumor and antineoplastic therapy was also performed. Kinin receptors' role was investigated via pharmacological antagonism, receptors protein expression, and kinin levels. Mechanical and cold allodynia and muscle strength were evaluated. AIs and breast tumor increased kinin receptors expression, and tumor also increased kinin levels. AIs caused mechanical allodynia and reduced the muscle strength of mice. Kinin B1 (DALBk) and B2 (Icatibant) receptor antagonists attenuated these effects and reduced breast tumor-induced mechanical and cold allodynia. AIs or paclitaxel enhanced breast tumor-induced mechanical hypersensitivity, while DALBk and Icatibant prevented this increase. Antagonists did not interfere with paclitaxel's cytotoxic action in vitro. Thus, kinin B1 or B2 receptors can be a potential target for treating the pain caused by metastatic breast tumor and their antineoplastic therapy.


Assuntos
Antineoplásicos , Dor do Câncer , Neoplasias , Camundongos , Animais , Inibidores da Aromatase/farmacologia , Inibidores da Aromatase/uso terapêutico , Hiperalgesia/tratamento farmacológico , Hiperalgesia/metabolismo , Receptor B2 da Bradicinina/metabolismo , Receptor B1 da Bradicinina/metabolismo , Bradicinina/farmacologia , Dor , Paclitaxel
4.
Life Sci ; 314: 121302, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36535404

RESUMO

Kinins are endogenous peptides that belong to the kallikrein-kinin system, which has been extensively studied for over a century. Their essential role in multiple physiological and pathological processes is demonstrated by activating two transmembrane G-protein-coupled receptors, the kinin B1 and B2 receptors. The attention is mainly given to the pathological role of kinins in pain transduction mechanisms. In the past years, a wide range of preclinical studies has amounted to the literature reinforcing the need for an updated review about the participation of kinins and their receptors in pain disorders. Here, we performed an extensive literature search since 2004, describing the historical progress and the current understanding of the kinin receptors' participation and its potential therapeutic in several acute and chronic painful conditions. These include inflammatory (mainly arthritis), neuropathic (caused by different aetiologies, such as cancer, multiple sclerosis, antineoplastic toxicity and diabetes) and nociplastic (mainly fibromyalgia) pain. Moreover, we highlighted the pharmacological actions and possible clinical applications of the kinin B1 and B2 receptor antagonists, kallikrein inhibitors or kallikrein-kinin system signalling pathways-target molecules in these different painful conditions. Notably, recent findings sought to elucidate mechanisms for guiding new and better drug design targeting kinin B1 and B2 receptors to treat a disease diversity. Since the kinin B2 receptor antagonist, Icatibant, is clinically used and well-tolerated by patients with hereditary angioedema gives us hope kinin receptors antagonists could be more robustly tested for a possible clinical application in the treatment of pathological pains, which present limited pharmacology management.


Assuntos
Fibromialgia , Receptor B2 da Bradicinina , Humanos , Dor/tratamento farmacológico , Receptor B1 da Bradicinina , Peptídeos
5.
Sci Rep ; 12(1): 19015, 2022 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-36348016

RESUMO

Eleven multiple analogs of bradykinin-a peptide that is a natural ligand of B1 and B2 receptors but does not bind or activate the B1 receptor unless Arg9 is removed from the sequence by the action of carboxypeptidase N-were synthesized. Their biological activity was examined on T-REx cell lines expressing B1 or B2 receptors using the intracellular IP1 assay. The mRNA expression of B1R and B2R in the lysate of tumor cell lines, e.g., U87-MG (human astrocytoma), SHP-77 (human small cell lung cancer), and H4 (human brain glioma), was determined. For five B1R antagonists, adsorption at the liquid/solid interface (Au nanoparticles (AuNPs) served as the solid surface) was discussed in terms of the vibrations of molecular fragments (structural factors) responsible for the biological properties of these analogs.


Assuntos
Bradicinina , Nanopartículas Metálicas , Humanos , Receptor B1 da Bradicinina/genética , Receptor B2 da Bradicinina/genética , Ouro , Fatores de Transcrição
6.
Biochim Biophys Acta Rev Cancer ; 1877(6): 188807, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36167271

RESUMO

Kinins are bioactive peptides generated in the inflammatory milieu of the tissue microenvironment, which is involved in cancer progression and inflammatory response. Kinins signals through activation of two G-protein coupled receptors; inducible Bradykinin Receptor B1 (B1R) and constitutive receptor B2 (B2R). Activation of kinin receptors and its cross-talk with receptor tyrosine kinases activates multiple signaling pathways, including ERK/MAPK, PI3K, PKC, and p38 pathways regulating cancer hallmarks. Perturbations of the kinin-mediated events are implicated in various aspects of cancer invasion, matrix remodeling, and metastasis. In the tumor microenvironment, kinins initiate fibroblast activation, mesenchymal stem cell interactions, and recruitment of immune cells. Albeit the precise nature of kinin function in the metastasis and tumor microenvironment are not completely clear yet, several kinin receptor antagonists show anti-metastatic potential. Here, we showcase an overview of the complex biology of kinins and their role in cancer pathogenesis and therapeutic aspects.


Assuntos
Cininas , Neoplasias , Humanos , Receptor B1 da Bradicinina/metabolismo , Receptor B2 da Bradicinina/metabolismo , Neoplasias/tratamento farmacológico , Transdução de Sinais/fisiologia , Microambiente Tumoral
7.
Int Immunopharmacol ; 110: 108984, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35780642

RESUMO

The centrally acting antitussive opiate derivative, noscapine, has been claimed to be a non-competitive bradykinin B2 receptor antagonist. Raloxifene, a selective estrogen receptor modulator, was predicted to bind the bradykinin B2 receptor and to exert a partial agonist activity. These intriguing claims suggest that new molecular scaffolds ("chemotypes") may be identified for small molecule ligands of kinin receptors and that some off-target effects of noscapine or raloxifene may be mediated by bradykinin B2 receptors. An established contractile bioassay for ligands of the bradykinin B2 receptor, the isolated human umbilical vein, was exploited to characterize the inhibitory effect of noscapine and raloxifene on the B2 receptor-mediated contractile response to bradykinin. Observed effects were compared with those of the peptide antagonist icatibant, a potent, selective and competitive B2 receptor antagonist. Our results indicate that neither noscapine (2.5 µM) nor raloxifene (20 µM) behave as B2 receptor antagonists in concentrations that vastly exceeded an effective concentration of the control antagonist, icatibant; further, none of these drugs had direct contractile effects. It is suggested that the previously reported B2 receptor inhibitory effect of noscapine, a putative sigma-receptor agonist, might result from an indirect physiological antagonism, while raloxifene did not appear to have any significant affinity for the B2 receptors.


Assuntos
Noscapina , Receptores da Bradicinina , Bioensaio , Bradicinina/metabolismo , Antagonistas dos Receptores da Bradicinina , Humanos , Noscapina/farmacologia , Cloridrato de Raloxifeno/farmacologia , Receptor B1 da Bradicinina , Receptor B2 da Bradicinina , Receptores da Bradicinina/metabolismo , Veias Umbilicais/metabolismo
8.
Clin Exp Hypertens ; 43(5): 408-415, 2021 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-33687297

RESUMO

OBJECTIVE: To demonstrate that the kallikrein-kinin system (KKS) is upstream of angiogenic signaling pathway, and to determine the role of the kinin B1 and B2 receptors in myocardial angiogenesis induced by exercise training. METHODS: Forty Wistar rats were randomly assigned to an exercise control (EC) group, a B1 receptor antagonist (B1Ant) group, a B2 receptor antagonist (B2Ant) group, and a double receptor antagonist ((B1+ B2)Ant) group. A myocardial infarction model was employed. Animals in all groups received 30 min of exercise training for 4 weeks. The expression of VEGF and eNOS, capillary supply, and apoptosis rate were evaluated. RESULTS: The mRNA and protein expression of VEGF and eNOS showed similar trends in all groups, and were lowest in the (B1+ B2) Ant group, and highest in the EC group. Levels of VEGF and eNOS mRNA were significantly lower in the B1Ant group than in the B2Ant group (p< .001 and p< .05, respectively). VEGF and eNOS protein in the B1Ant group was also significantly lower (p< .01 and p< .05, respectively) than in the B2Ant group. The capillary numbers in the (B1+ B2) Ant group were significantly lower than in the EC group (395.8 ± 105 vs. 1127.9 ± 192.98, respectively). The apoptosis rate of cardiomyocytes was highest in the (B1+ B2) Ant group. CONCLUSION: KKS may act as an upstream signal transduction pathway for angiogenic factors in myocardial angiogenesis. The B1 and B2 receptors exert additive effects, and the B1 receptor has the most prominent role in mediating KKS-induced myocardial angiogenesis.


Assuntos
Miocárdio/metabolismo , Neovascularização Fisiológica , Condicionamento Físico Animal , Receptor B1 da Bradicinina/metabolismo , Receptor B2 da Bradicinina/metabolismo , Animais , Capilares/metabolismo , Cininas/metabolismo , Masculino , Miócitos Cardíacos/metabolismo , Óxido Nítrico Sintase Tipo III/genética , Óxido Nítrico Sintase Tipo III/metabolismo , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos Wistar , Receptor B1 da Bradicinina/genética , Receptor B2 da Bradicinina/genética , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
9.
J Transl Med ; 18(1): 174, 2020 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-32306971

RESUMO

BACKGROUND: In sepsis, the endothelial barrier becomes incompetent, with the leaking of plasma into interstitial tissues. VE-cadherin, an adherens junction protein, is the gatekeeper of endothelial cohesion. Kinins, released during sepsis, induce vascular leakage and vasodilation. They act via two G-protein coupled receptors: B1 (B1R) and B2 (B2R). B1R is inducible in the presence of pro-inflammatory cytokines, endotoxins or after tissue injury. It acts at a later stage of sepsis and elicits a sustained inflammatory response. The aim of our study was to investigate the relationships between B1R and VE-cadherin destabilization in vivo in a later phase of sepsis. METHODS: Experimental, prospective study in a university research laboratory. We used a polymicrobial model of septic shock by cecal ligation and puncture in C57BL6 male mice or C57BL6 male mice that received a specific B1R antagonist (R-954). We studied the influence of B1R on sepsis-induced vascular permeability 30 h after surgery for several organs, and VE-cadherin expression in the lung and kidneys by injecting R-954 just before surgery. The 96-h survival was determined in mice without treatment or in animals receiving R-954 as a "prophylactic" regimen (a subcutaneous injection of 200 µg/kg, prior to CLP and 24 h after CLP), or as a "curative" regimen (injection of 100 µg/kg at H6, H24 and H48 post-surgery). RESULTS: B1R inactivation helps to maintain MAP above 65 mmHg but induces different permeability profiles depending on whether or not organ perfusion is autoregulated. In our model, VE-cadherin was destabilized in vivo during septic shock. At a late stage of sepsis, the B1R blockade reduced the VE-cadherin disruption by limiting eNOS activation. The survival rate for mice that received R-954 after sepsis induction was higher than in animals that received an antagonist as a prophylactic treatment. CONCLUSIONS: B1R antagonizing reduced mortality in our model of murine septic shock by limiting the vascular permeability induced by VE-cadherin destabilization through maintenance of the macrohemodynamics, consequently limiting organ dysfunctions.


Assuntos
Cininas , Sepse , Animais , Masculino , Camundongos , Estudos Prospectivos , Receptor B1 da Bradicinina , Receptor B2 da Bradicinina , Sepse/complicações , Sepse/tratamento farmacológico
10.
Curr Eye Res ; 45(8): 965-974, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-31902231

RESUMO

PURPOSE: Diabetic retinopathy is characterized by multiple microcirculatory dysfunctions and angiogenesis resulting from hyperglycemia, oxidative stress, and inflammation. In this study, the retina and retinal pigmented epithelium of non-insulin-dependent diabetic Goto-Kakizaki (GK) rats were examined to detect microvascular alterations, gliosis, macrophage infiltration, lipid deposits, and fibrosis. Emphasis was given to the distribution of kinin B1 receptor (B1R) and vascular endothelial growth factor (VEGF), two major factors in inflammation and angiogenesis. MATERIALS AND METHODS: 30-week-old male GK rats and age-matched Wistar rats were used. The retinal vascular bed was examined using ADPase staining. The level of lipid accumulation was graded using triglyceride staining with Oil red O. Macrophage and retinal microglia activation, as well as other markers, were revealed by immunohistochemistry and studied with confocal laser scanning microscopy. RESULTS: Abundant lipid deposits were observed in the Bruch's membrane of GK rats. Immunohistochemistry and quantitative analysis showed significantly higher B1R, VEGF, Iba1 (microglia), CD11 (macrophages), fibronectin, and collagen I labeling in the diabetic retina. B1R immunolabeling was detected in the vascular layers of the GK retina. A strong VEGF staining within different retinal cell processes was detected and a pattern of GFAP staining suggested strong Müller cells/astrocytes reactivity. Microgliosis was apparent in the GK retina. A greater tortuosity of the retinal microvessels (an index of endothelial dysfunction) and their increased number were also observed in GK retinas. CONCLUSIONS: Data suggest retinal vascular bed alterations in spontaneous type 2 diabetic retinas at 30 weeks. Lipid and collagen accumulation in the retina and choroid, in addition to retinal upregulation of VEGF and B1R, microgliosis, and Müller cell reactivity, may contribute to vascular alterations and inflammatory processes.


Assuntos
Diabetes Mellitus Tipo 2/patologia , Retinopatia Diabética/patologia , Vasos Retinianos/patologia , Retinite/patologia , Animais , Colágeno Tipo I/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Retinopatia Diabética/metabolismo , Modelos Animais de Doenças , Fibronectinas/metabolismo , Proteína Glial Fibrilar Ácida/metabolismo , Gliose/patologia , Imuno-Histoquímica , Inflamação/metabolismo , Inflamação/patologia , Metabolismo dos Lipídeos , Macrófagos/patologia , Masculino , Microscopia Confocal , Ratos Mutantes , Ratos Wistar , Receptor B1 da Bradicinina/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Epitélio Pigmentado da Retina/patologia , Vasos Retinianos/metabolismo , Retinite/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
11.
Reprod Toxicol ; 93: 1-9, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31874189

RESUMO

Kallikrein-kinin system (KKS) is involved in vascular reactivity and inflammatory response to cytotoxic drugs. Since cisplatin is a widely used chemotherapy and its cytotoxic mechanism can trigger inflammation and oxidative damage, in this work we evaluated the role of KKS in an animal model of cisplatin-induced ovarian toxicity. Biomarkers of ovarian stem cells, activity of KKS, inflammation and oxidative damage were measured in ovarian tissue of C57BL/6 female mice treated with vehicle or cisplatin (2.5 mg/kg). Cisplatin group presented greater number of atretic follicles, and lower numbers of antral and total viable follicles. Ki67, DDX4 and OCT-4 markers were similar between groups. Cisplatin triggered plasma and ovarian tissue kallikrein generation; and increased expression of bradykinin receptors B1 and B2. Neutrophil and macrophage infiltration markers increased. Superoxide anion generation also increased, while reduced glutathione levels decreased. These results suggest that KKS is activated and contributes to ovarian injury during cisplatin treatment.


Assuntos
Antineoplásicos/efeitos adversos , Cisplatino/efeitos adversos , Ovário/efeitos dos fármacos , Animais , Feminino , Sistema Calicreína-Cinina , Calicreínas/metabolismo , Camundongos Endogâmicos C57BL , Óxido Nítrico/metabolismo , Ovário/metabolismo , Ovário/patologia , Estresse Oxidativo/efeitos dos fármacos , Receptor B1 da Bradicinina/metabolismo , Receptor B2 da Bradicinina/metabolismo
12.
Cell Mol Neurobiol ; 40(5): 845-857, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31865500

RESUMO

Neuroinflammation has become an important underlying factor in many cardiovascular disorders, including hypertension. Previously we showed that elevated angiotensin II (Ang II) and angiotensin II type I receptor (AT1R) expression levels can increase neuroinflammation leading to hypertension. We also found that kinin B1 receptor (B1R) expression increased in the hypothalamic paraventricular neurons resulting in neuroinflammation and oxidative stress in neurogenic hypertension. However, whether there are any potential interactions between AT1R and B1R in neuroinflammation is not clear. In the present study, we aimed to determine whether Ang II-mediated effects on inflammation and oxidative stress are mediated by the activation of B1R in mouse neonatal primary hypothalamic neuronal cultures. Gene expression and immunostaining revealed that both B1R and AT1R are expressed on primary hypothalamic neurons. Ang II stimulation significantly increased the expression of B1R, decreased mitochondrial respiration, increased the expression of two NADPH oxidase subunits (Nox2 and Nox4), increased the oxidative potential, upregulated several proinflammatory genes (IL-1ß, IL-6, and TNFα), and increased NF-kB p65 DNA binding activity. These changes were prevented by pretreatment with the B1R-specific peptide antagonist, R715. In summary, our study demonstrates a causal relationship between B1R expression after Ang II stimulation, suggesting a possible cross talk between AT1R and B1R in neuroinflammation and oxidative stress.


Assuntos
Angiotensina II/metabolismo , Antagonistas de Receptor B1 da Bradicinina/uso terapêutico , Encefalite/tratamento farmacológico , Hipotálamo/metabolismo , Estresse Oxidativo , Receptor B1 da Bradicinina/metabolismo , Animais , Antagonistas de Receptor B1 da Bradicinina/farmacologia , Hipertensão/prevenção & controle , Hipotálamo/efeitos dos fármacos , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Camundongos , NADPH Oxidases/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
13.
Head Neck Pathol ; 14(2): 341-352, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31250279

RESUMO

Pharyngocutaneous fistulae (PCF) are one of the most common complications after laryngectomy. Predisposing risk factors have been studied, yet knowledge to determine which patients are prone to developing a fistula remains scarce. This study aims to establish prognostic parameters to identify individual patients at risk for PCF development. As PCF and inflammation seem to be interwoven, this work focuses on markers able to detect an inflammatory response. We retrospectively analyzed all patients who had undergone a laryngectomy at our clinic in the years 2007 to 2017 (n = 182). Immunohistochemical expression of bradykinin type 1 and 2 receptor and vascular endothelial growth factor receptor 2 was studied in all available tumor samples. Additionally, the clinical inflammation parameters 'body temperature', 'pain', 'c-reactive protein (CRP)', and 'leucocytes' were postoperatively tracked in all patients. The times between fistula diagnosis, therapeutic approach, and hospital discharge were recorded. We found a strong correlation between inflammation and the formation of a fistula. High bradykinin 1 receptor expression in the tumor samples correlated with postoperative PCF development. Persistently elevated CRP and leukocyte levels beyond the 6th postoperative day were also risk factors. A decreased time lapse between PCF diagnosis and surgical revision clearly correlated with a shorter hospital stay. In this study, we identified a bradykinin 1 receptor positive patient group at high risk for development of PCF. We recommend close monitoring for fistula formation in these patients to ensure timely intervention.


Assuntos
Fístula Cutânea/etiologia , Fístula/etiologia , Inflamação/metabolismo , Laringectomia/efeitos adversos , Doenças Faríngeas/etiologia , Idoso , Biomarcadores/análise , Proteína C-Reativa/metabolismo , Fístula Cutânea/metabolismo , Feminino , Fístula/metabolismo , Humanos , Inflamação/etiologia , Doenças da Laringe/cirurgia , Masculino , Pessoa de Meia-Idade , Doenças Faríngeas/metabolismo , Prognóstico , Receptor B1 da Bradicinina/metabolismo , Estudos Retrospectivos , Fatores de Risco
14.
Sci Rep ; 9(1): 19437, 2019 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-31857655

RESUMO

Pharmacological research in mice and human genetic analyses suggest that the kallikrein-kinin system (KKS) may regulate anxiety. We examined the role of the KKS in anxiety and stress in both species. In human genetic association analysis, variants in genes for the bradykinin precursor (KNG1) and the bradykinin receptors (BDKRB1 and BDKRB2) were associated with anxiety disorders (p < 0.05). In mice, however, neither acute nor chronic stress affected B1 receptor gene or protein expression, and B1 receptor antagonists had no effect on anxiety tests measuring approach-avoidance conflict. We thus focused on the B2 receptor and found that mice injected with the B2 antagonist WIN 64338 had lowered levels of a physiological anxiety measure, the stress-induced hyperthermia (SIH), vs controls. In the brown adipose tissue, a major thermoregulator, WIN 64338 increased expression of the mitochondrial regulator Pgc1a and the bradykinin precursor gene Kng2 was upregulated after cold stress. Our data suggests that the bradykinin system modulates a variety of stress responses through B2 receptor-mediated effects, but systemic antagonists of the B2 receptor were not anxiolytic in mice. Genetic variants in the bradykinin receptor genes may predispose to anxiety disorders in humans by affecting their function.


Assuntos
Transtornos de Ansiedade/metabolismo , Bradicinina/metabolismo , Sistema Calicreína-Cinina/fisiologia , Estresse Psicológico/metabolismo , Adulto , Animais , Transtornos de Ansiedade/tratamento farmacológico , Transtornos de Ansiedade/genética , Transtornos de Ansiedade/patologia , Antagonistas de Receptor B1 da Bradicinina/administração & dosagem , Antagonistas de Receptor B2 da Bradicinina/administração & dosagem , Encéfalo/patologia , Modelos Animais de Doenças , Feminino , Humanos , Sistema Calicreína-Cinina/efeitos dos fármacos , Cininogênios/genética , Cininogênios/metabolismo , Masculino , Camundongos , Naftalenos/administração & dosagem , Compostos Organofosforados/administração & dosagem , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Polimorfismo de Nucleotídeo Único , Receptor B1 da Bradicinina/genética , Receptor B1 da Bradicinina/metabolismo , Receptor B2 da Bradicinina/genética , Receptor B2 da Bradicinina/metabolismo , Especificidade da Espécie , Estresse Psicológico/tratamento farmacológico , Estresse Psicológico/patologia , Regulação para Cima
15.
J Transl Med ; 17(1): 346, 2019 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-31640792

RESUMO

BACKGROUND: Tibial fracture is associated with inflammatory reaction leading to severe pain syndrome. Bradykinin receptor activation is involved in inflammatory reactions, but has never been investigated in fracture pain. METHODS: This study aims at defining the role of B1 and B2-kinin receptors (B1R and B2R) in a closed tibial fracture pain model by using knockout mice for B1R (B1KO) or B2R (B2KO) and wild-type (WT) mice treated with antagonists for B1R (SSR 240612 and R954) and B2R (HOE140) or vehicle. A cyclooxygenase (COX) inhibitor (ketoprofen) and an antagonist (SB366791) of Transient Receptor Potential Vaniloid1 (TRPV1) were also investigated since these pathways are associated with BK-induced pain in other models. The impact on mechanical and thermal hyperalgesia and locomotion was assessed by behavior tests. Gene expression of B1R and B2R and spinal cord expression of c-Fos were measured by RT-PCR and immunohistochemistry, respectively. RESULTS: B1KO and B2KO mice demonstrated a reduction in post-fracture pain sensitivity compared to WT mice that was associated with decreased c-Fos expression in the ipsilateral spinal dorsal horn in B2KO. B1R and B2R mRNA and protein levels were markedly enhanced at the fracture site. B1R and B2R antagonists and inhibition of COX and TRPV1 pathways reduced pain in WT. However, the analgesic effect of the COX-1/COX-2 inhibitor disappeared in B1KO and B2KO. In contrast, the analgesic effect of the TRPV1 antagonist persisted after gene deletion of either receptor. CONCLUSIONS: It is suggested that B1R and B2R activation contributes significantly to tibial fracture pain through COX. Hence, B1R and B2R antagonists appear potential therapeutic agents to manage post fracture pain.


Assuntos
Dor/fisiopatologia , Receptor B1 da Bradicinina/fisiologia , Receptor B2 da Bradicinina/fisiologia , Fraturas da Tíbia/fisiopatologia , Animais , Antagonistas de Receptor B1 da Bradicinina/farmacologia , Antagonistas de Receptor B2 da Bradicinina/farmacologia , Inibidores de Ciclo-Oxigenase/farmacologia , Modelos Animais de Doenças , Inflamação/etiologia , Inflamação/patologia , Inflamação/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Dor/tratamento farmacológico , Dor/prevenção & controle , Medição da Dor , Proteínas Proto-Oncogênicas c-fos/biossíntese , RNA Mensageiro , Receptor B1 da Bradicinina/deficiência , Receptor B1 da Bradicinina/genética , Receptor B2 da Bradicinina/deficiência , Receptor B2 da Bradicinina/genética , Canais de Cátion TRPV/antagonistas & inibidores , Fraturas da Tíbia/complicações , Fraturas da Tíbia/patologia , Pesquisa Translacional Biomédica
16.
Int J Med Sci ; 16(8): 1102-1106, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31523172

RESUMO

Mesenchymal stem cells are an ideal source for regenerative medicine. For clinical use, cell culture should be done at stable conditions, thus the use of serum should be avoided because of the batch-to-batch variations of serum. Although several kinds of serum-free media are available, a method to confirm whether they contain serum has not been established yet. During studies on effect of adipocyte mesenchymal stem cells (Ad-MSCs) on pain using a human pain gene array, we noticed that BDKRB1 gene was constantly upregulated when serum was used in the culture medium. In this study, we attempted to establish further the potential of this gene as a new marker indicative of the presence of serum in media. Using a real-time quantitative PCR gene array screening containing 84 functional genes, we verified BDKRB1 as a specific gene upregulated in the presence of serum. The expression of BDKRB1 in Ad-MSCs was induced not only by bovine serum but also by human serum. The BDKRB1 expression was induced even when Ad-MSCs was cultured with 0.1% serum in the medium. We concluded that BDKRB1 is a valuable marker to detect traces of both human and animal serum in Ad-MSCs cultures. Our study provides a new method to confirm the absence of serum in media and ensure a stable cell culture condition.


Assuntos
Meios de Cultura/análise , Células-Tronco Mesenquimais/citologia , Receptor B1 da Bradicinina/genética , Soro , Animais , Células Cultivadas , Meios de Cultura/química , Meios de Cultura/farmacologia , Meios de Cultura Livres de Soro/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/fisiologia , Receptor A2A de Adenosina/genética
17.
Biochem Pharmacol ; 168: 119-132, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31254493

RESUMO

Fibromyalgia is a disease characterised as generalised chronic primary pain that causes functional disability and a reduction in patients' quality of life, without specific pathophysiology or appropriate treatment. Previous studies have shown that kinins and their B1 and B2 receptors contribute to chronic painful conditions. Thus, we investigated the involvement of kinins and their B1 and B2 receptors in a fibromyalgia-like pain model induced by reserpine in mice. Nociceptive parameters (mechanical allodynia, cold sensitivity and overt nociception) and behaviours of burrowing, thigmotaxis, and forced swimming were evaluated after reserpine administration in mice. The role of kinin B1 and B2 receptors was investigated using knockout mice or pharmacological antagonism. The protein expression of kinin B1 and B2 receptors and the levels of bradykinin and monoamines were measured in the sciatic nerve, spinal cord and cerebral cortex of the animals. Knockout mice for the kinin B1 and B2 receptor reduced reserpine-induced mechanical allodynia. Antagonism of B1 and B2 receptors also reduced mechanical allodynia, cold sensitivity and overt nociception reserpine-induced. Reserpine altered thigmotaxis, forced swimming and burrowing behaviour in the animals; with the latter being reversed by antagonism of kinin B1 receptor. Moreover, reserpine increased the protein expression of kinin B1 and B2 receptors and levels of kinin, as well as reduced the levels of monoamines in peripheral and central structures. Kinins and its B1 and B2 receptors are involved in fibromyalgia-like pain symptoms. B1 or B2 receptors might represent a potential target for the relief of fibromyalgia-like pain symptoms.


Assuntos
Bradicinina/metabolismo , Fibromialgia/metabolismo , Dor/metabolismo , Receptor B1 da Bradicinina/metabolismo , Receptor B2 da Bradicinina/metabolismo , Animais , Comportamento Animal/efeitos dos fármacos , Modelos Animais de Doenças , Fibromialgia/induzido quimicamente , Técnicas de Inativação de Genes , Hiperalgesia/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Nociceptividade/efeitos dos fármacos , Dor/induzido quimicamente , Receptor B1 da Bradicinina/genética , Receptor B2 da Bradicinina/genética , Reserpina/farmacologia
18.
Biol Pharm Bull ; 42(5): 703-711, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31061312

RESUMO

Cigarette smoke is a well-known strong risk factor for inducing airway hyperreactivity (AHR), but the underlying molecular mechanisms are not fully understood. In the present study, mouse in-vivo and in-vitro models were used to study effects of dimethyl sulfoxide (DMSO)-extracted cigarette smoke particles (DSP) on the airway, and to explore the underlying molecular mechanisms that are involved in DSP-induced AHR. In mouse in-vivo model, DSP (0.75, 1.5 or 3 µL/mL) was administered intranasally daily for 7 d. At the end of this period, lung functions were measured with flexiVent™. The results showed that the mice exhibited AHR in a dose-dependent manner following methacholine inhalation in vivo. In mouse in-vitro organ culture model, exposure of mouse tracheal segments to DSP (0.1 µL/mL) with or without the following pharmacological inhibitors: specific c-Jun-N-terminal kinase (JNK) inhibitor SP600125 (10 µM) or the anti-inflammatory drug dexamethasone (1 µM). DSP-induced bradykinin receptor-mediated airway contraction with increased mRNA and protein expressions for bradykinin B1 and B2 receptors could be significantly reduced by SP600125 or dexamethasone. In conclusion, the present study demonstrates that DSP could induce AHR in vivo and in vitro. In addition to this, the upregulation of bradykinin receptors in airway is most likely one of the underlying molecular mechanisms involved.


Assuntos
Hiper-Reatividade Brônquica/induzido quimicamente , Nicotiana/efeitos adversos , Fumaça/efeitos adversos , Animais , Antracenos/farmacologia , Anti-Inflamatórios/farmacologia , Dexametasona/farmacologia , Dimetil Sulfóxido/química , Proteínas Quinases JNK Ativadas por Mitógeno/fisiologia , Masculino , Camundongos Endogâmicos BALB C , Receptor B1 da Bradicinina/fisiologia , Receptor B2 da Bradicinina/fisiologia , Solventes/química , Traqueia/efeitos dos fármacos , Traqueia/fisiologia
19.
Sci Rep ; 9(1): 2973, 2019 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-30814538

RESUMO

The regulation of the kallikrein-kinin system is an important mechanism controlling vasodilation and promoting inflammation. We aimed to investigate the role of Toll-like receptor 2 (TLR2) in regulating kinin B1 and B2 receptor expression in human gingival fibroblasts and in mouse gingiva. Both P. gingivalis LPS and the synthetic TLR2 agonist Pam2CSK4 increased kinin receptor transcripts. Silencing of TLR2, but not of TLR4, inhibited the induction of kinin receptor transcripts by both P. gingivalis LPS and Pam2CSK4. Human gingival fibroblasts (HGF) exposed to Pam2CSK4 increased binding sites for bradykinin (BK, B2 receptor agonist) and des-Arg10-Lys-bradykinin (DALBK, B1 receptor agonist). Pre-treatment of HGF for 24 h with Pam2CSK4 resulted in increased PGE2 release in response to BK and DALBK. The increase of B1 and B2 receptor transcripts by P. gingivalis LPS was not blocked by IL-1ß neutralizing antibody; TNF-α blocking antibody did not affect B1 receptor up-regulation, but partially blocked increase of B2 receptor mRNA. Injection of P. gingivalis LPS in mouse gingiva induced an increase of B1 and B2 receptor mRNA. These data show that activation of TLR2 in human gingival fibroblasts as well as in mouse gingival tissue leads to increase of B1 and B2 receptor mRNA and protein.


Assuntos
Receptores da Bradicinina/genética , Receptor 2 Toll-Like/metabolismo , Adulto , Animais , Bradicinina/metabolismo , Feminino , Fibroblastos/metabolismo , Gengiva/metabolismo , Humanos , Inflamação/metabolismo , Cininas/metabolismo , Lipopeptídeos/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Receptor B1 da Bradicinina/genética , Receptor B2 da Bradicinina/genética , Receptores da Bradicinina/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
20.
Inflammopharmacology ; 27(3): 573-586, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30820720

RESUMO

Tumour necrosis factor (TNF) and kinins have been associated with neuropathic pain-like behaviour in numerous animal models. However, the way that they interact to cause neuron sensitisation remains unclear. This study assessed the interaction of kinin receptors and TNF receptor TNFR1/p55 in mechanical hypersensitivity induced by an intraneural (i.n.) injection of rm-TNF into the lower trunk of brachial plexus in mice. The i.n. injection of rm-TNF reduced the mechanical withdrawal threshold of the right forepaw from the 3rd to the 10th day after the injection, indicating that TNF1/p55 displays a critical role in the onset of TNF-elicited neuropathic pain. The connection between TNF1/p55 and kinin B1 and B2 receptors (B1R and B2R) was confirmed using both knockout mice and mRNAs quantification in the injected nerve, DRG and spinal cord. The treatment with the B2R antagonist HOE 140 or with B1R antagonist des-Arg9-Leu8-BK reduced both BK- and DABK-induced hypersensitivity. The experiments using kinin receptor antagonists and CPM inhibitor (thiorphan) suggest that BK does not only activate B2R as an orthosteric agonist, but also seems to be converted into DABK that consequently activates B1R. These results indicate a connection between TNF and the kinin system, suggesting a relevant role for B1R and B2R in the process of sensitisation of the central nervous systems by the cross talk between the receptor and CPM after i.n. injection of rm-TNF.


Assuntos
Plexo Braquial/metabolismo , Neuralgia/metabolismo , Receptor B1 da Bradicinina/metabolismo , Receptor B2 da Bradicinina/metabolismo , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Animais , Plexo Braquial/efeitos dos fármacos , Antagonistas de Receptor B1 da Bradicinina/farmacologia , Antagonistas de Receptor B2 da Bradicinina/farmacologia , Modelos Animais de Doenças , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neuralgia/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA