RESUMO
Eleven multiple analogs of bradykinin-a peptide that is a natural ligand of B1 and B2 receptors but does not bind or activate the B1 receptor unless Arg9 is removed from the sequence by the action of carboxypeptidase N-were synthesized. Their biological activity was examined on T-REx cell lines expressing B1 or B2 receptors using the intracellular IP1 assay. The mRNA expression of B1R and B2R in the lysate of tumor cell lines, e.g., U87-MG (human astrocytoma), SHP-77 (human small cell lung cancer), and H4 (human brain glioma), was determined. For five B1R antagonists, adsorption at the liquid/solid interface (Au nanoparticles (AuNPs) served as the solid surface) was discussed in terms of the vibrations of molecular fragments (structural factors) responsible for the biological properties of these analogs.
Assuntos
Bradicinina , Nanopartículas Metálicas , Humanos , Receptor B1 da Bradicinina/genética , Receptor B2 da Bradicinina/genética , Ouro , Fatores de TranscriçãoRESUMO
Sex differences in the control of prolactin secretion are well documented. Sex-related differences in intrapituitary factors regulating lactotroph function have recently attracted attention. Sex differences in prolactinoma development are well documented in clinic, prolactinomas being more frequent in women but more aggressive in men, for poorly understood reasons. Kallikrein, the enzyme releasing kinins has been found in the pituitary, but there is no information on pituitary kinin receptors and their function. In the present work, we characterized pituitary bradykinin receptors (BRs) at the messenger RNA and protein levels in 2 mouse models of prolactinoma, Drd2 receptor gene inactivation and hCGß gene overexpression, in both males and females, wild type or genomically altered. BR B2 (B2R) accounted for 97% or more of total pituitary BRs in both models, regardless of genotype, and was present in lactotrophs, somatotrophs, and gonadotrophs. Male pituitaries displayed higher level of B2R than females, regardless of genotype. Pituitary B2R gene expression was downregulated by estrogen in both males and females but only in females by dopamine. Activation of B1R or B2R by selective pharmacological agonists induced prolactin release in male pituitaries but inhibited prolactin secretion in female pituitaries. Increased B2R content was observed in pituitaries of mutated animals developing prolactinomas, compared to their respective wild-type controls. The present study documents a novel sex-related difference in the control of prolactin secretion and suggests that kinins are involved, through B2R activation, in lactotroph function and prolactinoma development.
Assuntos
Neoplasias Hipofisárias , Prolactinoma , Animais , Feminino , Humanos , Cininas , Masculino , Camundongos , Neoplasias Hipofisárias/genética , Neoplasias Hipofisárias/metabolismo , Prolactina/metabolismo , Prolactinoma/genética , Prolactinoma/metabolismo , Receptor B2 da Bradicinina/agonistas , Receptor B2 da Bradicinina/genética , Receptor B2 da Bradicinina/metabolismo , Receptores da BradicininaRESUMO
ABSTRACT: This study investigates the association of 5 single nucleotide polymorphisms (SNPs) in selected genes (ABO, VEGFA, BDKRB2, NOS3, and ADRB2) with blood pressure (BP) response to enalapril. The study further assessed genetic interactions that exist within these genes and their implications in enalapril treatment response among South African adults with hypertension.A total of 284 participants belonging to the Nguni tribe of South Africa on continuous treatment for hypertension were recruited. Five SNPs in enalapril pharmacogenes were selected and genotyped using MassArray. Uncontrolled hypertension was defined as BP ≥140/90âmmâHg. The association between genotypes, alleles, and BP response to treatment was determined by fitting multivariate logistic regression model analysis, and genetic interactions between SNPs were assessed by multifactor dimensionality reduction.Majority of the study participants were female (75.00%), Xhosa (78.87%), and had uncontrolled hypertension (69.37%). All 5 SNPs were exclusively detected among Swati and Zulu participants. In the multivariate (adjusted) logistic model analysis, ADRB2 rs1042714 GC (adjusted odds ratio [AOR]â=â2.31; 95% confidence interval [CI] 1.02-5.23; Pâ=â.044) and BDKRB2 rs1799722 CT (AORâ=â2.74; 95% CI 1.19-6.28; Pâ=â.017) were independently associated with controlled hypertension in response to enalapril. While the C allele of VEGFA rs699947 (AORâ=â0.37; 95% CI 0.15-0.94; Pâ=â.037) was significantly associated with uncontrolled hypertension. A significant interaction between rs699947, rs495828, and rs2070744 (cross-validation consistencyâ=â10/10; Pâ=â.0005) in response to enalapril was observed.We confirmed the association of rs1042714 (ADRB2) and rs1799722 (BDKRB2) with controlled hypertension and established an interaction between rs699947 (VEGFA), rs495828 (ABO), and rs2070744 (NOS3) with BP response to enalapril. Our findings have provided substantial evidence for the use of SNPs as predictors for enalapril response among South Africans adults with hypertension.
Assuntos
Anti-Hipertensivos/uso terapêutico , Enalapril/uso terapêutico , Hipertensão/tratamento farmacológico , Hipertensão/genética , Adolescente , Adulto , Idoso , Pressão Sanguínea/efeitos dos fármacos , Antagonistas de Receptor B2 da Bradicinina , Estudos Transversais , Feminino , Humanos , Hipertensão/etnologia , Masculino , Pessoa de Meia-Idade , Óxido Nítrico Sintase/genética , Farmacogenética , Polimorfismo Genético , Polimorfismo de Nucleotídeo Único , Receptor B2 da Bradicinina/genética , Receptores Adrenérgicos beta 2/genética , África do Sul , Resultado do Tratamento , Fator A de Crescimento do Endotélio Vascular/genética , Adulto JovemRESUMO
OBJECTIVE: To demonstrate that the kallikrein-kinin system (KKS) is upstream of angiogenic signaling pathway, and to determine the role of the kinin B1 and B2 receptors in myocardial angiogenesis induced by exercise training. METHODS: Forty Wistar rats were randomly assigned to an exercise control (EC) group, a B1 receptor antagonist (B1Ant) group, a B2 receptor antagonist (B2Ant) group, and a double receptor antagonist ((B1+ B2)Ant) group. A myocardial infarction model was employed. Animals in all groups received 30 min of exercise training for 4 weeks. The expression of VEGF and eNOS, capillary supply, and apoptosis rate were evaluated. RESULTS: The mRNA and protein expression of VEGF and eNOS showed similar trends in all groups, and were lowest in the (B1+ B2) Ant group, and highest in the EC group. Levels of VEGF and eNOS mRNA were significantly lower in the B1Ant group than in the B2Ant group (p< .001 and p< .05, respectively). VEGF and eNOS protein in the B1Ant group was also significantly lower (p< .01 and p< .05, respectively) than in the B2Ant group. The capillary numbers in the (B1+ B2) Ant group were significantly lower than in the EC group (395.8 ± 105 vs. 1127.9 ± 192.98, respectively). The apoptosis rate of cardiomyocytes was highest in the (B1+ B2) Ant group. CONCLUSION: KKS may act as an upstream signal transduction pathway for angiogenic factors in myocardial angiogenesis. The B1 and B2 receptors exert additive effects, and the B1 receptor has the most prominent role in mediating KKS-induced myocardial angiogenesis.
Assuntos
Miocárdio/metabolismo , Neovascularização Fisiológica , Condicionamento Físico Animal , Receptor B1 da Bradicinina/metabolismo , Receptor B2 da Bradicinina/metabolismo , Animais , Capilares/metabolismo , Cininas/metabolismo , Masculino , Miócitos Cardíacos/metabolismo , Óxido Nítrico Sintase Tipo III/genética , Óxido Nítrico Sintase Tipo III/metabolismo , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos Wistar , Receptor B1 da Bradicinina/genética , Receptor B2 da Bradicinina/genética , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismoRESUMO
Recent functional and proteomic studies in eukaryotes (www.openprot.org) predict the translation of alternative open reading frames (AltORFs) in mature G-protein-coupled receptor (GPCR) mRNAs, including that of bradykinin B2 receptor (B2R). Our main objective was to determine the implication of a newly discovered AltORF resulting protein, termed AltB2R, in the known signaling properties of B2R using complementary methodological approaches. When ectopically expressed in HeLa cells, AltB2R presented predominant punctate cytoplasmic/perinuclear distribution and apparent cointeraction with B2R at plasma and endosomal/vesicular membranes. The presence of AltB2R increases intracellular [Ca2+] and ERK1/2-MAPK activation (via phosphorylation) following B2R stimulation. Moreover, HEK293A cells expressing mutant B2R lacking concomitant expression of AltB2R displayed significantly decreased maximal responses in agonist-stimulated Gαq-Gαi2/3-protein coupling, IP3 generation, and ERK1/2-MAPK activation as compared with wild-type controls. Conversely, there was no difference in cell-surface density as well as ligand-binding properties of B2R and in efficiencies of cognate agonists at promoting B2R internalization and ß-arrestin 2 recruitment. Importantly, both AltB2R and B2R proteins were overexpressed in prostate and breast cancers, compared with their normal counterparts suggesting new associative roles of AltB2R in these diseases. Our study shows that BDKRB2 is a dual-coding gene and identifies AltB2R as a novel positive modulator of some B2R signaling pathways. More broadly, it also supports a new, unexpected alternative proteome for GPCRs, which opens new frontiers in fields of GPCR biology, diseases, and drug discovery.
Assuntos
Processamento Alternativo/genética , Bradicinina/genética , Isoformas de Proteínas/genética , Receptor B2 da Bradicinina/genética , Bradicinina/metabolismo , Endocitose/genética , Endossomos/genética , Células HEK293 , Células HeLa , Humanos , Sistema de Sinalização das MAP Quinases/genética , Fases de Leitura Aberta/genética , Proteômica , Transdução de Sinais/genéticaRESUMO
Pharmacological research in mice and human genetic analyses suggest that the kallikrein-kinin system (KKS) may regulate anxiety. We examined the role of the KKS in anxiety and stress in both species. In human genetic association analysis, variants in genes for the bradykinin precursor (KNG1) and the bradykinin receptors (BDKRB1 and BDKRB2) were associated with anxiety disorders (p < 0.05). In mice, however, neither acute nor chronic stress affected B1 receptor gene or protein expression, and B1 receptor antagonists had no effect on anxiety tests measuring approach-avoidance conflict. We thus focused on the B2 receptor and found that mice injected with the B2 antagonist WIN 64338 had lowered levels of a physiological anxiety measure, the stress-induced hyperthermia (SIH), vs controls. In the brown adipose tissue, a major thermoregulator, WIN 64338 increased expression of the mitochondrial regulator Pgc1a and the bradykinin precursor gene Kng2 was upregulated after cold stress. Our data suggests that the bradykinin system modulates a variety of stress responses through B2 receptor-mediated effects, but systemic antagonists of the B2 receptor were not anxiolytic in mice. Genetic variants in the bradykinin receptor genes may predispose to anxiety disorders in humans by affecting their function.
Assuntos
Transtornos de Ansiedade/metabolismo , Bradicinina/metabolismo , Sistema Calicreína-Cinina/fisiologia , Estresse Psicológico/metabolismo , Adulto , Animais , Transtornos de Ansiedade/tratamento farmacológico , Transtornos de Ansiedade/genética , Transtornos de Ansiedade/patologia , Antagonistas de Receptor B1 da Bradicinina/administração & dosagem , Antagonistas de Receptor B2 da Bradicinina/administração & dosagem , Encéfalo/patologia , Modelos Animais de Doenças , Feminino , Humanos , Sistema Calicreína-Cinina/efeitos dos fármacos , Cininogênios/genética , Cininogênios/metabolismo , Masculino , Camundongos , Naftalenos/administração & dosagem , Compostos Organofosforados/administração & dosagem , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Polimorfismo de Nucleotídeo Único , Receptor B1 da Bradicinina/genética , Receptor B1 da Bradicinina/metabolismo , Receptor B2 da Bradicinina/genética , Receptor B2 da Bradicinina/metabolismo , Especificidade da Espécie , Estresse Psicológico/tratamento farmacológico , Estresse Psicológico/patologia , Regulação para CimaRESUMO
Although many genetic variants related to anti-tuberculosis drug induced liver injury (ATDILI) have been identified, the prediction and personalized treatment of ATDILI have failed to achieve, indicating there remains an area for further exploration. This study aimed to explore the influence of single nucleotide polymorphisms (SNPs) in Bradykinin receptor B2 (BDKRB2), Teneurin transmembrane protein 2 (TENM2), transforming growth factor beta 2 (TGFB2), and solute carrier family 2 member 13 (SLC2A13) on the risk of ATDILI.The subjects comprised 746 Chinese tuberculosis (TB) patients. Custom-by-design 2x48-Plex SNPscanTM kit was employed to genotype 28 selected SNPs. The associations of SNPs with ATDILI risk and clinical phenotypes were analyzed according to the distributions of allelic and genotypic frequencies and different genetic models. The odds ratio (OR) with corresponding 95% confidence interval (CI) was calculated.Among subjects with successfully genotyped, 107 participants suffered from ATDILI during follow-up. In BDKRB2, patients with rs79280755 G allele or rs117806152 C allele were more vulnerable to ATDILI (PBonferronicorrectionâ=â.002 and .03, respectively). Rs79280755 increased the risk of ATDILI significantly whether in additive (ORâ=â3.218, 95% CI: 1.686-6.139, PBonferroni correctionâ=â.003) or dominant model (PBonferroni correctionâ=â.003), as well as rs117806152 (Additive model: PBonferroni correctionâ=â.05; dominant model: PBonferroni correctionâ=â.03). For TENM2, rs80003210 G allele contributed to the decreased risk of ATDILI (PBonferroni correctionâ=â.02), while rs2617972 A allele conferred susceptibility to ATDILI (PBonferroni correctionâ=â.01). Regarding rs2617972, significant findings were also observed in both additive (ORâ=â3.203, 95% CI: 1.487-6.896, PBonferroni correctionâ=â.02) and dominant model (PBonferroni correctionâ=â.02). Moreover, rs79280755 and rs117806152 in BDKRB2 significantly affected some laboratory indicators. However, no meaningful SNPs were observed in TGFB2 and SLC2A13.Our study revealed that both BDKRB2 and TENM2 genetic polymorphisms were interrogated in relation to ATDILI susceptibility and some laboratory indicators in the Western Chinese Han population, shedding a new light on exploring novel biomarkers and targets for ATDILI.
Assuntos
Antituberculosos/efeitos adversos , Sinalização do Cálcio/genética , Doença Hepática Induzida por Substâncias e Drogas/genética , Proteínas de Membrana/genética , Proteínas do Tecido Nervoso/genética , Receptor B2 da Bradicinina/genética , Adulto , Povo Asiático/genética , Feminino , Marcadores Genéticos , Predisposição Genética para Doença , Proteínas Facilitadoras de Transporte de Glucose/genética , Humanos , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , Estudos Prospectivos , Fator de Crescimento Transformador beta2/genéticaRESUMO
BACKGROUND: Tibial fracture is associated with inflammatory reaction leading to severe pain syndrome. Bradykinin receptor activation is involved in inflammatory reactions, but has never been investigated in fracture pain. METHODS: This study aims at defining the role of B1 and B2-kinin receptors (B1R and B2R) in a closed tibial fracture pain model by using knockout mice for B1R (B1KO) or B2R (B2KO) and wild-type (WT) mice treated with antagonists for B1R (SSR 240612 and R954) and B2R (HOE140) or vehicle. A cyclooxygenase (COX) inhibitor (ketoprofen) and an antagonist (SB366791) of Transient Receptor Potential Vaniloid1 (TRPV1) were also investigated since these pathways are associated with BK-induced pain in other models. The impact on mechanical and thermal hyperalgesia and locomotion was assessed by behavior tests. Gene expression of B1R and B2R and spinal cord expression of c-Fos were measured by RT-PCR and immunohistochemistry, respectively. RESULTS: B1KO and B2KO mice demonstrated a reduction in post-fracture pain sensitivity compared to WT mice that was associated with decreased c-Fos expression in the ipsilateral spinal dorsal horn in B2KO. B1R and B2R mRNA and protein levels were markedly enhanced at the fracture site. B1R and B2R antagonists and inhibition of COX and TRPV1 pathways reduced pain in WT. However, the analgesic effect of the COX-1/COX-2 inhibitor disappeared in B1KO and B2KO. In contrast, the analgesic effect of the TRPV1 antagonist persisted after gene deletion of either receptor. CONCLUSIONS: It is suggested that B1R and B2R activation contributes significantly to tibial fracture pain through COX. Hence, B1R and B2R antagonists appear potential therapeutic agents to manage post fracture pain.
Assuntos
Dor/fisiopatologia , Receptor B1 da Bradicinina/fisiologia , Receptor B2 da Bradicinina/fisiologia , Fraturas da Tíbia/fisiopatologia , Animais , Antagonistas de Receptor B1 da Bradicinina/farmacologia , Antagonistas de Receptor B2 da Bradicinina/farmacologia , Inibidores de Ciclo-Oxigenase/farmacologia , Modelos Animais de Doenças , Inflamação/etiologia , Inflamação/patologia , Inflamação/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Dor/tratamento farmacológico , Dor/prevenção & controle , Medição da Dor , Proteínas Proto-Oncogênicas c-fos/biossíntese , RNA Mensageiro , Receptor B1 da Bradicinina/deficiência , Receptor B1 da Bradicinina/genética , Receptor B2 da Bradicinina/deficiência , Receptor B2 da Bradicinina/genética , Canais de Cátion TRPV/antagonistas & inibidores , Fraturas da Tíbia/complicações , Fraturas da Tíbia/patologia , Pesquisa Translacional BiomédicaRESUMO
It has been reported recently that bradykinin (BK) is involved in the regulation of various processes in cancer cells. However, its role and underlying mechanism of action in cervical cancer (CC) are still unknown. In the present study, it was revealed that BK promoted proliferation, migration, and invasion of CC cells, whereas bradykinin B2 receptor antagonist HOE140 had the inverse effect. Furthermore, it was confirmed that overexpression of bradykinin B2 receptor (B2R) facilitated the proliferation, migration, and invasion of BKtreated CC cells, while knockdown of B2R had the opposite effect. Mechanistically, the present results revealed that the BK/B2Rinduced biological function of CC cells occured by activating STAT3 signaling pathways, and that knockdown of B2R or B2R antagonist had the opposite effects. Moreover, it was demonstrated that BK/B2R facilitated CC cell migration and invasion by upregulating the expression of the STAT3regulated products MMP2 and MMP9, while downregulating the expression of the proapoptotic protein cleaved caspase9. Thus, the present findings revealed that BK promoted CC cell proliferation, migration, and invasion by binding to B2R via STAT3 signaling pathways.
Assuntos
Antagonistas de Receptor B2 da Bradicinina/farmacologia , Bradicinina/metabolismo , Receptor B2 da Bradicinina/metabolismo , Fator de Transcrição STAT3/metabolismo , Neoplasias do Colo do Útero/patologia , Antagonistas de Receptor B2 da Bradicinina/uso terapêutico , Caspase 9/metabolismo , Movimento Celular/efeitos dos fármacos , Movimento Celular/genética , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Células HeLa , Humanos , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Invasividade Neoplásica/genética , Invasividade Neoplásica/patologia , Invasividade Neoplásica/prevenção & controle , Receptor B2 da Bradicinina/genética , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Neoplasias do Colo do Útero/tratamento farmacológico , Neoplasias do Colo do Útero/genéticaRESUMO
Fibromyalgia is a disease characterised as generalised chronic primary pain that causes functional disability and a reduction in patients' quality of life, without specific pathophysiology or appropriate treatment. Previous studies have shown that kinins and their B1 and B2 receptors contribute to chronic painful conditions. Thus, we investigated the involvement of kinins and their B1 and B2 receptors in a fibromyalgia-like pain model induced by reserpine in mice. Nociceptive parameters (mechanical allodynia, cold sensitivity and overt nociception) and behaviours of burrowing, thigmotaxis, and forced swimming were evaluated after reserpine administration in mice. The role of kinin B1 and B2 receptors was investigated using knockout mice or pharmacological antagonism. The protein expression of kinin B1 and B2 receptors and the levels of bradykinin and monoamines were measured in the sciatic nerve, spinal cord and cerebral cortex of the animals. Knockout mice for the kinin B1 and B2 receptor reduced reserpine-induced mechanical allodynia. Antagonism of B1 and B2 receptors also reduced mechanical allodynia, cold sensitivity and overt nociception reserpine-induced. Reserpine altered thigmotaxis, forced swimming and burrowing behaviour in the animals; with the latter being reversed by antagonism of kinin B1 receptor. Moreover, reserpine increased the protein expression of kinin B1 and B2 receptors and levels of kinin, as well as reduced the levels of monoamines in peripheral and central structures. Kinins and its B1 and B2 receptors are involved in fibromyalgia-like pain symptoms. B1 or B2 receptors might represent a potential target for the relief of fibromyalgia-like pain symptoms.
Assuntos
Bradicinina/metabolismo , Fibromialgia/metabolismo , Dor/metabolismo , Receptor B1 da Bradicinina/metabolismo , Receptor B2 da Bradicinina/metabolismo , Animais , Comportamento Animal/efeitos dos fármacos , Modelos Animais de Doenças , Fibromialgia/induzido quimicamente , Técnicas de Inativação de Genes , Hiperalgesia/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Nociceptividade/efeitos dos fármacos , Dor/induzido quimicamente , Receptor B1 da Bradicinina/genética , Receptor B2 da Bradicinina/genética , Reserpina/farmacologiaRESUMO
Bradykinin (BK) is one of the kinin peptides and preferentially binds to bradykinin B2 receptor (BDKRB2). A recent study indicated that BK played an important role in the occurrence and progression of cancer. In this study, we evaluated the serum BK levels in 130 cervical cancer (CC) cases (including 65 cases with pre and postsurgery paired samples, another 65 cases with only presurgery samples), 35 cervical intraepithelial neoplasia (CIN) cases (pre and postsurgery paired) and 35 control cases. We found that BK was overexpressed in patients with CC compared to patients with CIN and the control group. When combined with squamous cell carcinomarelated antigen (SCCA), the diagnostic efficacy of BK was prominently enhanced. Moreover, we detected the expression level of the BK receptor BDKRB2 in CC, CIN and normal cervical tissues and observed a higher expression in the CC and CIN tissues than in the normal cervix. We then explored the possible mechanisms of action of BK in promoting the progression of CC. When BK was added to the cell culture medium, human umbilical vein endothelial cell (HUVEC) angiogenesis increased and vascular endothelial growth factor (VEGF) expression in CC cell lines was also elevated. The BK antagonist, HOE140, exerted an opposite effect. The knockdown or the overexpression of BDKRB2 in CC cell lines further confirmed its oncogenic role in angiogenesis. Taken together, the findings of this study suggest that BK may be a diagnostic biomarker for CC and may notably improve the diagnostic efficacy when combined with SCCA. BK promotes the progression of CC by upregulating the expression of VEGF via BDKRB2 and subsequently facilitating angiogenesis.
Assuntos
Biomarcadores Tumorais/sangue , Cininogênios/sangue , Receptor B2 da Bradicinina/genética , Receptor B2 da Bradicinina/metabolismo , Neoplasias do Colo do Útero/diagnóstico , Fator A de Crescimento do Endotélio Vascular/metabolismo , Animais , Antígenos de Neoplasias/metabolismo , Linhagem Celular Tumoral , Feminino , Regulação Neoplásica da Expressão Gênica , Células HeLa , Células Endoteliais da Veia Umbilical Humana , Humanos , Camundongos , Serpinas/metabolismo , Regulação para Cima , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/metabolismo , Neoplasias do Colo do Útero/patologia , Displasia do Colo do Útero/genética , Displasia do Colo do Útero/metabolismoRESUMO
The regulation of the kallikrein-kinin system is an important mechanism controlling vasodilation and promoting inflammation. We aimed to investigate the role of Toll-like receptor 2 (TLR2) in regulating kinin B1 and B2 receptor expression in human gingival fibroblasts and in mouse gingiva. Both P. gingivalis LPS and the synthetic TLR2 agonist Pam2CSK4 increased kinin receptor transcripts. Silencing of TLR2, but not of TLR4, inhibited the induction of kinin receptor transcripts by both P. gingivalis LPS and Pam2CSK4. Human gingival fibroblasts (HGF) exposed to Pam2CSK4 increased binding sites for bradykinin (BK, B2 receptor agonist) and des-Arg10-Lys-bradykinin (DALBK, B1 receptor agonist). Pre-treatment of HGF for 24 h with Pam2CSK4 resulted in increased PGE2 release in response to BK and DALBK. The increase of B1 and B2 receptor transcripts by P. gingivalis LPS was not blocked by IL-1ß neutralizing antibody; TNF-α blocking antibody did not affect B1 receptor up-regulation, but partially blocked increase of B2 receptor mRNA. Injection of P. gingivalis LPS in mouse gingiva induced an increase of B1 and B2 receptor mRNA. These data show that activation of TLR2 in human gingival fibroblasts as well as in mouse gingival tissue leads to increase of B1 and B2 receptor mRNA and protein.
Assuntos
Receptores da Bradicinina/genética , Receptor 2 Toll-Like/metabolismo , Adulto , Animais , Bradicinina/metabolismo , Feminino , Fibroblastos/metabolismo , Gengiva/metabolismo , Humanos , Inflamação/metabolismo , Cininas/metabolismo , Lipopeptídeos/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Receptor B1 da Bradicinina/genética , Receptor B2 da Bradicinina/genética , Receptores da Bradicinina/metabolismo , Fator de Necrose Tumoral alfa/metabolismoRESUMO
The bioactive peptide bradykinin obtained from cleavage of precursor kininogens activates the kinin-B2 receptor functioning in induction of inflammation and vasodilatation. In addition, bradykinin participates in kidney and cardiovascular development and neuronal and muscle differentiation. Here we show that kinin-B2 receptors are expressed throughout differentiation of murine C2C12 myoblasts into myotubes. An autocrine loop between receptor activation and bradykinin secretion is suggested, since bradykinin secretion is significantly reduced in the presence of the kinin-B2 receptor antagonist HOE-140 during differentiation. Expression of skeletal muscle markers and regenerative capacity were decreased after pharmacological inhibition or genetic ablation of the B2 receptor, while its antagonism increased the number of myoblasts in culture. In summary, the present work reveals to date no functions described for the B2 receptor in muscle regeneration due to the control of proliferation and differentiation of muscle precursor cells.
Assuntos
Diferenciação Celular , Músculo Esquelético/fisiologia , Mioblastos/citologia , Receptor B2 da Bradicinina/metabolismo , Regeneração , Animais , Biomarcadores/metabolismo , Bradicinina/metabolismo , Cardiotoxinas/administração & dosagem , Linhagem Celular , Proliferação de Células , Citoesqueleto/metabolismo , Deleção de Genes , Cininogênios/genética , Cininogênios/metabolismo , Camundongos Endogâmicos C57BL , Fibras Musculares Esqueléticas/citologia , Fibras Musculares Esqueléticas/metabolismo , Cadeias Pesadas de Miosina/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptor B2 da Bradicinina/genéticaRESUMO
Deep venous thrombosis (DVT) is a common complication of orthopedic surgery. Genetic risk factors and high heritability carried a substantial risk of DVT. In this study, we aimed to investigate the potential association in the Han Chinese population between the polymorphisms of BDKRB2 and KNG1 and DVT after orthopedic surgery (DVTAOS). A total of 3,010 study subjects comprising 892 DVT cases and 2,118 controls were included in the study, and 39 single nucleotide polymorphisms (SNPs) in total (30 for BDKRB2 and 9 for KNG1) were chosen for genotyping. Two SNPs, rs710446 (OR = 1.27, P = 0.00016) and rs2069588 (OR = 1.29, P = 0.00056), were identified as significantly associated with DVTAOS. After adjusting for BMI, the significance of rs2069588 decreased (P = 0.0013). Haplotype analyses showed that an LD block containing rs2069588 significantly correlated with the DVTAOS risk. Moreover, bioinformatics analysis indicated that hsa-miR-758-5p and BDKRB2 formed miRNA/SNP target duplexes if the rs2069588 allele was in the T form, suggesting that rs2069588 may alter BDKRB2 expression by affecting hsa-miR-758-5p/single-nucleotide polymorphism target duplexes. Our results demonstrate additional evidence supporting that there is an important role for the KNG1 and BDKRB2 genes in the increased susceptibility of DVTAOS.
Assuntos
Cininogênios/genética , Procedimentos Ortopédicos/efeitos adversos , Polimorfismo de Nucleotídeo Único , Receptor B2 da Bradicinina/genética , Trombose Venosa/genética , Idoso , Povo Asiático/genética , Índice de Massa Corporal , Estudos de Casos e Controles , Feminino , Predisposição Genética para Doença , Haplótipos , Humanos , Masculino , MicroRNAs/genética , Pessoa de Meia-Idade , Locos de Características Quantitativas , Trombose Venosa/etiologiaRESUMO
Several G protein-coupled receptors are present in lipid rafts. We have shown that most of the P2Y2 receptor (P2Y2R) protein is fractionated into lipid rafts in COS 7â¯cells. In the same cells, about 25-30% of the bradykinin B2 receptor (B2R) protein is also fractionated into lipid rafts. When both P2Y2R and B2R are co-expressed, the distribution of P2Y2R remained unchanged, but more B2R shifted into the raft fraction. This indicates that the interaction between both receptors recruited B2R into the lipid rafts. After 15â¯min of UTP stimulation, both receptors almost completely disappeared from the cell surface by endocytosis as observed with a confocal fluorescence microscope. Furthermore, with bradykinin stimulation for 15â¯min, portions of both receptors disappeared from the cell surface and were endocytosed. As we reported previously with both CHO-K1 cells and HEK 293â¯cells, continuous stimulation of COS7 cells with GT1b and CSC resulted in the disappearance of both P2Y2R and B2R from the cell membrane surface. Thus, both P2Y2R and B2R migrate into membrane rafts and are endocytosed in parallel with signal crosstalk, clearly indicating that both closely interact on membrane rafts. The P2Y2R N-glycosylation deficient mutant does not migrate to the cell surface. It remains predominantly in the endoplasmic reticulum and is fractionated into raft fractions. In the presence of this glycosylation mutant, most of B2R remains in the endoplasmic reticulum, and is fractionated into the raft fraction. These findings demonstrate that in the membrane rafts of the endoplasmic reticulum, both receptors are already closely associated, and B2R shifts into the rafts by affinity with P2Y2R.
Assuntos
Microdomínios da Membrana/metabolismo , Receptor B2 da Bradicinina/metabolismo , Receptores Purinérgicos P2Y2/metabolismo , Transdução de Sinais , Trifosfato de Adenosina/metabolismo , Animais , Bradicinina/metabolismo , Células CHO , Células COS , Chlorocebus aethiops , Cricetinae , Cricetulus , Endocitose , Humanos , Ligação Proteica , Receptor B2 da Bradicinina/genética , Receptores Purinérgicos P2Y2/genética , Uridina Trifosfato/metabolismoRESUMO
The role, if any, played by the kinin system in tuberculosis infection models, either in vivo or in vitro, was investigated. The effects of Mycobacterium tuberculosis infection on C57BL/6 wild type, B1R-/-, B2R-/- and double B1R/B2R knockout mice were evaluated. Immunohistochemistry analysis was carried out to assess B1R and B2R expression in spleens and lungs of M. tuberculosis-infected mice. In addition, in vitro experiments with M. tuberculosis-infected macrophages were performed. The in vivo effects of HOE-140 and SSR240612 on the mice model of infection were also evaluated. Infected B2R-/- mice exhibited increased splenomegaly, whereas decreased spleen weight in infected double B1R/B2R knockout mice was observed. The bacterial load, determined as colony-forming units, did not differ in the spleens and lungs of the studied mouse strains. Importantly, immunohistochemical analysis revealed that B1R was upregulated in both spleens and lungs of infected mice. M. tuberculosis-infected macrophages incubated with SSR240612, alone or in combination with des-Arg9-BK, for four days, displayed a marked inhibitory effect on CFU counts. However, the pre-incubation of the selective B1R (des-Arg9-BK and SSR240612) and B2R (BK and HOE-140) agonists and antagonists, respectively, did not significantly affect the bacterial loads. A statistically significant reduction in the CFU of M. tuberculosis in lungs and spleens of animals treated with SSR240612, but not with HOE-140, was observed. Further efforts should be pursued to clarify whether or not SSR240612 might be considered an option for the treatment of tuberculosis.
Assuntos
Antituberculosos/administração & dosagem , Antagonistas de Receptor B1 da Bradicinina/administração & dosagem , Dioxóis/administração & dosagem , Pulmão/efeitos dos fármacos , Mycobacterium tuberculosis/efeitos dos fármacos , Receptor B1 da Bradicinina/efeitos dos fármacos , Sulfonamidas/administração & dosagem , Tuberculose Pulmonar/tratamento farmacológico , Administração Oral , Animais , Carga Bacteriana , Bradicinina/administração & dosagem , Bradicinina/análogos & derivados , Antagonistas de Receptor B2 da Bradicinina/administração & dosagem , Modelos Animais de Doenças , Feminino , Pulmão/metabolismo , Pulmão/microbiologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos/microbiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mycobacterium tuberculosis/crescimento & desenvolvimento , Células RAW 264.7 , Receptor B1 da Bradicinina/deficiência , Receptor B1 da Bradicinina/genética , Receptor B1 da Bradicinina/metabolismo , Receptor B2 da Bradicinina/genética , Receptor B2 da Bradicinina/metabolismo , Baço/efeitos dos fármacos , Baço/metabolismo , Baço/microbiologia , Tuberculose Pulmonar/genética , Tuberculose Pulmonar/metabolismo , Tuberculose Pulmonar/microbiologiaRESUMO
The identification of components of the kallikrein-kinin system in the vitreous from patients with microvascular retinal diseases suggests that bradykinin (BK) signaling may contribute to pathogenesis of retinal vascular complications. BK receptor 2 (B2R) signaling has been implicated in both pro-inflammatory and pro-angiogenic effects promoted by BK. Here, we investigated the role of BK/B2R signaling in the retinal neovascularization in the oxygen-induced retinopathy (OIR) model. Blockade of B2R signaling by the antagonist fasitibant delayed retinal vascularization in mouse pups, indicating that the retinal endothelium is a target of the BK/B2R system. In the rabbit cornea assay, a model of pathological neoangiogenesis, the B2 agonist kallidin induced vessel sprouting and promoted cornea opacity, a sign of edema and tissue inflammation. In agreement with these results, in the OIR model, a blockade of B2R signaling significantly reduced retinal neovascularization, as determined by the area of retinal tufts, and, in the retinal vessel, it also reduced vascular endothelial growth factor and fibroblast growth factor-2 expression. All together, these findings show that B2R blockade reduces retinal neovascularization and inhibits the expression of proangiogenic and pro-inflammatory cytokines, suggesting that targeting B2R signaling may be an effective strategy for treating ischemic retinopathy.
Assuntos
Estresse Oxidativo , Receptor B2 da Bradicinina/genética , Doenças Retinianas/etiologia , Doenças Retinianas/metabolismo , Neovascularização Retiniana/genética , Animais , Bradicinina/metabolismo , Antagonistas de Receptor B2 da Bradicinina/farmacologia , Córnea/efeitos dos fármacos , Córnea/metabolismo , Córnea/patologia , Modelos Animais de Doenças , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Camundongos , Modelos Biológicos , Ornitina/análogos & derivados , Ornitina/farmacologia , Coelhos , Receptor B2 da Bradicinina/metabolismo , Doenças Retinianas/patologia , Neovascularização Retiniana/metabolismo , Epitélio Pigmentado da Retina/efeitos dos fármacos , Epitélio Pigmentado da Retina/metabolismo , Epitélio Pigmentado da Retina/patologia , Transdução de Sinais/efeitos dos fármacos , Sulfonamidas/farmacologiaRESUMO
Bradykinin is a well-known endogenous vasoactive peptide. The present study investigated the bradykinin receptor expression in human cardiac c-Kit+ progenitor cells and the potential role of bradykinin in regulating cell cycling progression and mobility. It was found that mRNA and protein of bradykinin type 2 receptors, but not bradykinin type 1 receptors, were abundant in cultured human cardiac c-Kit+ progenitor cells. Bradykinin (1-10 nM) stimulated cell growth and migration in a concentration-dependent manner. The increase of cell proliferation was related to promoting G0/G1 transition into G2/M and S phase. Western blots revealed that bradykinin significantly increased pAkt and pERK1/2 as well as cyclin D1, which were countered by HOE140 (an antagonist of bradykinin type 2 receptors) or by silencing bradykinin type 2 receptors. The increase of pAkt, pERK1/2 and cyclin D1 by bradykinin was prevented by the PI3K inhibitor Ly294002, the PLC inhibitors U73122 and neomycin, and/or the PKC inhibitor chelerythrine and the MAPK inhibitor PD98059. Our results demonstrate the novel information that bradykinin promotes cell cycling progression and migration in human cardiac c-Kit+ progenitor cells via activating PI3K, PLC, PKC, cyclin D1, pERK1/2, and pAkt.
Assuntos
Bradicinina/farmacologia , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-kit/metabolismo , Células-Tronco/efeitos dos fármacos , Western Blotting , Ciclo Celular/efeitos dos fármacos , Ciclo Celular/genética , Movimento Celular/genética , Proliferação de Células/genética , Células Cultivadas , Ciclina D1/metabolismo , Relação Dose-Resposta a Droga , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Expressão Gênica/efeitos dos fármacos , Átrios do Coração/citologia , Humanos , Fosfatidilinositol 3-Quinases/metabolismo , Proteína Quinase C/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Interferência de RNA , Receptor B1 da Bradicinina/genética , Receptor B1 da Bradicinina/metabolismo , Receptor B2 da Bradicinina/genética , Receptor B2 da Bradicinina/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Células-Tronco/citologia , Células-Tronco/metabolismo , Fosfolipases Tipo C/metabolismoRESUMO
Hepatocellular carcinoma (HCC) is one of the most prevalent and aggressive malignant tumors. The involvement of N-myc (and STAT) interactor (NMI) and its possible functional mechanisms in HCC progression still remain to be elucidated. In this study, we found that NMI was overexpressed in metastatic HCC cell lines compared with non-metastatic ones; and the expression levels of NMI in the HCC samples with metastasis were higher than that in the non-metastatic specimens. Furthermore, NMI depletion significantly decreased HCC cell proliferation and invasiveness in vitro, and also inhibited tumor growth and lung metastasis in vivo in nude mice models bearing human HCC. By contrast, NMI stable overexpression can enhance the malignant behaviors obviously. Moreover, we further verified that NMI promotes the expression of BDKRB2 and mediates the activation of MAPK/ERK signaling pathway according to the bidirectional perturbations of NMI expression in vivo or in vitro of HCC. Taken together, NMI is a pro-metastatic molecule and partially responsible for HCC tumor growth and motility. NMI could improve its downstream target BDKRB2 expression to induce ERK1/2 activation, and thereby further evoke malignant progression of HCC.
Assuntos
Carcinoma Hepatocelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Neoplasias Hepáticas/genética , Sistema de Sinalização das MAP Quinases , Receptor B2 da Bradicinina/genética , Animais , Western Blotting , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/terapia , Linhagem Celular Tumoral , Progressão da Doença , Feminino , Perfilação da Expressão Gênica/métodos , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/terapia , Masculino , Camundongos Endogâmicos BALB C , Camundongos Nus , Pessoa de Meia-Idade , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Interferência de RNA , Terapêutica com RNAi/métodos , Receptor B2 da Bradicinina/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Carga Tumoral/genética , Ensaios Antitumorais Modelo de Xenoenxerto/métodosRESUMO
This study investigated the role of kinins and their receptors in malignant brain tumors. As a first approach, GL-261 glioma cells were injected (2 × 105 cells in 2 µl/2 min) into the right striatum of adult C57/BL6 wild-type, kinin B1 and B2 receptor knockout (KOB1R and KOB2R) and B1 and B2 receptor double knockout mice (KOB1B2R). The animals received the selective B1R (SSR240612) and/or B2R (HOE-140) antagonists by intracerebroventricular (i.c.v.) route at 5, 10, and 15 days. The tumor size quantification, mitotic index, western blot analysis, quantitative autoradiography, immunofluorescence, and confocal microscopy were carried out in brain tumor samples, 20 days after tumor induction. Our results revealed an uncontrolled tumor growing in KOB1R or SSR240612-treated mice, which was blunted by B2R blockade with HOE-140, suggesting a crosstalk between B1R and B2R in tumor growing. Combined treatment with B1R and B2R antagonists normalized the upregulation of tumor B1R and decreased the tumor size and the mitotic index, as was seen in double KOB1B2R. The B1R was detected on astrocytes in the tumor, indicating a close relationship between this receptor and astroglial cells. Noteworthy, an immunohistochemistry analysis of tumor samples from 16 patients with glioma diagnosis revealed a marked B1R immunopositivity in low-grade gliomas or in older glioblastoma individuals. Furthermore, the clinical data revealed a significantly higher immunopositivity for B1R, when compared to a lower B2R immunolabeling. Taken together, our results show that blocking simultaneously both kinin receptors or alternatively stimulating B1R may be of therapeutic value in the treatment of brain glioblastoma growth and malignancy.